
Build a digital book with EPUB
The open XML-based eBook format

Skill Level: Intermediate

Liza Daly
Software Engineer and Owner
Threepress Consulting Inc.

25 Nov 2008

Updated 03 Jun 2010

Need to distribute documentation, create an eBook, or just archive your favorite blog
posts? EPUB is an open specification for digital books based on familiar technologies
like XML, CSS, and XHTML, and EPUB files can be read on portable e-ink devices,
mobile phones, and desktop computers. This tutorial explains the EPUB format in
detail, demonstrates EPUB validation using Java™ technology, and moves
step-by-step through automating EPUB creation using DocBook and Python.
05 Feb 2009 - As a followup to reader comments, the author revised the content of
Listing 3 and refreshed the epub-raw-files.zip file (see Downloads).

27 Apr 2010 - Refreshed the epub-raw-files.zip file (see Downloads).

03 Jun 2010 - At author request,revised the content of Listings 3 and 8. Also
refreshed the epub-raw-files.zip file (see Downloads).

Section 1. Before you start

This tutorial guides you through creating eBooks in the EPUB format. EPUB is an
XML-based, developer-friendly format that is emerging as the de facto standard for
digital books. But EPUB isn't just for books: With it, you can:

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 1 of 28

• Bundle documentation for offline reading or easy distribution
• Package blog posts or other Web-native content
• Build, search, and remix using common open source tools

About this tutorial

Frequently used acronyms
• API: application programming interface

• CSS: Cascading stylesheets

• DOM: Document Object Model

• DTD: Document type definition

• GUI: Graphical user interface

• HTML: Hypertext Markup Language

• SAX: Simple API For XML

• W3C: World Wide Web Consortium

• XHTML: Extensible HTML

• XML: Extensible Markup Language

You start this tutorial by generating an EPUB book manually to help you learn all the
components and required files. Next, the tutorial shows how to bundle the finished
digital book and validate it against the specification as well as how to test it in
various reading systems.

Then, it covers generating EPUB from DocBook XML—one of the most widely used
standards for technical documentation—and how to use Python to completely
automate EPUB creation with DocBook from end to end.

Objectives
In this tutorial, you:

• Learn what EPUB is, who's behind it, and who's adopting it
• Explore the structure of an EPUB bundle, including its required files and
their schemas

• Create a valid EPUB file from scratch using simple content

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 2 of 28

• Use open source tools to produce EPUB files from DocBook, a widely
used schema for technical documentation and books

• Automate EPUB conversion using Python and DocBook

Prerequisites
No particular operating system is assumed for this tutorial, although you should be
familiar with the mechanics of creating files and directories. Use of an XML editor or
integrated development environment (IDE) is strongly recommended.

For the later parts of the tutorial on automating EPUB creation, this tutorial assumes
that you know one or more basic XML processing skills—XSLT, DOM, or
SAX-based parsing—and how to construct an XML document using an XML-native
API.

No familiarity with the EPUB file format is necessary to complete this tutorial.

System requirements
To complete the examples in this tutorial, you need a Java interpreter (version 1.5 or
later) and a Python interpreter (version 2.4 or later) as well as the required XML
libraries for each. However, experienced XML developers should be able to adapt
the examples to any programming language with XML libraries.

Section 2. About the EPUB format

Learn the background of EPUB, what EPUB is most commonly used for, and how
EPUB differs from the Portable Document Format (PDF).

What is EPUB?
EPUB is the XML format for reflowable digital books and publications standardized
by the International Digital Publishing Forum (IDPF), a trade and standards
association for the digital publishing industry. IDPF officially adopted EPUB in
October 2007 and by 2008 had seen rapid adoption by major publishers. You can
read the EPUB format using a variety of open source and commercial software on all
major operating systems, e-ink devices such as the Sony PRS, and small devices
such as the Apple iPhone.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 3 of 28

Who is producing EPUB? Is it only for books?
Although traditional print publishers were the first to adopt EPUB, nothing in the
format limits its use to eBooks. With freely available software tools, you can bundle
Web pages as EPUB, convert plain text files, or transform existing DocBook XML
documentation into well-formed and valid EPUB. (I cover the latter in From DocBook
to EPUB.)

How is EPUB different from PDF?
PDF is still the most widely used electronic document format in the world. From a
book publisher's point of view, PDF has several advantages:

• PDF files allow pixel-perfect control over layout, including complex
print-friendly layouts such as multiple columns and alternate recto/verso
styles.

• PDFs can be generated by a wide variety of GUI-based document tools,
such as Microsoft® Office Word or Adobe® InDesign®.

• PDF readers are ubiquitous and installed on most modern computers.
• Specific fonts can be embedded in PDF to control the final output exactly.

Three standards in one
EPUB consists of three separate IDPF specifications, although in
practice, it's safe to refer to them collectively as EPeUB:

• Open eBook Publication Structure Container Format
(OCF): Specifies the directory tree structure and file
format (ZIP) of an EPUB archive.

• Open Publication Structure (OPS): Defines the
common vocabularies for the eBook, especially the
formats allowed to be used for book content (for
example, XHTML and CSS).

• Open Packaging Format (OPF): Describes the required
and optional metadata, reading order, and table of
contents in an EPUB.

Additionally, EPUB reuses several other standards, such as XHTML
version 1.0 and Digital Accessible Information SYstem (DAISY), for
specific types of content within the EPUB archive.

From a software developer's point of view, PDF falls far short of the ideal:

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 4 of 28

• It's not a trivial standard to learn; therefore, it's not a simple matter to
throw together your own PDF-generating code.

• Although PDF is now an International Organization for Standardization
(ISO) standard (ISO 32000-1:2008), traditionally it has been controlled by
a single corporation: Adobe Systems.

• Although PDF libraries are available for most programming languages,
many are commercial or are embedded in GUI applications and not easily
controlled by external processes. Not all free libraries continue to be
actively maintained.

• PDF-native text can be extracted and searched programmatically, but few
PDFs are tagged such that conversion to a Web-friendly format is simple
or reliable.

• PDF documents aren't easily reflowable, meaning that they don't adapt
well to small screens or to radical changes to their layouts.

Why EPUB is friendly to developers
EPUB addresses all the flaws in PDF as they relate to developer friendliness. An
EPUB is a simple ZIP-format file (with an .epub extension) that contains files ordered
in a proscribed manner. There are a few tricky requirements about how the ZIP
archive is prepared, which will be discussed in detail later in Bundling your EPUB file
as a ZIP archive. Otherwise, EPUB is simple:

• Nearly everything in EPUB is XML. EPUB files can be built using standard
XML toolkits without any special or proprietary software.

• EPUB content (the actual text of an eBook) is almost always XHTML
version 1.1. (An alternative format is DTBook, a standard for encoding
books for the visually impaired. See Resources for more information on
DTBook, which is not covered in this tutorial).

• Most of the EPUB XML schemas are taken from existing, published
specifications that are freely available.

The two key points are that EPUB metadata is XML and EPUB content is XHTML.
If your documentation-building system produces output for the Web and/or is based
on XML, then it is very close to being able to produce EPUB, as well.

Section 3. Building your first EPUB

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 5 of 28

A minimally conforming EPUB bundle has several required files. The specification
can be quite strict about the format, contents, and location of those files within the
EPUB archive. This section explains what you must know when you work with the
EPUB standard.

Anatomy of an EPUB bundle
The basic structure of a minimal EPUB file follows the pattern in Listing 1. When
ready for distribution, this directory structure is bundled together into a ZIP-format
file, with a few special requirements discussed in Bundling your EPUB file as a ZIP
archive.

Listing 1. Directory and file layout for a simple EPUB archive

mimetype
META-INF/

container.xml
OEBPS/
content.opf
title.html
content.html
stylesheet.css
toc.ncx
images/

cover.png

Note: A sample book following this pattern is available from Downloads, but I
recommend that you create your own as you follow the tutorial.

To start building your EPUB book, create a directory for the EPUB project. Open a
text editor or an IDE such as Eclipse. I recommend using an editor that has an XML
mode—in particular, one that can validate against the Relax NG schemas listed in
Resources.

The mimetype file
This one's pretty easy: The mimetype file is required and must be named mimetype.
The contents of the file are always:

application/epub+zip

Note that the mimetype file cannot contain any newlines or carriage returns.

Additionally, the mimetype file must be the first file in the ZIP archive and must not
itself be compressed. You'll see how to include it using common ZIP arguments in

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 6 of 28

Bundling your EPUB file as a ZIP archive. For now, just create this file and save it,
making sure that it's at the root level of your EPUB project.

META-INF/container.xml
At the root level of the EPUB, there must be a META-INF directory, and it must
contain a file named container.xml. EPUB reading systems will look for this file first,
as it points to the location of the metadata for the digital book.

Create a directory called META-INF. Inside it, open a new file called container.xml
for writing. The container file is very small, but its structural requirements are strict.
Paste the code in Listing 2 into META-INF/container.xml.

Listing 2. Sample container.xml file

<?xml version="1.0"?>
<container version="1.0" xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
<rootfiles>
<rootfile full-path="OEBPS/content.opf"
media-type="application/oebps-package+xml" />

</rootfiles>
</container>

The value of full-path (in bold) is the only part of this file that will ever vary. The
directory path must be relative to the root of the EPUB file itself, not relative to the
META-INF directory.

More about META-INF
The META-INF directory can contain a few optional files, as well.
These files allow EPUB to support digital signatures, encryption,
and digital rights management (DRM). These topics are not covered
in this tutorial. See the OCF specification for more information.

The mimetype and container files are the only two whose location in the EPUB
archive are strictly controlled. As recommended (although not required), store the
remaining files in the EPUB in a sub-directory. (By convention, this is usually called
OEBPS, for Open eBook Publication Structure, but can be whatever you like.)

Next, create the directory named OEBPS in your EPUB project. The following
section of this tutorial covers the files that go into OEBPS—the real meat of the
digital book: its metadata and its pages.

Open Packaging Format metadata file
Although this file can be named anything, the OPF file is conventionally called

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 7 of 28

content.opf. It specifies the location of all the content of the book, from its text to
other media such as images. It also points to another metadata file, the Navigation
Center eXtended (NCX) table of contents.

The OPF file is the most complex metadata in the EPUB specification. Create
OEBPS/content.opf, and paste the contents of Listing 3 into it.

Listing 3. OPF content file with sample metadata

<?xml version='1.0' encoding='utf-8'?>
<package xmlns="http://www.idpf.org/2007/opf"

xmlns:dc="http://purl.org/dc/elements/1.1/"
unique-identifier="bookid" version="2.0">

<metadata>
<dc:title>Hello World: My First EPUB</dc:title>
<dc:creator>My Name</dc:creator>
<dc:identifier

id="bookid">urn:uuid:0cc33cbd-94e2-49c1-909a-72ae16bc2658</dc:identifier>
<dc:language>en-US</dc:language>
<meta name="cover" content="cover-image" />

</metadata>
<manifest>
<item id="ncx" href="toc.ncx" media-type="application/x-dtbncx+xml"/>
<item id="cover" href="title.html" media-type="application/xhtml+xml"/>
<item id="content" href="content.html"

media-type="application/xhtml+xml"/>
<item id="cover-image" href="images/cover.png" media-type="image/png"/>
<item id="css" href="stylesheet.css" media-type="text/css"/>

</manifest>
<spine toc="ncx">
<itemref idref="cover" linear="no"/>
<itemref idref="content"/>

</spine>
<guide>
<reference href="title.html" type="cover" title="Cover"/>

</guide>
</package>

OPF schemas and namespaces

The OPF document itself must use the namespace http://www.idpf.org/2007/opf, and
the metadata will be in the Dublin Core Metadata Initiative (DCMI) namespace,
http://purl.org/dc/elements/1.1/.

This would be a good time to add the OPF and DCMI schema to your XML editor. All
the schemas used in EPUB are available from Downloads.

Metadata

Dublin Core defines a set of common metadata terms that you can use to describe a
wide variety of digital materials; it's not part of the EPUB specification itself. Any of
these terms are allowed in the OPF metadata section. When you build an EPUB for
distribution, include as much detail as you can here, although the extract provided in
Listing 4 is sufficient to start.

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 8 of 28

Listing 4. Extract of OPF metadata

...
<metadata>
<dc:title>Hello World: My First EPUB</dc:title>
<dc:creator>My Name</dc:creator>
<dc:identifier id="bookid">urn:uuid:12345</dc:identifier>
<meta name="cover" content="cover-image" />

</metadata>
...

The two required terms are title and identifier. According to the EPUB specification,
the identifier must be a unique value, although it's up to the digital book creator to
define that unique value. For book publishers, this field will typically contain an ISBN
or Library of Congress number. For other EPUB creators, consider using a URL or a
large, randomly generated unique user ID (UUID). Note that the value of the attribute
unique-identifier must match the ID attribute of the dc:identifier element.

Other metadata to consider adding, if it's relevant to your content, include:

• Language (as dc:language).
• Publication date (as dc:date).
• Publisher (as dc:publisher). (This can be your company or individual
name.)

• Copyright information (as dc:rights). (If releasing the work under a
Creative Commons license, put the URL for the license here.)

See Resources for more information on DCMI.

Including a meta element with the name attribute containing cover is not part of the
EPUB specification directly, but is a recommended way to make cover pages and
images more portable. Some EPUB renderers prefer to use an image file as the
cover, while others will use an XHTML file containing an inlined cover image. This
example shows both forms. The value of the meta element's content attribute
should be the ID of the book's cover image in the manifest, which is the next part of
the OPF file.

Manifest

The OPF manifest lists all the resources found in the EPUB that are part of the
content (and excluding metadata). This usually means a list of XHTML files that
make up the text of the eBook plus some number of related media such as images.
EPUB encourages the use of CSS for styling book content, so CSS files are also
included in the manifest. Every file that goes into your digital book must be
listed in the manifest.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 9 of 28

Listing 5 shows the extracted manifest section.

Listing 5. Extract of OPF manifest

...
<manifest>
<item id="ncx" href="toc.ncx" media-type="text/xml"/>
<item id="cover" href="title.html" media-type="application/xhtml+xml"/>
<item id="content" href="content.html" media-type="application/xhtml+xml"/>
<item id="cover-image" href="images/cover.png" media-type="image/png"/>
<item id="css" href="stylesheet.css" media-type="text/css"/>

</manifest>
...

Advanced OPF manifests
A more advanced sample of a manifest file will include multiple
XHTML files as well as images and a CSS. Get a complete EPUB
with examples of common types from Downloads.

You must include the first item, toc.ncx (discussed in the next section). Note that
all items have an appropriate media-type value and that the media type for the
XHTML content is application/xhtml+xml. This exact value is required and
cannot be text/html or some other type.

EPUB supports four image file formats as core types: Joint Photographic Experts
Group (JPEG), Portable Network Graphics (PNG), Graphics Interchange Format
(GIF), and Scalable Vector Graphics (SVG). You can include non-supported file
types if you provide a fall-back to a core type. See the OPF specification for more
information on fall-back items.

The values of the href attribute should be a Uniform Resource Identifier (URI) that
is relative to the OPF file. (This is easy to confuse with the reference to the OPF file
in the container.xml file, where it must be relative to the EPUB as a whole.) In this
case, the OPF file is in the same OEBPS directory as your content, so no path
information is required here.

Spine

Although the manifest tells the EPUB reader which files are part of the archive, the
spine indicates the order in which they appear, or—in EPUB terms—the linear
reading order of the digital book. One way to think of the OPF spine is that it defines
the order of the "pages" of the book. The spine is read in document order, from top
to bottom. Listing 6 shows an extract from the OPF file.

Listing 6. Extract of OPF spine

...

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 10 of 28

<spine toc="ncx">
<itemref idref="cover" linear="no"/>
<itemref idref="content"/>

</spine>
...

Each itemref element has a required attribute idref, which must match one of
the IDs in the manifest. The toc attribute is also required. It references an ID in the
manifest that must indicate the file name of the NCX table of contents.

The linear attribute in the spine indicates whether the item is considered part of
the linear reading order versus being extraneous front- or end-matter. I recommend
that you define any cover page as linear=no. Conforming EPUB reading systems
will open the book to the first item in the spine that's not set as linear=no.

Guide

The last part of the OPF content file is the guide. This section is optional but
recommended. Listing 7 shows an extract from a guide file.

Listing 7. Extract of an OPF guide

...
<guide>
<reference href="cover.html" type="cover" title="Cover"/>

</guide>
...

The guide is a way of providing semantic information to an EPUB reading system.
While the manifest defines the physical resources in the EPUB and the spine
provides information about their order, the guide explains what the sections mean.
Here's a partial list of the values that are allowed in the OPF guide:

• cover: The book cover
• title-page: A page with author and publisher information
• toc: The table of contents

For a complete list, see the OPF 2.0 specification, available from Resources.

NCX table of contents

Overlap between NCX and OPF metadata
Because the NCX is borrowed from another standard, there is some
overlap between the information encoded in the NCX and that in the
OPF. This is rarely a problem when you generate EPUBs
programmatically, where the same code can output to two different

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 11 of 28

files. Take care to put the same information in both places, as
different EPUB readers might use the values from one or the other.

Although the OCF file is defined as part of EPUB itself, the last major metadata file is
borrowed from a different digital book standard. DAISY is a consortium that develops
data formats for readers who are unable to use traditional books, often because of
visual impairments or the inability to manipulate printed works. EPUB has borrowed
DAISY's NCX DTD. The NCX defines the table of contents of the digital book. In
complex books, it is typically hierarchical, containing nested parts, chapters, and
sections.

Using your XML editor, create OEBPS/toc.ncx, and include the code in Listing 8.

Listing 8. Simple NCX file

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE ncx PUBLIC "-//NISO//DTD ncx 2005-1//EN"

"http://www.daisy.org/z3986/2005/ncx-2005-1.dtd">
<ncx xmlns="http://www.daisy.org/z3986/2005/ncx/" version="2005-1">
<head>
<meta name="dtb:uid"

content="urn:uuid:0cc33cbd-94e2-49c1-909a-72ae16bc2658"/>
<meta name="dtb:depth" content="1"/>
<meta name="dtb:totalPageCount" content="0"/>
<meta name="dtb:maxPageNumber" content="0"/>

</head>
<docTitle>
<text>Hello World: My First EPUB</text>

</docTitle>
<navMap>
<navPoint id="navpoint-1" playOrder="1">
<navLabel>
<text>Book cover</text>

</navLabel>
<content src="title.html"/>

</navPoint>
<navPoint id="navpoint-2" playOrder="2">
<navLabel>
<text>Contents</text>

</navLabel>
<content src="content.html"/>

</navPoint>
</navMap>

</ncx>

NCX metadata

The DTD requires four meta elements inside the NCX <head> tag:

• uid: Is the unique ID for the digital book. This element should match the
dc:identifier in the OPF file.

• depth: Reflects the level of the hierarchy in the table of contents. This
example has only one level, so this value is 1.

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 12 of 28

• totalPageCount and maxPageNumber: Apply only to paper books and
can be left at 0.

The contents of docTitle/text is the title of the work, and matches the value of
dc:title in the OPF.

NCX navMap

What's the difference between the NCX and the
OPF spine?
It's okay to be confused, as both files describe the order and
contents of the document. The easiest way to explain the difference
is through analogy with a printed book: The OPF spine describes
how the sections of the book are physically bound together, such
that turning a page at the end of one chapter reveals the first page
of the second chapter. The NCX describes the table of contents at
the beginning of the book. The table of contents always includes all
the major sections of the book, but it might also list sub-sections
that don't occur on their own pages.

A good rule of thumb is that the NCX often contains more
navPoint elements than there are itemref elements in the OPF
spine. In practice, all the items in the spine appear in the NCX, but
the NCX can be more granular than the spine.

The navMap is the most important part of the NCX file, as it defines the table of
contents for the actual book. The navMap contains one or more navPoint
elements. Each navPoint must contain the following elements:

• A playOrder attribute, which reflects the reading order of the document.
This follows the same order as the list of itemref elements in the OPF
spine.

• A navLabel/text element, which describes the title for this section of
the book. This is typically a chapter title or number, such as "Chapter
One," or—as in this example—"Cover page."

• A content element whose src attribute points to the physical resource
containing the content. This will be a file declared in the OPF manifest. (It
is also acceptable to use fragment identifiers here to point to anchors
within XHTML content—for example, content.html#footnote1.)

• Optionally, one or more child navPoint elements. Nested points are how
hierarchical documents are expressed in the NCX.

The structure of the sample book is simple: It has only two pages, and they are not
nested. That means that you'll have two navPoint elements with ascending
playOrder values, starting at 1. In the NCX, you have the opportunity to name
these sections, allowing readers to jump into different parts of the eBook.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 13 of 28

Adding the final content
Now you know all the metadata required in EPUB, so it's time to put in the actual
book content. You can use the sample content provided in Downloads or create your
own, as long as the file names match the metadata.

Next, create these files and folder:

• title.html: This file will be the title page for the book. Create this file and
include an img element that references a cover image, with the value of
the src attribute as images/cover.png.

• images: Create this folder inside OEBPS, then copy the sample image
(or create your own), naming it cover.png.

• content.html: This will be the actual text of the book.
• stylesheet.css: Place this file in the same OEBPS directory as the
XHTML files. This file can contain any CSS declarations you like, such as
setting the font-face or text color. See Listing 10 for an example of such a
CSS file.

XHTML and CSS in an EPUB book

Listing 9 contains an example of a valid EPUB content page. Use this sample for
your title page (title.html) and a similar one for the main content page (content.html)
of your book.

Listing 9. Sample title page (title.html)

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Hello World: My First EPUB</title>
<link type="text/css" rel="stylesheet" href="stylesheet.css" />

</head>
<body>
<h1>Hello World: My First EPUB</h1>
<div></div>

</body>
</html>

XHTML content in EPUB follows a few rules that might be unfamiliar to you from
general Web development:

• The content must validate as XHTML 1.1: The only significant
difference between XHTML 1.0 Strict and XHTML 1.1 is that the name
attribute has been removed. (Use IDs to refer to anchors within content.)

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 14 of 28

• img elements can only reference images that are local to the eBook:
The elements cannot reference images on the Web.

• script blocks should be avoided: There is no requirement for EPUB
readers to support JavaScript code.

There are some minor differences in the way EPUB supports CSS, but none that
affect common uses of styles (consult the OPS specification for details). Listing 10
demonstrates a simple CSS file that you can apply to the content to set basic font
guidelines and to color headings in red.

Listing 10. Sample styles for the eBook (stylesheet.css)

body {
font-family: sans-serif;

}
h1,h2,h3,h4 {
font-family: serif;
color: red;

}

One point of interest is that EPUB specifically supports the CSS 2 @font-face
rule, which allows for embedded fonts. If you create technical documentation, this is
probably not relevant, but developers who build EPUBs in multiple languages or for
specialized domains will appreciate the ability to specify exact font data.

You now have everything you need to create your first EPUB book. In the next
section, you'll bundle the book according to the OCF specifications and find out how
to validate it.

Section 4. Package and check your EPUB

By this point, you should have an EPUB bundle ready to package. This bundle will
either be a new book that you created yourself or one that uses the raw files
available from Downloads.

Bundling your EPUB file as a ZIP archive
The OEBPS Container Format portion of the EPUB specification has several things
to say about EPUB and ZIP, but the most important are:

• The first file in the archive must be the mimetype file (see Mimetype in

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 15 of 28

this tutorial). The mimetype file must not be compressed. This allows
non-ZIP utilities to uncover the mimetype by reading the raw bytes
starting from position 30 in the EPUB bundle.

• The ZIP archive cannot be encrypted. EPUB supports encryption but not
at the level of the ZIP file.

Using ZIP version 2.3 under a UNIX®-like operating system, create the EPUB ZIP
file in two commands, as in Listing 11. (These commands assume that your current
working directory is your EPUB project.)

Listing 11. Bundling the EPUB into a valid epub+zip file

$ zip -0Xq my-book.epub mimetype
$ zip -Xr9Dq my-book.epub *

In the first command, you create the new ZIP archive and add the mimetype file with
no compression. In the second, you add the remaining items. The flags -X and -D
minimize extraneous information in the .zip file; -r will recursively include the
contents of META-INF and OEBPS directories.

EPUB validation
Although the EPUB standard isn't especially difficult, its XML files must be validated
against specific schemas. If you use a schema-aware XML editor to generate the
metadata and XHTML, you're over halfway there. Make a final check with the
EpubCheck package (see Resources).

Adobe maintains the EpubCheck package, and it's available as open source under
the Berkeley Software Distribution (BSD) license. It is a Java program that can be
run as a stand-alone tool or as a Web application, or you can integrate it into an
application running under the Java Runtime Environment (JRE) version 1.5 or later.

Running it from the command line is simple. Listing 12 provides an example.

Listing 12. Running the EpubCheck utility

$ java -jar /path/to/epubcheck.jar my-book.epub

If you failed to create some of the auxiliary files or introduced an error into the
metadata files, you might get an error message like that in Listing 13.

Listing 13. Sample errors from EpubCheck

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 16 of 28

my-book.epub: image file OEBPS/images/cover.png is missing
my-book.epub: resource OEBPS/stylesheet.css is missing
my-book.epub/OEBPS/title.html(7): 'OEBPS/images/cover.png':

referenced resource missing in the package

Check finished with warnings or errors!

You might need to set your CLASSPATH here to point to the location of the
EpubCheck installation, as it does have some external libraries to import. You
probably need to set the CLASSPATH if you get a message like:

org.xml.sax.SAXParseException: no implementation available for schema language
with namespace URI "http://www.ascc.net/xml/schematron"

If the validation was successful, you'll see "No errors or warnings detected." In that
case, congratulations on producing your first EPUB!

EPUB viewing
Testing isn't just about validation: It's also about making sure the book looks right.
Do the stylesheets work properly? Are the sections actually in the correct logical
order? Does the book include all the expected content?

Several EPUB readers are available that you can use for testing. Figure 1 shows a
screen capture from Adobe Digital Editions (ADE), the most commonly used EPUB
reader.

Figure 1. The EPUB in ADE

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 17 of 28

Your font colors and images are appearing, which is good. ADE is not correctly
rendering the title in a sans-serif font, though, which might be a problem with the
CSS. It's useful here to check in another reader. Figure 2 shows the same book
rendered in my open source, Web-based EPUB reader, Bookworm.

Figure 2. The EPUB in Bookworm

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 18 of 28

In this case, it's just that ADE doesn't support that particular declaration. Knowledge
of the quirks in individual reading software will be essential if exact formatting is
important in your digital book.

Now that you've done the laborious process of creating a simple EPUB from scratch,
see what it takes to convert DocBook, a common XML documentation schema, into
EPUB.

Section 5. From DocBook to EPUB

DocBook is a popular choice for developers who need to maintain long-form
technical documentation. Unlike the files produced by traditional word-processing
programs, you can manage DocBook output with text-based version-control
systems. Because DocBook is XML, you can easily transform it into multiple output
formats. Since the summer of 2008, you can find native support of EPUB as an
output format from the official DocBook XSL project.

Running the basic DocBook-to-EPUB pipeline with XSLT
Start with a simple DocBook document, in Listing 14. This document is defined as
type book and includes a preface, two chapters, and an inline image displayed on
the title page. This image will be found in the same directory as the DocBook source
file. Create this file and the title page image yourself, or download samples from

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 19 of 28

Downloads.

Listing 14. A simple DocBook book

<?xml version="1.0" encoding="utf-8"?`>
<book>
<bookinfo>
<title>My EPUB book</title>
<author><firstname>Liza</firstname>

<surname>Daly</surname></author>
<volumenum>1234</volumenum>

</bookinfo>
<preface id="preface">
<title>Title page</title>
<figure id="cover-image">
<title>Our EPUB cover image icon</title>
<graphic fileref="cover.png"/>

</figure>
</preface>
<chapter id="chapter1">
<title>This is a pretty simple DocBook example</title>
<para>
Not much to see here.

</para>
</chapter>
<chapter id="end-notes">
<title>End notes</title>
<para>
This space intentionally left blank.

</para>
</chapter>

</book>

Next, see Resources to download the latest version of the DocBook XSL
stylesheets, and make sure that you have an XSLT processor such as xsltproc or
Saxon installed. This example uses xsltproc, which is available on most UNIX-like
systems. To convert the DocBook file, just run that file against the EPUB module
included in DocBook XSL, as in Listing 15.

Listing 15. Converting DocBook into EPUB

$ xsltproc /path/to/docbook-xsl-1.74.0/epub/docbook.xsl docbook.xml
Writing OEBPS/bk01-toc.html for book
Writing OEBPS/pr01.html for preface(preface)
Writing OEBPS/ch01.html for chapter(chapter1)
Writing OEBPS/ch02.html for chapter(end-notes)
Writing OEBPS/index.html for book
Writing OEBPS/toc.ncx
Writing OEBPS/content.opf
Writing META-INF/container.xml

Customizing DocBook XSL
The DocBook-to-EPUB conversion pipeline is still relatively new,
and you might need to customize the XSLT to get the desired
output.

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 20 of 28

Next, add the mimetype file and build the epub+zip archive yourself. Listing 16
shows those three quick commands and the result of a pass through the EpubCheck
validator.

Listing 16. Creating the EPUB archive from DocBook

$ echo "application/epub+zip" > mimetype
$ zip -0Xq my-book.epub mimetype
$ zip -Xr9D my-book.epub *
$ java -jar epubcheck.jar my-book.epub
No errors or warnings detected

Pretty easy! Figure 3 shows your creation in ADE.

Figure 3. Converted DocBook EPUB in ADE

Automatic DocBook-to-EPUB conversion with Python and lxml
The DocBook XSL goes a long way toward making EPUB generation painless, but
you must perform a few steps outside XSLT. This last section demonstrates a
sample Python program that completes the creation of a valid EPUB bundle. I show
individual methods in the tutorial; you can get the complete docbook2epub.py
program from Downloads.

Several Python XSLT libraries are available, but my preference is lxml. It provides
not just XSLT 1.0 functionality but also high-performance parsing, full XPath 1.0
support, and special extensions for handling HTML. If you prefer a different library or
use a different programming language than Python, these examples should be easy
to adapt.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 21 of 28

Calling the DocBook XSL with lxml

The most efficient method to call XSLT using lxml is to parse the XSLT in advance,
then create a transformer for repeated use. This is useful, as my DocBook-to-EPUB
script accepts multiple DocBook files to convert. Listing 17 demonstrates this
approach.

Listing 17. Running the DocBook XSL using lxml

import os.path
from lxml import etree

def convert_docbook(docbook_file):
docbook_xsl = os.path.abspath('docbook-xsl/epub/docbook.xsl')
Give the XSLT processor the ability to create new directories
xslt_ac = etree.XSLTAccessControl(read_file=True,

write_file=True,
create_dir=True,
read_network=True,
write_network=False)

transform = etree.XSLT(etree.parse(docbook_xsl), access_control=xslt_ac)
transform(etree.parse(docbook_file))

The EPUB module in DocBook XSL creates the output files itself, so nothing is
returned from the evaluation of the transform here. Instead, DocBook creates two
folders (META-INF and OEBPS) in the current working directory that contain the
results of the conversion.

Copying the images and other resources into the archive

DocBook XSL does nothing about any images that you might supply for use with
your document; it only creates the metadata files and the rendered XHTML.
Because the EPUB specification requires that all resources be listed in the
content.opf manifest, you can inspect the manifest to find any images that were
referenced in the original DocBook file. Listing 18 shows this technique, which
assumes that the path variable contains the path to your EPUB-in-progress, as
created by the DocBook XSLT.

Listing 18. Parse the OPF content file to find any missing resources

import os.path, shutil
from lxml import etree

def find_resources(path='/path/to/our/epub/directory'):
opf = etree.parse(os.path.join(path, 'OEBPS', 'content.opf'))

All the opf:item elements are resources
for item in opf.xpath('//opf:item',

namespaces= { 'opf': 'http://www.idpf.org/2007/opf' }):

If the resource was not already created by DocBook XSL itself,
copy it into the OEBPS folder
href = item.attrib['href']

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 22 of 28

referenced_file = os.path.join(path, 'OEBPS', href):
if not os.path.exists(referenced_file):

shutil.copy(href, os.path.join(path, 'OEBPS'))

Creating the mimetype file automatically

DocBook XSL won't create your mimetype file, either, but a quick bit of code from
Listing 19 can take care of that.

Listing 19. Create the mimetype file

def create_mimetype(path='/path/to/our/epub/directory'):
f = '%s/%s' % (path, 'mimetype')
f = open(f, 'w')
Be careful not to add a newline here
f.write('application/epub+zip')
f.close()

Creating the EPUB bundle with Python

All that's left now is to bundle the files into a valid EPUB ZIP archive. This takes two
steps: adding the mimetype file as the first in the archive with no compression, then
adding the remaining directories. Listing 20 shows the code for this process.

Listing 20. Using the Python zipfile module to create an EPUB bundle

import zipfile, os

def create_archive(path='/path/to/our/epub/directory'):
'''Create the ZIP archive. The mimetype must be the first file in the archive
and it must not be compressed.'''

epub_name = '%s.epub' % os.path.basename(path)

The EPUB must contain the META-INF and mimetype files at the root, so
we'll create the archive in the working directory first and move it later
os.chdir(path)

Open a new zipfile for writing
epub = zipfile.ZipFile(epub_name, 'w')

Add the mimetype file first and set it to be uncompressed
epub.write(MIMETYPE, compress_type=zipfile.ZIP_STORED)

For the remaining paths in the EPUB, add all of their files
using normal ZIP compression
for p in os.listdir('.'):

for f in os.listdir(p):
epub.write(os.path.join(p, f)), compress_type=zipfile.ZIP_DEFLATED)

epub.close()

That's it! Remember to validate.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 23 of 28

Section 6. Summary

The Python script in the previous section is just a first step in fully automating any
kind of EPUB conversion. For the sake of brevity, it does not handle many common
cases, such as arbitrarily nested paths, stylesheets, or embedded fonts. Ruby fans
can look at dbtoepub, included in the DocBook XSL distribution, for a similar
approach in that language.

Because EPUB is a relatively young format, many useful conversion paths still await
creation. Fortunately, most types of structured markup, such as reStructuredText or
Markdown, have pipelines that produce HTML or XHTML already; adapting those to
produce EPUBs should be fairly straightforward, especially using the
DocBook-to-EPUB Python or Ruby scripts as a guide.

Because EPUB is mostly ZIP and XHTML, there's little reason not to distribute
documentation bundles as EPUB archives rather than as simple .zip files. Users with
EPUB readers benefit from the additional metadata and automatic table of contents,
but those without can simply treat the EPUB archive as a normal ZIP file and view
the XHTML contents in a browser. Consider adding EPUB-generating code to any
kind of documentation system, such as Javadoc or Perldoc. EPUB is designed for
documentation at book length, so it's a perfect distribution format for the increasing
number of online or in-progress programming books.

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 24 of 28

Downloads
Description Name Size Download

method
Resources to build the EPUB in this
tutorial

epub-raw-files.zip 8KB HTTP

DocBook to EPUB tools1 docbook-to-epub.zip 7KB HTTP

Information about download methods

Note

1. This .zip file contains the sample DocBook XML file illustrated in the tutorial and a complete
docbook2epub.py script. You must download lxml and the DocBook XSL separately; see the
links in Resources.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 25 of 28

Resources
Learn
• Complete EPUB specifications: Read the specs available from the IDFP site,
including the Open Publication Structure (OPS), Open Packaging Format
(OPF), and OEBPS Container Format (OCF).

• XHTML 1.1 and DAISY: For more information on EPUB content formats, consult
the XHTML 1.1 specification (currently a W3C Working Draft) and the DAISY
Specification for the Digital Talking Book (DTBook).

• Add automatic EPUB validation to your XML editor with the various schemas for
EPUB file formats:
• NCX DTD (conversion to Relax NG)
• OPF 2.0 (Relax NG)
• OCF 1.0 (Relax NG)

• Dublin Core Metadata: For more on metadata terms available in Dublin Core,
consult the DCMI Terms document and usage guide.

• developerWorks technical events and Webcasts: Stay current with the latest
technology.

• XML technical library: See the developerWorks XML zone for a wide range of
technical articles and tips, tutorials, standards, and IBM Redbooks.

• Technology bookstore: Browse for books on these and other technical topics.
• IBM XML certification: Find out how you can become an IBM-Certified
Developer in XML and related technologies.

• developerWorks podcasts: Listen to interesting interviews and discussions for
software developers.

Get products and technologies
• EpubCheck: Adobe EpubCheck is an invaluable tool for EPUB creation.
Download and run it as a stand-alone program, a Web application, or as a
library (requires Java version 1.5 or later).

• DocBook XSL: Download the latest version of the stylesheets for processing
DocBook into EPUB. The DocBook XSL package also includes a Ruby script for
processing into a complete EPUB archive, similar to the Python script
demonstrated in this tutorial.

• lxml: If you don't have it installed currently, lxml is the most full-featured XML
library available for Python. For more information about lxml, see the author's

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 26 of 28

article High-performance XML parsing in Python with lxml (Liza Daly,
developerWorks, October 2008).

• Adobe Digital Editions and Bookworm: For EPUB testing, the e-readers that
most closely follow the specification are ADE, a cross-platform desktop
application, and Bookwork, the author's Web-based e-reader, which uses the
browser for EPUB rendering.

• IBM trial software for product evaluation: Build your next project with trial
software available for download directly from developerWorks, including
application development tools and middleware products from DB2®, Lotus®,
Rational®, Tivoli®, and WebSphere®.

Discuss
• XML zone discussion forums: Participate in any of several XML-related
discussions.

• developerWorks XML zone: Share your thoughts: After you read this article,
post your comments and thoughts in this forum. The XML zone editors
moderate the forum and welcome your input.

• developerWorks blogs: Check out developerWorks blogs and get involved in the
developerWorks community.

About the author
Liza Daly

Liza Daly is a software engineer who specializes in applications for the
publishing industry. She has been the lead developer on major online
products for Oxford University Press, O'Reilly Media, and other
publishers. Currently she is an independent consultant and the founder
of Threepress, an open source project developing ebook applications.

Trademarks
Adobe, the Adobe logo, PostScript, the PostScript logo, and InDesign are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United
States, and/or other countries.
IBM, the IBM logo, ibm.com, DB2, developerWorks, Lotus, Rational, Tivoli,
WebSphere, and pureXML are trademarks of IBM Corporation in the United States,
other countries, or both.

ibm.com/developerWorks developerWorks®

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 27 of 28

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.
Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Other company, product, or service names may be trademarks or service marks of
others.

developerWorks® ibm.com/developerWorks

Build a digital book with EPUB Trademarks
© Copyright IBM Corporation 2008, 2010. All rights reserved. Page 28 of 28

