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Last Time: Integers

 Representation: unsigned and signed

 Conversion, casting
 Bit representation maintained but reinterpreted

 Expanding, truncating
 Truncating = mod

 Addition, negation, multiplication, shifting
 Operations are mod 2w

 “Ring” properties hold
 Associative, commutative, distributive, additive 0 and inverse

 Ordering properties do not hold
 u > 0 does not mean u + v > v

 u, v > 0 does not mean u · v > 0
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 Floating point in C

 Summary



Carnegie Mellon

Fractional binary numbers

 What is 1011.101?
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Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:
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Fractional Binary Numbers: Examples

 Value Representation
5-3/4

2-7/8

63/64

Observations
 Divide by 2 by shifting right

 Multiply by 2 by shifting left

 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … 1.0

 Use notation 1.0 –

101.112

10.1112

0.1111112
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Representable Numbers

 Limitation
 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation
1/3 0.0101010101[01]…2

1/5 0.001100110011[0011]…2

1/10 0.0001100110011[0011]…2
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IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point arithmetic

 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow

 Hard to make fast in hardware

 Numerical analysts predominated over hardware designers in 
defining standard
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 Numerical Form: 
(–1)s M  2E

 Sign bit s determines whether number is negative or positive

 Significand M normally a fractional value in range [1.0,2.0).

 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s

 exp field encodes E (but is not equal to E)

 frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac
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Precisions

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

s exp frac

s exp frac

1 8 23

1 11 52

1 15 63 or 64
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Normalized Values

 Condition: exp 000…0 and exp 111…1

 Exponent coded as biased value: E  = Exp – Bias
 Exp: unsigned value exp 

Bias = 2e-1 - 1, where e is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)

 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M  = 1.xxx…x2

 xxx…x: bits of frac

 Minimum when 000…0 (M = 1.0)

 Maximum when 111…1 (M = 2.0 – )

 Get extra leading bit for “free”
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Normalized Encoding Example

 Value: Float F = 15213.0;
 1521310 = 111011011011012  

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012

frac= 110110110110100000000002

 Exponent
E = 13

Bias = 127

Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000 
s exp frac
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Denormalized Values

 Condition: exp = 000…0

 Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)

 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents value 0

 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac 000…0

 Numbers very close to 0.0

 Lose precision as get smaller

 Equispaced
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Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0

 Represents value (infinity)

 Operation that overflows

 Both positive and negative

 E.g., 1.0/0.0 = 1.0/ 0.0 = + ,  1.0/ 0.0 = 

 Case: exp = 111…1, frac 000…0

 Not-a-Number (NaN)

 Represents case when no numeric value can be determined

 E.g., sqrt(–1), 
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Visualization: Floating Point Encodings

+

0

+Denorm +Normalized-Denorm-Normalized

+0
NaN NaN
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Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit.

 the next four bits are the exponent, with a bias of 7.

 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized

 representation of 0, NaN, infinity

s exp frac

1 4 3



Carnegie Mellon

Dynamic Range (Positive Only)
s exp  frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001  -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1    = 1

0 0111 001 0 9/8*1    = 9/8

0 0111 010 0 10/8*1   = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Distribution of Values

 6-bit IEEE-like format
 e = 3 exponent bits

 f = 2 fraction bits

 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero. 

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

s exp frac

1 3 2
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Distribution of Values (close-up view)

 6-bit IEEE-like format
 e = 3 exponent bits

 f = 2 fraction bits

 Bias is 3

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

s exp frac

1 3 2
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Interesting Numbers

Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single 1.4 x 10–45

 Double 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ) x 2– {126,1022}

 Single 1.18 x 10–38

 Double 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ) x 2{127,1023}

 Single 3.4 x 1038

 Double 1.8 x 10308

{single,double}
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Special Properties of Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits

 Must consider -0 = 0

 NaNs problematic

 Will be greater than any other values

 What should comparison yield?

 Otherwise OK

 Denorm vs. normalized

 Normalized vs. infinity
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Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x xf y = Round(x x y)

 Basic idea
 First compute exact result

 Make it fit into desired precision

 Possibly overflow if exponent too large

 Possibly round to fit into frac
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Rounding

 Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $2.50 –$1.50

 Towards zero $1 $1 $1 $2 –$1

 Round down (- ) $1 $1 $1 $2 –$2

 Round up (+ ) $2 $2 $2 $3 –$1

 Nearest Even (default) $1 $2 $2 $2 –$2

 What are the advantages of the modes?
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Closer Look at Round-To-Even

 Default Rounding Mode
 Hard to get any other kind without dropping into assembly

 All others are statistically biased

 Sum of set of positive numbers will consistently be over- or under-
estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values

 Round so that least significant digit is even

 E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)

1.2350001 1.24 (Greater than half way)

1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)
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Rounding Binary Numbers

 Binary Fractional Numbers
 “Even” when least significant bit is 0

 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (  1/2—up) 3

2 5/8 10.101002 10.102 (  1/2—down) 2 1/2
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FP Multiplication

(–1)s1 M1  2E1 x   (–1)s2 M2  2E2

 Exact Result: (–1)s M  2E

 Sign s: s1 ^ s2

 Significand M: M1 * M2

 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E

 If E out of range, overflow 

 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands
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Floating Point Addition

(–1)s1 M1  2E1 +   (-1)s2 M2  2E2

Assume E1 > E2

 Exact Result: (–1)s M  2E

 Sign s, significand M: 

 Result of signed align & add

 Exponent E: E1

 Fixing
 If M ≥ 2, shift M right, increment E

 if M < 1, shift M left k positions, decrement E by k

 Overflow if E out of range

 Round M to fit frac precision

(–1)s1 M1 

(–1)s2 M2 

E1–E2

+

(–1)s M
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Mathematical Properties of FP Add

 Compare to those of Abelian Group
 Closed under addition?

 But may generate infinity or NaN

 Commutative?

 Associative?

 Overflow and inexactness of rounding

 0 is additive identity?

 Every element has additive inverse

 Except for infinities & NaNs

 Monotonicity
 a ≥ b a+c ≥ b+c?

 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost



Carnegie Mellon

Mathematical Properties of FP Mult

 Compare to Commutative Ring
 Closed under multiplication?

 But may generate infinity or NaN

 Multiplication Commutative?

 Multiplication is Associative?

 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?

 Multiplication distributes over addition?

 Possibility of overflow, inexactness of rounding

 Monotonicity
 a ≥ b & c ≥ 0  a *c ≥ b *c?

 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost
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Floating Point in C
 C Guarantees Two Levels

float single precision

double double precision

 Conversions/Casting
 Casting between int, float, and double changes bit representation

 Double/float → int

 Truncates fractional part

 Like rounding toward zero

 Not defined when out of range or NaN: Generally sets to TMin

 int → double

 Exact conversion, as long as int has ≤ 53 bit word size

 int → float

 Will round according to rounding mode
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Floating Point Puzzles

 For each of the following C expressions, either:
Argue that it is true for all argument values

 Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ((d*2) < 0.0)

• d > f -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN
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Summary

 IEEE Floating Point has clear mathematical  properties

 Represents numbers of form M x 2E

 One can reason about operations independent of 
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity

 Makes life difficult for compilers & serious numerical applications 
programmers
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More Slides
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Creating Floating Point Number

 Steps
 Normalize to have leading 1

 Round to fit within fraction

 Postnormalize to deal with effects of rounding

 Case Study
 Convert 8-bit unsigned numbers to tiny floating point format

 Example Numbers

128 10000000

15 00001101

33 00010001

35 00010011

138 10001010

63 00111111

s exp frac

02367
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Normalize

 Requirement
 Set binary point so that numbers of form 1.xxxxx

 Adjust all to have leading one

 Decrement exponent as shift left

Value Binary Fraction Exponent

128 10000000 1.0000000 7

15 00001101 1.1010000 3

17 00010001 1.0001000 5

19 00010011 1.0011000 5

138 10001010 1.0001010 7

63 00111111 1.1111100 5

s exp frac

02367
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Rounding

 Round up conditions

 Round = 1, Sticky = 1  > 0.5

 Guard = 1, Round = 1, Sticky = 0  Round to even

Value Fraction GRS Incr? Rounded

128 1.0000000 000 N 1.000

15 1.1010000 100 N 1.101

17 1.0001000 010 N 1.000

19 1.0011000 110 Y 1.010

138 1.0001010 011 Y 1.001

63 1.1111100 111 Y 10.000

1.BBGRXXX

Guard bit: LSB of result
Round bit: 1st bit removed

Sticky bit: OR of remaining bits
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Postnormalize

 Issue
 Rounding may have caused overflow

 Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result

128 1.000 7 128

15 1.101 3 15

17 1.000 4 16

19 1.010 4 20

138 1.001 7 134

63 10.000 5 1.000/6 64


