Introduction to Computer Systems

15-213/18-243, spring 2009 4th Lecture, Jan. 22nd

Instructors:

Gregory Kesden and Markus Püschel

Last Time: Integers

- Representation: unsigned and signed
- Conversion, casting
 - Bit representation maintained but reinterpreted
- Expanding, truncating
 - Truncating = mod
- Addition, negation, multiplication, shifting
 - Operations are mod 2^w
- "Ring" properties hold
 - Associative, commutative, distributive, additive 0 and inverse
- Ordering properties do not hold
 - u > 0 does not mean u + v > v
 - u, v > 0 does not mean u · v > 0

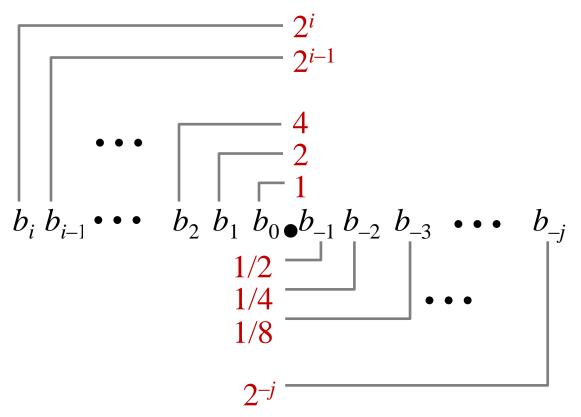
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101?

Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

Fractional Binary Numbers: Examples

Value	Representation
5-3/4	101.11 ₂
2-7/8	10.111_{2}
63/64	0.111111_{2}

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0ϵ

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value	Representation
1/3	0.0101010101[01] ₂
1/5	0.001100110011[0011] ₂
1/10	$0.0001100110011[0011]{2}$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

(-1)^s M 2^E

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes *E* (but is not equal to E)
- frac field encodes M (but is not equal to M)

frac

Precisions

Single precision: 32 bits

S	exp	frac
1	8	23

Double precision: 64 bits

S	exp	frac
1	11	52

Extended precision: 80 bits (Intel only)

S	exp	frac
1	15	63 or 64

Normalized Values

• Condition: $exp \neq 000...0$ and $exp \neq 111...1$

Exponent coded as *biased* value: E = Exp – Bias

- Exp: unsigned value exp
- Bias = 2^{e-1} 1, where e is number of exponent bits
 - Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (*Exp*: 1...2046, *E*: -1022...1023)

Significand coded with implied leading 1: $M = 1 \cdot \mathbf{x} \mathbf{x} \mathbf{x} \dots \mathbf{x}_2$

- **xxx...x**: bits of **frac**
- Minimum when 000...0 (*M* = 1.0)
- Maximum when **111...1** ($M = 2.0 \varepsilon$)
- Get extra leading bit for "free"

Normalized Encoding Example

Value: Float F = 15213.0;

15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³

Significand

M =	1.101101101_2
frac=	1101101101101 000000000000000000000000

Exponent

Ε	=	13	
Bias	=	127	
Exp	=	140 =	10001100 ₂

Result:

0 10001100 1101101101000000000 s exp frac

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0. xxx...x₂
 - **xxx...x**: bits of **frac**
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

Condition: exp = 111...1

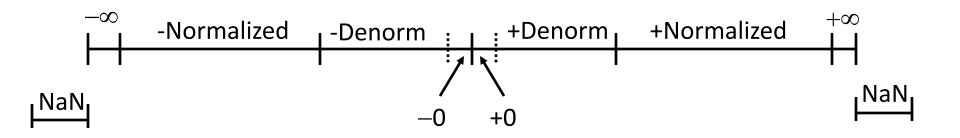
Case: exp = 111...1, frac = 000...0

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

• Case: exp = 111...1, $frac \neq 000...0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example



8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

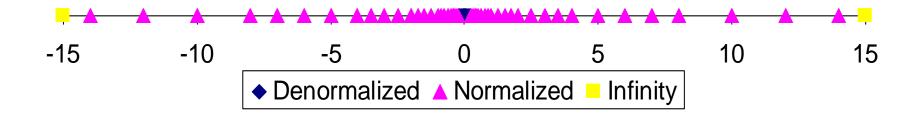
	s exp fr	ac E	Value	
	0 0000 00	0 -6	0	
	0 0000 00	1 -6	$1/8 \times 1/64 = 1/512$	closest to zero
Denormalized	0 0000 01	0 -6	$2/8 \times 1/64 = 2/512$	
numbers				
	0 0000 11	0 -6	$6/8 \times 1/64 = 6/512$	
	0 0000 11	1 -6	$7/8 \times 1/64 = 7/512$	largest denorm
	0 0001 000) -6	8/8*1/64 = 8/512	smallest norm
	0 0001 00	1 -6	9/8*1/64 = 9/512	
	0 0110 11	0 -1	$14/8 \times 1/2 = 14/16$	
Newselized	0 0110 11	1 -1	$15/8 \times 1/2 = 15/16$	closest to 1 below
Normalized	0 0111 00	0 0	8/8*1 = 1	
numbers	0 0111 00	10	9/8*1 = 9/8	closest to 1 above
	0 0111 01	0 0	10/8*1 = 10/8	
	0 1110 110) 7	$14/8 \times 128 = 224$	
	0 1110 11	17	$15/8 \times 128 = 240$	largest norm
	0 1111 00	0 n/a	inf	

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 2³⁻¹-1 = 3

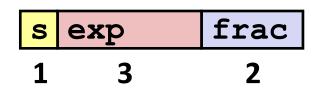
Notice how the distribution gets denser toward zero.

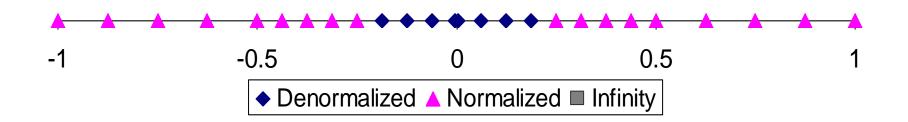


Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3





{single,double}

Interesting Numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	2 ^{- {23,52}} x 2 ^{- {126,1022}}
• Single $\approx 1.4 \times 10^{-45}$			
■ Double \approx 4.9 x 10 ⁻³²	4		
Largest Denormalized	0000	1111	(1.0 – ε) x 2 ^{- {126,1022}}
• Single $\approx 1.18 \times 10^{-38}$			
■ Double \approx 2.2 x 10 ⁻³⁰	8		
Smallest Pos. Normalize	ed	0001	0000 1.0 x $2^{-\{126,1022\}}$
Just larger than large	est denoi	rmalized	
One	0111	0000	1.0
Largest Normalized	1110	1111	(2.0 – ε) x 2 ^{127,1023}
Single ≈ 3.4 x 10 ³⁸			
• Double $\approx 1.8 \times 10^{308}$			

Special Properties of Encoding

FP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \operatorname{Round}(\mathbf{x} + \mathbf{y})$$

x $x_f y = \text{Round}(x \times y)$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

What are the advantages of the modes?

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999 1.23 (Less	than half way)
----------------------	----------------

- 1.2350001 1.24 (Greater than half way)
- 1.2350000 1.24 (Half way—round up)
- 1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.01 ₂	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.10 ₂	(1/2—down)	2 1/2

FP Multiplication

(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}

■ Exact Result: (-1)^s M 2^E

- Sign s: s1 ^ s2
- Significand M: M1 * M2
- Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round *M* to fit **frac** precision

Implementation

Biggest chore is multiplying significands

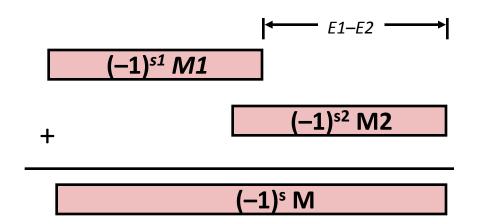
Floating Point Addition

(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}

Assume *E1* > *E2*

Exact Result: (-1)^s M 2^E

- Sign *s*, significand *M*:
 - Result of signed align & add
- Exponent E: E1



Fixing

- If $M \ge 2$, shift *M* right, increment *E*
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if *E* out of range
- Round *M* to fit **frac** precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

- Yes Closed under addition? But may generate infinity or NaN Yes Commutative? No Associative? Overflow and inexactness of rounding Yes • 0 is additive identity? Almost Every element has additive inverse Except for infinities & NaNs Monotonicity Almost • $a \ge b \Longrightarrow a+c \ge b+c?$
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication? Yes
 But may generate infinity or NaN
 Multiplication Commutative? Yes
 Multiplication is Associative? No
 Possibility of overflow, inexactness of rounding
 1 is multiplicative identity? Yes
- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding

Monotonicity

- $a \ge b$ & $c \ge 0 \implies a * c \ge b * c$?
 - Except for infinities & NaNs

Almost

No

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

float single precision

double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- Double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
 - Exact conversion, as long as int has \leq 53 bit word size
- int \rightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NaN

- x == (int)(float) x
- x == (int) (double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \implies ((d*2) < 0.0)$
- $d > f \qquad \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f)-d == f

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M × 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

More Slides

Creating Floating Point Number

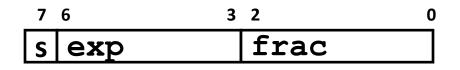
Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

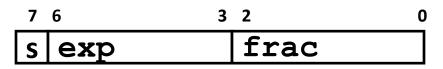
Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111



Normalize



Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary Fractic	on Exponent	
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	5
19	00010011	1.0011000	5
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

Guard bit: LSB of result ound bit: 1st bit removed

Sticky bit: OR of remaining b

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = $0 \rightarrow$ Round to even

1.BBGRXXX

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.111 <mark>1100</mark>	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64