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Deduction and Computation

I Computation is at the root of mathematics.

I It has been forgotten by the formalization of the mathematics.
I reborn with informatics: rewriting rules.
I we need a balance between deduction steps and computation

steps.
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Natural Deduction: the logical framework

I first-order logic: function and predicate symbols, logical
connectors: ∧,∨,⇒,¬, and quantifiers ∀,∃.

Even(0)

∀n(Even(n)⇒ Odd(n + 1))

∀n(Odd(n)⇒ Even(n + 1))

I a sequent :
hyp.︷︸︸︷
Γ `

conc.︷︸︸︷
A

I rules to form them: natural deduction (or sequent calculus)
I framework: intuitionnistic logic (classical, linear, higher-order,

constraints ...)
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Deduction System : natural deduction (NJ)

I A deduction rule:
Γ ` A Γ ` B

Γ ` A ∧ B
I introduction and elimination rules

Γ,A ` A
axiom

Γ ` A Γ ` B
Γ ` A ∧ B

∧ -i
Γ ` A ∧ B

Γ ` A
∧ -e1

Γ ` A ∧ B
Γ ` B

∧ -e2

Γ,A ` B
⇒-i

Γ ` A ⇒ B
Γ ` A ⇒ B Γ ` A

⇒-e
Γ ` B

Γ ` ∀xA [x]

Γ ` A [t]
∀-e, any t

Γ ` A [x]

Γ ` ∀xA [x]
∀-i, x free
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∀xP(x) ` P(0) ∧ P(1)
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Example: 1

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` P(0)

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` P(1)

∧-i
∀xP(x) ` P(0) ∧ P(1)



Axioms vs. rewriting

Axioms Rewriting
x + S(y) = S(x + y) x + S(y)→ S(x + y)

x + 0 = x x + 0→ x
x ∗ 0 = 0 x ∗ 0→ 0

x ∗ S(y) = x + x ∗ y x ∗ S(y)→ x + x ∗ y
(x ∗ y = 0)⇔ (x = 0 ∨ y = 0) (x ∗ y = 0)→ (x = 0 ∨ y = 0)

...

T ` 2 ∗ 2 = 4
T ` ∃x(2 ∗ x = 4)

` 4 = 4
` ∃x(2 ∗ x = 4)



Deduction modulo: allowed rewriting
I General form (free variables are possible):

l → r

I use: We replace t = σl by σr (unification). Rewriting could be
deep in the term.

I rewriting on terms:

x + S(y)→ S(x + y)

I and on propositions (predicate symbols):

x ∗ y = 0→ x = 0 ∨ y = 0

I advantage: expressiveness
I we obtain a congruence modulo R (chosen set of rules): ≡
I deduction rules transform as such:

axiom
Γ,A ` A becomes axiom, A ≡ B

Γ,A ` B
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Deduction modulo : natural deduction modulo - first
presentation

Γ,A ` A
axiom

Γ ` A Γ ` B
Γ ` A ∧ B

∧ -i
Γ ` A ∧ B

Γ ` A
∧ -e1

Γ ` A ∧ B
Γ ` B

∧ -e2

Γ,A ` B
⇒-i

Γ ` A ⇒ B
Γ ` A ⇒ B Γ ` A

⇒-e
Γ ` B

Γ ` ∀xA [x]

Γ ` A [t]
∀-e, any t

Γ ` A [x]

Γ ` ∀xA [x]
∀-i, x free



Deduction modulo : first presentation

Add then the following conversion rule:

Γ ` A A ≡ B
Γ ` B



Deduction modulo : natural deduction modulo, reloaded

Γ,A ` B
axiom, A ≡ B

Γ ` A Γ ` B
Γ ` C

∧ -i, C ≡ A ∧ B
Γ ` C
Γ ` A

∧ -e1,C ≡ A ∧ B
Γ ` C
Γ ` B

∧ -e2,C ≡ A ∧ B

Γ,A ` B
⇒-i, C ≡ A ∧ B

Γ ` C
Γ ` C Γ ` A

⇒-e, C ≡ A ∧ B
Γ ` B

Γ ` A [x]

Γ ` B
∀-i, x free,B ≡ ∀xA [x]

Γ ` B
Γ ` A [t]

∀-e, any t ,B ≡ ∀xA [x]
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Example: 3

I consider the rewriting system R:

P(0) → A

P(1) → B

axiom
∀xP(x) ` ∀xP(x)

∀-e
∀xP(x) ` A

axiom
∀xP(x) ` ∀xP(x)

∀-e
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A Cut: a detour

Γ ` A
Γ,A ` B

⇒-i
Γ ` A ⇒ B

⇒-e
Γ ` B

I show Γ ` A
I show Γ,A ` B
I then, you have showed Γ ` B
I it is the application of a lemma.



A cut: a detour

π1

Γ ` A
π2

Γ ` B
∧-i

Γ ` A ∧ B
∧-e

Γ ` A

Replace it by π1. And in the previous proof,

θ
Γ ` A

π
Γ,A ` B

⇒-i
Γ ` A ⇒ B

⇒-e
Γ ` B

π is directly a proof of Γ ` B replace uses of A (nb: axioms) by θ. In
clear: don’t use the lemma, reprove its instances.

General definition: a cut is an elimination plus an introduction
(same symbol).



A cut: a detour

θ
Γ ` A ′

π
Γ,A ` B

⇒-i, C ≡ A ⇒ B
Γ ` C

⇒-e, C ≡ A ′ ⇒ B′
Γ ` B′

I we show Γ,A ` B and Γ ` A
I then we have showed Γ ` B.
I lemma: the good way for a human being.
I in practice: not adapted for automatic demonstration.

I in theory: consistency, proof normalization (Curry-Howard)
depend of its elimination.

I eliminating cuts: a central result.

Γ ` A B Γ `cf A

I two main paths towards:

I proof normalization (syntactic).
I semantical methods.

I in deduction modulo: indecidable, need for conditions on R.
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The normalization method(s)

I Curry-Howard: proofs = programs
I formulas = types
I proof tree = typing tree
I at the heart of proof assistants (PVS, Coq, Isabelle, ...)
I when a program calculates, it performs a cut elimination

procedure.

I show that all typables function terminates.
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Curry-Howard correspondence

I Notation for proofs. Give a name to each of the hypothesis:

Γ = x1 : A1, . . . , xn : An

Axiom
Γ, x : A ` x : A

Γ ` π : A ∧ B
∧-e1

Γ ` fst(π) : A

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
Γ ` π : A ∧ B

∧-e2
Γ ` snd(π) : A

Γ, x : A ` π : B
⇒-i

Γ ` λx.π : A ⇒ B
Γ ` π′ : A Γ ` π : A ⇒ B

Γ ` (ππ′) : B

I very similar to a type system
I in deduction modulo, rewrite rules are silent:

Γ ` π : A A ≡ B
Γ ` π : B
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Cut elimination with proof terms

I Cut elimination is a process, similar to function execution.

Γ ` π1 : A Γ ` π2 : B
∧-i

Γ ` 〈π1, π2〉 : A ∧ B
∧-e

Γ ` fst(〈π1, π2〉) : A
B Γ ` π1 : A

Γ ` θ : A
Γ, x : A ` π : B

⇒-i
Γ ` λx.π : A ⇒ B

⇒-e
Γ ` (λx.π)θ : B

B Γ ` {θ/x}π : B

I showing that every proof normalizes: the cut elimination
process terminates.
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Normalization

I deduction modulo is high-level: we need reducibility
candidates.

I A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

I to each formula A , associates a candidate ~A�. Show that if
Γ ` π : A then π ∈ ~A�.

I in deduction modulo, if A ≡ B, additional constraint:

~A� = ~B�
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arithmetic, higher-order logic, Zermelo’s set theory, ...)

I the sets of candidates have a structure: pseudo Heyting
algebras [Dowek].
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Heyting algebras

I a universe Ω

I an order

I operations on it: lowest upper bound (join: ∪ – pseudo union),
greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I think about R and closed sets (infinite l.u.b. is not infinite
union)
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Heyting algebras

Used in semantic cut elimination (Lipton, e.g.):

Γ ` A
soundness

- Γ |= A

Γ `cf A
� strong completeness



Heyting algebras

I a universe Ω

I an order
I operations on it: lowest upper bound (join: ∪ – pseudo union),

greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c

I like boolean algebra, but with weaker complement.
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pseudo-Heyting algebras, aka Truth Values Algebras

I a universe Ω

I a pre-order: a ≤ b and b ≤ a with a , b possible.
I operations on it: lowest upper bound (join: ∪ – pseudo union),

greatest lower bound (meet: ∩ – intersection).

a ∩ b ≤ a a ∩ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∩ b

a ≤ a ∪ b b ≤ a ∪ b a ≤ c and b ≤ c implies a ∪ b ≤ c



Candidates form a pseudo-Heyting algebra

I > = ⊥ = SN

I ~A� ∩ ~B� = ~A ∧ B�
I and so on.
I pre-order: trivial one.
I But ~A ∧ A� ≤≥ ~A� only.



Super consistency

I consistency: there exists a model.

I super-consistency: for every (pseudo-Heyting) structure, there
exists a model (interpretation).

I condition in DM: A ≡ B implies ~A� = ~B�
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Super consistency

I e.g. higher-order logic is super-consistent:

Mι = ι (dummy)

Mo = Ω

Mt→u = MMt
u

I hence, it has a model in the candidates pseudo-Heying
Algebra

I Γ ` π : A implies π ∈ ~A�.
I the system enjoys proof normalization.
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The link: fibring
define

[A ]σφ = ~A�φ C Aσ = {Γ | Γ ` π : Aσ, π ∈ ~A�φ}

I ~A�φ is a candidate of reducibility. It contains some proof
terms ∆ ` ν : B. We don’t want them.

I weak definition: for some π only.
I this is a Heyting algebra ([A ]: basis)
I interpretation of formulas in it:

A∗ = [A ]σφ = ~A�φ C Aσ

I interpetation of terms in it:

t∗ = 〈t , ~t�φ〉

I this proves semantical cut elimination.
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I interpetation of terms in it:

t∗ = 〈t , ~t�φ〉

I this proves semantical cut elimination.



The link: fibring
define

[A ]σφ = ~A�φ C Aσ = {Γ | Γ ` π : Aσ, π ∈ ~A�φ}

I ~A�φ is a candidate of reducibility. It contains some proof
terms ∆ ` ν : B. We don’t want them.

I weak definition: for some π only.
I this is a Heyting algebra ([A ]: basis)
I interpretation of formulas in it:

A∗ = [A ]σφ = ~A�φ C Aσ

I interpetation of terms in it:

t∗ = 〈t , ~t�φ〉

I this proves semantical cut elimination.



Wait a minute !
I interpretation ? [A ]σφ .

I Need for one single substitution. hybridization: σ × φ.

D = T ×M

I interpretation for symbols

f̂D(〈t1, d1〉, ..., 〈tn, dn〉) = 〈f(t1, ..., tn), f̂M(d1, ..., dn)〉

P̂D(〈t1, d1〉, ..., 〈tn, dn〉) = [(t1/x1, ..., tn/xn)P](d1/x1,...,dn/xn)

= {Γ | (Γ ` P(t1, ..., tn)) ∈ ~P�(d1/x1,...,dn/xn)}

I pointwise application

〈t , v〉 � 〈t ′, v′〉 = 〈(tt ′), (vv′)〉

I We embed a (potentially) complex structure (e.g. candidates)
inside D.

I proves directly [A ∧ B] = [A ] ∩ [B]. Usually, only:

A ∧ B ∈ [A ] ∩ [B] ⊂ [A ∧ B]

I proof resembles the proof for normalization.
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Cut admissibility

Assume Γ ` A has a proof (with cuts)
I [Γ] ≤ [A ] in D by (usual) soundness
I Γ ∈ [Γ]

I Γ ∈ [A ] implies Γ `cf A
I Q.E.D.

I definition:

[A ]σφ = ~Aσ�φ C Aσ = {Γ | Γ ` π : Aσ, π ∈ ~A�φ}

is weak (some π only)
I we get (weak) normalization by evaluation.
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Γ ` A
soundness

- Γ |= A

Γ `cf A

Gentzen
Tait-Girard

Dowek-Werner
... ? �

strong completeness

I This diagram does not commute in deduction modulo.



Further work

I there is normalization by evaluation work, but in a Kripke
style: links ?

I do the proof terms (candidates) always have a “pseudo-”
structure ?

I realizing rewrite rule not with λx.x (not silently), could recover
normalization and make the previous diagram commute again.

Γ ` π : A A ≡ B
Γ ` π : B
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