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Deduction and Computation

v

Computation is at the root of mathematics.

v

It has been forgotten by the formalization of the mathematics.

v

reborn with informatics: rewriting rules.

v

we need a balance between deduction steps and computation
steps.



Natural Deduction: the logical framework

» first-order logic: function and predicate symbols, logical
connectors: A, Vv, =, -, and quantifiers v, 3.
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Natural Deduction: the logical framework

» first-order logic: function and predicate symbols, logical
connectors: A, Vv, =, -, and quantifiers v, 3.

Even(0)
vn(Even(n) = Odd(n + 1))
Vn(Odd(n) = Even(n + 1))

» asequent:
hyp.  conc.
—_— /=
r r A

» rules to form them: natural deduction (or sequent calculus)

» framework: intuitionnistic logic (classical, linear, higher-order,
constraints ...)



Deduction System : natural deduction (NJ)

» A deduction rule:

N-A N B
FrN-AAB
» introduction and elimination rules

I_’AFAaxmm
M-A FFBA r'-AAB I'FA/\B/\e2
rN-AAB Mr-A B
MA+B . r-A=B N A

- -e
rrA=B B =
I—FVXA[X]Ve any t M Al V-i, x free
rrAg oW Fr VXA
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Example: 1

axiom

VxP(x) + YXP(x) VxP(x) + VxP(x) axiom
YxP(x) + P(0) VxPO)F P(1) " °
VxP(x) + P(0) A P(1) A-i



Axioms vs. rewriting

X% S(y) = x+x %y

(xxy=0)e (x=0Vvy=0)

Axioms Rewriting
x+S5(y)=S(x+y) x+5(y) > S(x+y)
x+0=x xX+0-—>x
xx0=0 x*0—0

X S(y) = x+xty
(xxy=0)->(x=0vy=0)

Tr2«2=4
T rAx(2xx = 4)

F4=4
FAx(2xx=4)
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Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

» rewriting on terms:
X+ S8(y) = S(x+vy)
» and on propositions (predicate symbols):
xxy=0-x=0vy=0

» advantage: expressiveness
» we obtain a congruence modulo R (chosen set of rules): =
» deduction rules transform as such:

axiom TAFA becomes TArB axiom, A = B



Deduction modulo : natural deduction modulo - first
presentation

I',ArAaXIOm

A FFBAi Fr'-AAB FkA/\BAe2

Fr'-AAB Mr-A +B
A+rB ' A= B A

g =-e

' TrAa=8B T+B

I-FVXA[X]Ve any t MrAK] V-i, x free

rrAg oW Cr VXA




Deduction modulo : first presentation

Add then the following conversion rule:




Deduction modulo : natural deduction modulo, reloaded

FA FBaxiom,A =B

W/\-i,CEAAB %/\-eLCEAAB %/\-eZCEA/\B
ﬁ—i,CEAAB% rre THA e c=AnB
I’rrFAéx] V-i, x free,B = YxA[x] FF:AB[t] V-e, any t, B = YXA[x]
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» consider the rewriting system R:
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VxP(x)+ A VxP(x) + B
VxP(x)rAAB

A-i
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Example: 3

» consider the rewriting system R:

P(0) —» A
P(1) — B

VxP(x) + YxP(x) VxP(x) + YXP(x)
conv VxP(x) + P(0) VxP(x) + P(1) conv
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Example: 3

» consider the rewriting system R:

P(O) —» A
P(1) — B
aXI\(;m VxP(x) + YXP(x) VxP(x) F YXP(x) 3X|0m
A VxP(x)+ A VxP(x) + B \ A
-r

VxP(x)-AAB



A Cut: a detour

NA+B
YA TrA>B
B
» showl A
» showl,A+ B

v

then, you have showed I + B

v

it is the application of a lemma.

=-e



A cut: a detour

Uus! Uy

A M+ B

- AAB
N-A

A-i
N-€

Replace it by 71. And in the previous proof,

T
0 NA+B .
=-i
r-A r'-A=2_8 —e

+B

n is directly a proof of I' + B replace uses of A (nb: axioms) by 6. In
clear: don’t use the lemma, reprove its instances.

General definition: a cut is an elimination plus an introduction
(same symbol).



A cut: a detour
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A cut: a detour

T
0 A+rB oA
e A ric =-i,C=A>8B

ST =-e, C=A"=B

» weshowlLA+rBandl+A

» then we have showed I + B.

» lemma: the good way for a human being.

» in practice: not adapted for automatic demonstration.

» in theory: consistency, proof normalization (Curry-Howard)
depend of its elimination.

» eliminating cuts: a central result.

N-A > g5 A

» two main paths towards:
» proof normalization (syntactic).
» semantical methods.

» in deduction modulo: indecidable, need for conditions on R.
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The semantical method

soundness
Fr-A F=A

Gentzen
Tait-Girard
Dowek-Werner

r|'cfA



The normalization method(s)

v

Curry-Howard: proofs = programs

v

formulas = types
proof tree = typing tree
at the heart of proof assistants (PVS, Coq, Isabelle, ...)

v

v

v

when a program calculates, it performs a cut elimination
procedure.



The normalization method(s)

» Curry-Howard: proofs = programs

» formulas = types

» proof tree = typing tree

» at the heart of proof assistants (PVS, Coq, Isabelle, ...)

» when a program calculates, it performs a cut elimination
procedure.

» show that all typables function terminates.
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» Notation for proofs. Give a name to each of the hypothesis:

r:X1 :A1,...,Xn:An
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Curry-Howard correspondence

» Notation for proofs. Give a name to each of the hypothesis:

r:X1 :A1,...,Xn:An

 adom TrmiAAB
Lx:Arx:A Frfst(r):A "¢
MNem A 7B . +7:AAB
g =t AAD e
Moy AAB " Trsnd(n):A
x:Arm:B . lena A t+7:A>B
Trxn:A=>B Fr(ar):B

» very similar to a type system
» in deduction modulo, rewrite rules are silent:

MNen: A

N-n:B A=B



Cut elimination with proof terms

» Cut elimination is a process, similar to function execution.

MN-m A rl-ﬂ'gZB/\i
[F(my,m):ANB (> S
I+ fst((my,m2)) : A
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Cut elimination with proof terms

» Cut elimination is a process, similar to function execution.

MN-m A rl—ﬂngAi
[F(my,m):ANB (> S
I+ fst((my,m2)) : A

Nx:Arnm:B )
Frr0:A Trixn.A—B :'e > T+{9/x)r:B
I (Ax.1)0: B

» showing that every proof normalizes: the cut elimination
process terminates.
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Normalization

» deduction modulo is high-level: we need reducibility
candidates.

» A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

» to each formula A, associates a candidate [[A]. Show that if
[+7m:Athenne [A]

» in deduction modulo, if A = B, additional constraint:

[AT = [BI
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» such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)



Towards “usual” semantics

» such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

» the sets of candidates have a structure: pseudo Heyting
algebras [Dowek].
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Heyting algebras

» a universe Q
» an order

\4

operations on it: lowest upper bound (join: U — pseudo union),
greatest lower bound (meet: N — intersection).
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a<aUb b<aub a<candb<cimpliesaub<c

v

think about R and closed sets (infinite l.u.b. is not infinite
union)



Heyting algebras

Used in semantic cut elimination (Lipton, e.g.):

soundness
re A2 re A




Heyting algebras

v

a universe Q
» an order

» operations on it: lowest upper bound (join: U — pseudo union),
greatest lower bound (meet: N — intersection).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<aub a<candb<cimpliesaub<c

> like boolean algebra, but with weaker complement.

» think about R and closed sets (infinite l.u.b. is not infinite
union)



pseudo-Heyting algebras, aka Truth Values Algebras

> a universe Q
» apre-order: a < b and b < a with a # b possible.

» operations on it: lowest upper bound (join: U — pseudo union),
greatest lower bound (meet: N — intersection).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<aub a<candb<cimpliesaub<c



Candidates form a pseudo-Heyting algebra

\4

T=1=8N
[ATNIBI =1A ABI]
» and so on.

v

» pre-order: trivial one.
But [A A A] <= [[A] only.

v



Super consistency

» consistency: there exists a model.

» condition in DM: A = B implies [A] = [B]



Super consistency

» consistency: there exists a model.

» super-consistency: for every (pseudo-Heyting) structure, there
exists a model (interpretation).

» condition in DM: A = B implies [A] = [B]
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Super consistency

v

e.g. higher-order logic is super-consistent:

M, = ¢ (dummy)
Mo — Q
Moy = MM

v

hence, it has a model in the candidates pseudo-Heying
Algebra

v

I+ m: Aimplies m € [A].

v

the system enjoys proof normalization.



Towards usual semantics

soundness
Fr-A F=A

Gentzen
Tait-Girard
Dowek-Werner

r|'cfA
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Towards usual semantics

» assuming we have a model M, [_] in the previous
pseudo-Heyting algebra.

» first idea: pseudo-Heyting to Heyting by quotienting.
» trivial pseudo order implies T = L.



The link: fibring

define

[Al5 = [Aly <A =T |T +r: Ao, € [Ally)

> [A]ly is a candidate of reducibility. It contains some proof
terms A + v : B. We don’t want them.



The link: fibring
define

[Al5 = [Aly <A =T |T +r: Ao, € [Ally)

> [A]ly is a candidate of reducibility. It contains some proof
terms A + v : B. We don’t want them.

» weak definition: for some 7 only.
» this is a Heyting algebra ([A]: basis)



The link: fibring

define

[Al5 = [Aly <A =T |T +r: Ao, € [Ally)

v

[Aly is a candidate of reducibility. It contains some proof
terms A + v : B. We don’t want them.

v

weak definition: for some 7 only.
this is a Heyting algebra ([A]: basis)
interpretation of formulas in it:

v

v

A* = [A] = [Aly < Ao

v

interpetation of terms in it:

" =<t [tly)



The link: fibring

define
[A]g =[Allg <Aoc ={T|T +7:Ac,me[Aly)

> [A]ly is a candidate of reducibility. It contains some proof
terms A + v : B. We don’t want them.

» weak definition: for some 7 only.
» this is a Heyting algebra ([A]: basis)
» interpretation of formulas in it:

A" =[Alg =[Aly < Ac
» interpetation of terms in it:

» this proves semantical cut elimination.
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Wait a minute !

v

v

interpretation ? [A]7.

Need for one single substitution. hybridization: o X ¢.
D=9 xM

interpretation for symbols

Pt Aty (b)) = (1, oons 1), PO,y d))

PO((t, A1) (s d)) = [(t/X1, weos ta/ Xn) Pl /x40 x0)

.....

pointwise application

tvyolt,v) =((tt'), (w))

We embed a (potentially) complex structure (e.g. candidates)
inside D.
proves directly [A A B] = [A] N [B]. Usually, only:

AABe[AlN[B] A AB]

proof resembles the proof for normalization.
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Cut admissibility

Assume I + A has a proof (with cuts)

>

v

v

v

[ < [A]in D by (usual) soundness
e[l

e [A] impliesT s A

Q.E.D.

definition:

[A]g =[Aclly <Aoo ={l|T Fnr:Ac,xe[Aly}

is weak (some  only)
we get (weak) normalization by evaluation.



soundness

r-A F=A
Gentzen ‘e(\ess
Tait-Girard ooﬂ\‘)\e
Dowek-Werner o™

r|'cfA

» This diagram does not commute in deduction modulo.



Further work

» there is normalization by evaluation work, but in a Kripke
style: links ?

» do the proof terms (candidates) always have a “pseudo-”
structure ?

» realizing rewrite rule not with Ax.x (not silently), could recover
normalization and make the previous diagram commute again.

M7 A

N-n:B A=B
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