
Completeness of Cut-Free Sequent Calculus

Modulo

Olivier Hermant1

INRIA Futurs and LIX
projet LOGICAL

École Polytechnique
91128 Palaiseau Cedex, France

ohermant@pauillac.inria.fr

Abstract. Deduction modulo is a powerful way to replace axioms by
rewrite rules and allows to integrate computation in deduction. But
adding rewrite rules is not always safe for properties of the deduction
system such as consistency or cut elimination. Proving completeness of
the cut-free calculus with respect to semantical models is a way to prove
the redundancy of the cut rule. The result obtained this way is slightly
weaker than that obtained with a normalization proof, but more general,
and the proof is much simpler. We here give some conditions on rewrite
rules and present the results and techniques that lead to the cut elimina-
tion theorem for the classical sequent calculus modulo. At last, we give
a rewrite rule featuring cut-elimination, but non-normalizing.

Keywords : deduction modulo, sequent calculus modulo, model, rewrite
rules, cut-free, cut elimination
An electronic version of the paper is available at :
http://pauillac.inria.fr/~ohermant

1 Introduction

Eliminating cuts is a way to prove some very important results about deduction
systems, like constructivity, consistency, non-provability of some theorems, or
completeness of proof search methods.

The introduction of axioms as hypothesis makes the cut elimination property
of these systems in danger, introducing so-called axiomatic cuts.

Deduction modulo [1] is a way to integrate axioms into the deduction system,
replacing them by rewrite rules. Adding rewrite rules allows us to express some
powerful theories in first order logic, like Higher Order Logic [2] or Peano’s
Arithmetic [3].

A rewrite rule in deduction modulo is of the shape l → r where l can be any
term, or an atomic proposition. For example, we can have the following rewrite
rule, rewriting an atomic proposition to a non-atomic one : x × y = 0 → (x =
0) ∨ (y = 0). Eliminating cuts does not always succeed because of these kind of
rules. For example, if we take a formulation of Crabbé’s rule : A → B ∧ ¬A, we

are able to prove the propositions ¬B but the proofs involves a cut that can’t be
eliminated. On the other hand, rules rewriting propositions allow us to express
formalisms which power goes beyond first order.

The system on which we work here is the (classical) sequent calculus modulo,
a deduction system based on sequent calculus LK [4], with the addition of term-
and proposition-rewrite. But we do not have cut-elimination for all rewrite sys-
tems even when the rewrite rules are confluent and terminating [2]. We hence
have to find some criterion to assure cut elimination in a wide range of cases.
We here present two of them, namely an order condition, a positivity condition,
and then we present cut-elimination for HOL expressed with the help of rewrite
rules in sequent calculus.

Our goal is not to provide an algorithm to eliminate cuts and prove its
termination [2] but to prove that every provable sequent has a cut-free proof.
This result is slightly weaker than normalization, but it has simpler proofs and is
more general. One of the motivations of this work was to study the link between
these two approaches (pre-models versus models of the cut-free calculus). In
this sense, the results given in section 6 answer partly this question. In all the
cases, these results are sufficient to prove completeness result of proof search
algorithms.

The way cut-elimination is obtained here is similar to the proof of Gödel’s
completeness theorem, proving a completeness theorem of the cut-free sequent
calculus modulo with respect to semantical models. Associated with soundness of
the full sequent calculus modulo, it entails directly the cut-elimination theorem.
Such a method has already been used by Schütte, or in proving semantically
that HOL has the cut-elimination property. In fact, the analogous result for
HOL expressed in sequent calculus modulo we get here uses the same model
construction as Andrews [5], Prawitz [6] and Takahashi [7].

There’s an important point we should mention : although our proof follows
the lines of Gödel, we cannot use the usual definitions of such terms as “com-
plete” or “consistent”, because we are now working in the cut-free calculus.
This justifies the definitions we give in section 3. Other difficulties are given
by the introduction of rewrite rules, that force use to prove again some results
well-known for sequent calculus. Finally, the model constructions are singularly
different from those of the completeness theorem.

2 Sequent Calculus Modulo

2.1 Deduction system

A sequent is a pair Γ ` ∆, where Γ, ∆ are multi-sets of proposition (a proposition
can appear several time). We can derive (prove) a sequent with the help of
deduction rules of the form :

Γ1 ` ∆1, ..., Γ1 ` ∆n

Γ ` ∆

Some of these rules are given in the figure 1. The star on the ∀ quantifier means
that we have a freshness condition on the constant c : this constant has to not
appear in the sequent.

Γ, P ` P, ∆
axiom

Γ, P ` ∆ Γ ` P, ∆

Γ ` ∆
cut

Γ, P, Q ` ∆

Γ, P ∧ Q ` ∆
∧ -l

Γ ` P, ∆ Γ ` Q, ∆

Γ ` P ∧ Q, ∆
∧ -r

Γ, {t/x}P ` ∆

Γ, ∀x P ` ∆
∀-l

Γ ` {c/x}P, ∆

Γ ` ∀x P, ∆
∀∗-r

Fig. 1. Some deduction rules of sequent calculus

To present the sequent calculus modulo, we need to give a precise definition
of what is a rewrite rule. There is two kind of rewrite rules : rewrite rules on
terms, and rewrite rules on propositions [1].

Definition 1. A term rewrite rule is a pair of terms l → r such that the vari-
ables of r appears in l.
A propositional rewrite rule is a pair of propositions l → r such that l is atomic
and free variables of r appears in l.

Example of rewrite rule on a term:

x × 0 → 0

Example of rewrite rule on atomic proposition:

x × y = 0 → (x = 0) ∨ (y = 0)

In this case, we notice that an atomic proposition can rewrite on a non-atomic
proposition.

A rewrite system R is a set of propositional and term rewrite rules.

Definition 2. Let R a rewrite system. The proposition P rewrites in one step
to P ′ in R iff:
P|ω = σ(l) and P ′ = P [σ(r)]ω for a rule l → r ∈ R, an occurence ω in P and
a substitution σ. When we apply σ, we have to rename the bound variables in
order to avoid capture.
We write P →R P ′.
→∗

R stands for the reflexive transitive closure of relation →R, and =R is its
reflexive, transitive, symmetric closure.

When we add a set of rewrite rules, we get an extra freedom : propositions
involved in the premises and in the conclusion of a deduction rule have to be

Γ, P `R Q, ∆
axiom if P =R Q

Γ, P `R ∆ Γ `R Q,∆

Γ `R ∆
cut if P =R Q

Γ, P, Q `R ∆

Γ, R `R ∆
∧ -l if R =R P ∧ Q

Γ `R P, ∆ Γ `R Q,∆

Γ `R R, ∆
∧ -r if R =R P ∧ Q

Γ, {t/x}P `R ∆

Γ, Q `R ∆
∀-l if Q =R ∀x P

Γ `R {c/x}P, ∆

Γ ` Q,∆
∀∗-r if Q =R ∀x P

Fig. 2. Some deduction rules of sequent calculus modulo

equal modulo the rewrite rules, as we can see in figure 2. The entire set of rules
is given in [2], or in [1].

We add a subscript R to remind that we are working with a certain set
of rewrite rules. In the following, we will mainly work in the cut-free sequent
calculus. We will denote sequents in this calculus : Γ `cf

R ∆ to recall that we
don’t allow the cut rule to be employed. When we allow the cut rule, we will
denote a sequent : Γ `R ∆.

As said before, we don’t have cut-elimination for all sets of rewrite rules.
Let’s see Crabbé’s counter-example. With the rewrite rule :

A → B ∨ ¬A

we have the following proofs π and π′:

A `R B, A

`R B,¬A, A

`R B ∨ ¬A, A

`R A
B `R B

π

`R A, B

¬A `R B
A `R B

Combining these two proofs with a cut, we get a proof of `R B. Considering
the first rule applied to B, we can see that there exist no cut-free proof of
this sequent. Hence in this system, cut-elimination fails, even if this system is
consistent.

2.2 Example of rewriting theories

We restrict to first-order predicate logic, possibly with sorts. However, thanks
to the rewrite rules on propositions, HOL can be embedded in deduction modulo.

We define the terms of the theory. We use a many-sorted logic, thus we first
define the types of the terms :

– ι and o are type

– if T and U are types, T → U is a type.

Then, we define some specific constants :

– ST,U,V is a symbol of the type (T → U → V) → (T → U) → T → V for any
types T, U, V

– KT,U is a symbol of type T → U → T for any types T, U

–
.
⇒,

.
∨,

.
∧ are symbols of type o → o → o

–
.
¬ is a symbol of type o → o

–
.

∃T ,
.

∀T are symbols of type T → o for any type T .
– For any types T, U , there’s an application symbol, αT,U of rank 〈T →

U, T, U〉, to combine terms. Thus, if f is a term of type T → U and x is
a term of type T , αT,U (f, x) is a term of type U

We will omit the types underscripts when there is no ambiguity. At last, we
define an unique predicate symbol ε of rank 〈o〉.
Now, we have to define the rewrite rules of our theory :

– α(α(α(S, x), y), z) → α(α(x, z), α(y, z))
– α(α(K, x), y) → x
– ε(α(α(

.
⇒, p), q)) → ε(p) ⇒ ε(q)

– ε(α(
.
¬, p)) → ¬ε(p)

– ε(α(α(
.
∨, p), q)) → ε(p) ∨ ε(q)

– ε(α(α(
.
∧, p), q)) → ε(p) ∧ ε(q)

– ε(α(
.

∀T , pT→o)) → ∀xT ε(α(p, x))

– ε(α(
.

∃T , pT→o)) → ∃xT ε(α(p, x))

It can be proved that this rewrite system is confluent and terminating, see
for example [8]. A term t is in β-normal form if it is in normal form (hence w.r.t.
rules on combinators S and K). For any term t, we call β(t) its normal form.

3 Definitions

Definition 3 (Confluence). A rewrite system R is said to be confluent if for
all proposition P such that P →∗

R P ′ and P →∗
R P ′′, there exists Q such that

P ′ →∗
R Q and P ′′ →∗

R Q.

Definition 4 (Termination). Let R a rewrite system. He is said to be termi-
nating if and only if for any term there exists a finite rewrite sequence starting
from this term and ending in a normal term.

He is said to be strongly terminating if and only if all the rewrite sequences
are finite.

The following definitions are specific to the cut-free sequent calculus : instead
of considering a theory with respect to provability in the sequent calculus, we
consider it with respect to the cut-free calculus. This difference is visible in the cf
superscript of the sequents. This difference reflects into the very formulation of
these definitions : considering the cut-free calculus makes a distinction between
formulations that were equivalents from the point of view of the calculus with
cuts.

Definition 5 (Completeness). A theory Γ is said to be complete iff for any

proposition P : Γ, P `cf
R or P ∈ Γ .

Definition 6 (Consistency). A theory Γ is said to be consistent if and only
if we can’t prove the empty set of proposition.
In our case, Γ is consistent iff Γ `6 cf

R

Again, this definition is slightly different from the classical definitions of
consistency:
Γ is inconsistent if and only if for any/at least one proposition P we have proofs
of Γ `R P and of Γ `R ¬P .
Proving equivalence between the two definitions requires the cut elimination
theorem.

Definition 7. A theory Γ admits Henkin witnesses iff for any proposition Q
with one free variable x, there exists constants c, c′ such that:

Γ, ∃xQ `6 cf
R implies Q[c/x] ∈ Γ

Γ `6 cf
R ∀xQ implies ¬Q[c′/x] ∈ Γ

We will speak about a Henkin theory instead of a “theory that admits Henkin
witnesses”.

We quickly remind the definition of a structure for a one-sorted language:

Definition 8. Let L be a language (a set of function, predicate and variable
symbols), let P be a predicate symbol of rank n, and f a function of rank m
of this language. A structure M is a set formed with a non empty set M (the
domain), and for each predicate symbol P of rank n, and function f of rank m
of the language L :

– a function P̂ : Mn 7→ {0, 1}

– a function f̂ : Mm 7→ M

Now for each term of the language, we define its interpretation under an
assignment σ mapping any variable to a value in M :

Definition 9. Let L a language, V its set of variables, M a structure. Let σ
an assignment. We define by induction the interpretation of a term in M under
this assignment :

– |x|σ = σ(x) where x ∈ V

– |f(t1, ..., tn)|σ = f̂(|t1|σ , ..., |tn|σ)

We define by induction the interpretation of a proposition under this assignment
:

– |P (t1, ..., tn)|σ = P̂ (|t1|σ , ..., |tn|σ)
– |¬P |σ = 1 iff |P |σ = 0 else |¬P |σ = 0
– |P ∨ Q|σ = 1 iff |P |σ = 1 or |Q|σ = 1, or else |P ∨ Q|σ = 0

– |P ∧ Q|σ = 1 iff |P |σ = 1 and |Q|σ = 1, or else |P ∧ Q|σ = 0
– |P ∨ Q|σ = 1 iff |P |σ = 0 or |Q|σ = 1, or else |P ∨ Q|σ = 0
– |∃xP |σ = 1 if there exists a ∈ M such that |P |σ:〈x,a〉 = 1, else |∃xP |σ = 0
– |∀xP |σ = 1 if for each a ∈ M , |P |σ:〈x,a〉 = 1, else |∀xP |σ = 0

We say that M is a model of a theory Γ is each proposition of Γ is interpreted
by true (i.e. 1).

As we consider only ground propositions, it is easy to see that the interpre-
tation of a proposition in the model does not depends on the assignment, so we
will omit the subscript indicating the assignment, when it is not needed.

If the set M is the set (or a subset) of ground terms of L, we won’t speak
about assignments, substituting on the fly the term to the free variable. For
example, |∀xP | = 1 iff for each ground term |P [t/x]| = 1. It can easily be shown
to be an equivalent formulation.

We can extend smoothly this definition to many-sorted logic, adding a set
Ms for each sort s, and interpreting propositions and functions accordingly.

When we construct a model, we see that it is necessary and sufficient to
give the interpretation of each atom, and of any term. If we are not construct-
ing a model in this way, then we have to prove the compatibility with definition 9.

The introduction of the rewrite rules justifies a new notion of model.

Definition 10 (Model for a rewrite system). Let M be a structure. We say
that it is a model of the rewrite rules if and only if for any propositions P =R Q
we have M |= P iff M |= Q

We will adopt the notation |=R when a model is a model of the rewrite rules.

4 The cut elimination theorem

The cut elimination theorem is, as announced before, the result of the application
of a soundness theorem with respect to semantical models, and a completeness
theorem of the cut-free calculus with respect to these same models.

Proof of soundness is standard : all rules are valid, by a simple induction.
For a complete proof, see [9].

Theorem 1 (Soundness). If Γ `R ∆ then Γ |=R ∆.

The exact converse of this Soundness theorem is the Completeness theorem
which was first proved by Gödel for natural deduction :

Theorem 2 (Completeness). If Γ |=R ∆ then Γ `R ∆

If we add the more strict condition, that the sequent Γ `R ∆ must have a
cut-free proof (replacing Γ `R ∆ with Γ `cf

R ∆), we get the :

Theorem 3 (Cut-elimination theorem). Let R a set of rewrite rules such

that Γ |=R ∆ implies Γ `cf
R ∆

If Γ `R ∆ then Γ `cf
R ∆

It now remains to find a condition on rewrite rules that assures that the
completeness theorem for the cut-free calculus holds. Trying to prove it is, under
the hypothesis of confluence of rewrite rules equivalent to prove the following
result :

If a theory T (a possibly infinite set of axioms) is consistent (def. 6, then
there exists a model of T .

We now restrict ourselves to the construction of semantical models given
a set of (cut-free) consistent axioms. We can narrow the problem even more
and concentrate on building models of complete, consistent, Henkin theories.
Indeed we will show in a first step that any consistent theory T is contained
into a complete, consistent, Henkin theory Γ , provided that rewrite rules are
confluent.

After having built such a theory, we will focus on the techniques for con-
structing models. In particular, defining a model is not self-evident, because we
have to contstruct a model of the rewrite rules, following definition 10.

5 Key results in sequent calculus modulo

Note that in this whole section, we assume only confluence of the rewrite rules.

5.1 Some key lemmas

Since we are working in a new calculus (the cut-free sequent calculus modulo), we
have to prove again even the most basic results. These results are very standard,
maybe with exception of lemma 5.Some proofs lay in annex.

Under the hypothesis of confluence of the rewrite rules, we can by an easy
induction prove the following lemma :

Lemma 1 (Connector). let P =R Q two non atomic proposition. P and Q
have the same main connector.

Proof : by confluence. The common reduct of P and Q has the same main
connector than P and has the same main connector that Q, because we allowed
rewrite rules only on atomic propositions. 2

We can now prove the Kleene lemmas [10], that say that we can reverse rules.
We distinguish the case of left rules and of right rules.

Lemma 2 (Kleene). Let A1 =R ... =R An =R A be propositions. If the se-
quent :

Γ, A1, ..., An `cf
R ∆

is provable, then we can construct a proof of :

– if A = ¬P : Γ `cf
R P, ∆

– if A = P ∨ Q : Γ, P `cf
R ∆ and Γ, Q `cf

R ∆

– if A = P ∧ Q : Γ, P, Q `cf
R ∆

– if A = P ⇒ Q : Γ, Q `cf
R ∆ and Γ `cf

R P, ∆

– if A = ∃xP : Γ, P [c/x] `cf
R ∆, where c is a fresh constant.

Lemma 3. Let A1 =R ... =R An =R A be propositions. If the sequent :

Γ `cf
R A1, ..., An, ∆

is provable, then we can construct a proof of :

– if A = ¬P : Γ, P `cf
R ∆

– if A = P ∧ Q : Γ `cf
R P, ∆ and Γ `cf

R Q, ∆

– if A = P ∨ Q : Γ `cf
R P, Q, ∆

– if A = P ⇒ Q : Γ, P `cf
R Q, ∆

– if A = ∀xP : Γ `cf
R P [c/x], ∆, where c is a fresh constant.

Proof : By the the same induction over the proof structure as in 2. 2

These lemmas stands for any connector rules of the sequent calculus, with
exception of the ∀-left (in lemma 2 and of the ∃-right in lemma 3. That’s the
reason why we introduce lemma 5.

The following lemma can be taken as a remark on complete consistent Henkin
theories and will be helpful in many cases :

Lemma 4. Let Γ be a complete consistent Henkin theory. Then :

– if P ∈ Γ and P =R Q then Q ∈ Γ
– if ¬A ∈ Γ then Γ `6 cf

R A
– if A ∨ B ∈ Γ then A ∈ Γ or B ∈ Γ
– if A ∧ B ∈ Γ then A ∈ Γ and B ∈ Γ
– if A ⇒ B ∈ Γ then Γ `6 cf

R A or B ∈ Γ
– if ∀xA ∈ Γ then for any term t A[t/x] ∈ Γ
– if ∃xA ∈ Γ then there exists a c such that A[c/x] ∈ Γ

on the same way, we have :

– if Γ `6 cf
R P and P =R Q, Γ `6 cf

R Q

– if Γ `6 cf
R¬A then A ∈ Γ

– if Γ `6 cf
R A ∧ B then Γ `6 cf

R A or Γ `6 cf
R B

– if Γ `6 cf
R A ∨ B then Γ `6 cf

R A and Γ `6 cf
R B

– if Γ `6 cf
R A ⇒ B then A ∈ Γ and Γ `6 cf

R B

– if Γ `6 cf
R ∃xA then for any term t Γ `6 cf

R A[t/x]

– if Γ `6 cf
R ∀xA then there exists a c such that Γ `6 cf

R A[c/x]

Proof : We see only some significant cases, because proof is easy.

– The first case is very easy. If Γ, Q is inconsistent, Γ, P is inconsistent too.

– The last two cases are the definition of a Henkin theory.
– Let’s focus on the fifth case : Γ is consistent, hence Γ, A ⇒ B `6 cf

R . Now,

suppose that we have : Γ `cf
R A and B /∈ Γ . That means that we have proofs

of the following sequents (because Γ is complete) : Γ `cf
R A and Γ, B `cf

R

Applying the ⇒-left rule, we get that Γ, A ⇒ B `cf
R that is in contradiction

with our hypothesis.
– The proof for the remaining cases are on the same way. 2

We now introduce as announced, for complete Henkin theories, a more pow-
erful lemma than the Kleene lemmas 2 and 3, because it works with all the rules
(including ∀-left and ∃-right). The subtle point to understand is that when Γ is

a theory with an infinite set of axioms, and when we write Γ `cf
R P , we mean a

finite subset of Γ entails P . And this subset will change within the proof of the
lemma.

For example, let Γ0 a finite subset of a complete Henkin theory Γ . if there
exists a proof of Γ0 `cf

R ∃xP , lemma 5 gives us a proof of the sequent Γ1 `cf
R ∃xP

with a first rule on ∃xP , where Γ1 is a finite subset of Γ .

As often in sequent calculus, we have to prove the result in a symmetric
formulation of it, but further we will use a non-symmetric corollary (without
the ∆ set). We add some extra conditions that will be useful later in the proof,
but that are unnecessary to the comprehension of the lemma :

Lemma 5. Let Γ a complete consistent Henkin theory, and let ∆ = {P |¬P ∈
Γ}. Then, if we have a proof of :

Γ, Γ1 `cf
R ∆1, ∆ (1)

we can construct a proof of this sequent whose first rule is on a proposition of
Γ1, ∆1, whose number of rules on propositions coming from Γ1, ∆1 is preserved,
and which height is less or equal than the height of (1).

5.2 Completion of a theory

Now, given a consistent theory T , we construct a complete consistent Henkin
theory containing T , with respect to provability in the cut-free classical sequent
calculus modulo. We suppose the theory is expressed in a denumerable language
L, to which we add a denumerable set of new constants C, giving a new language
L′.

Definition 11 (Theory construction). We let Γ0 = T , and we enumerate
all the proposition of the language L′ :

P0, ..., Pn, ...

We define Γn+1 by induction:

– If Pn = ∃xQ and if Γn, ∃xQ `6 cf
R then let c ∈ C a constant that doesn’t appear

in Γn. This is possible, because a finite number of these constants appear in
P0, ..., Pn, and none appears in Γ0 = T . We let Γn+1 = Γn ∪ {Q[c/x], Pn}.

– If Γn, Pn `6 cf
R then Γn+1 = Γn ∪ {Pn}

– If Pn = ∀xQ, if Γn, ∀xQ `cf
R and if Γn `6 cf

R ∀xQ then we let Γn+1 = Γn ∪
{¬Q[c/x]}, c being a fresh constant (with respect to Γn) of C. There exists
such a constant because Γn contains at most a finite number of constants in
C : they can appear only in P0, ..., Pn.

– Else, we let Γn+1 = Γn.

Finally, we take Γ =

∞
⋃

n=0

Γn.

We easily check by induction that Γn is consistent for any n, so Γ itself is
consistent. We then prove easily that Γ is complete and admits Henkin witnesses
(if no, there exists a proposition P that contradicts these assertions, and by our
former enumeration there exists an n such that P = Pn).

So, we get the result :
Any consistent theory is contained into a complete, consistent, Henkin theory

This construction is very similar to the one that can be found in [11], at one
major difference : we have done it in the cut-free calculus (and some definitions
have been changed on this purpose).

In sequent calculus without rewrite rules, once one has constructed a com-
plete Henkin theory, one immediately gets a model. This is also the case here.
But there’s a problem we haven’t addressed yet : will this model be a model
of the rewrite rules ? This is the point that bears logical complexity, because
rewrite rules add theoretical power to the calculus.

6 Model construction

Since there exists counter-example to cut-elimination for confluent rewrite sys-
tems (Crabbé’s rule, and there’s other counter-examples even for terminating
cases [2]), we have to strengthen our hypothesis on rewrite rules. That’s why in
this section we need additionnal hypothesis. But they remain general enough to
embed some large classes of rewrite rules.

6.1 An order condition

We suppose the existence of an order on propositions that have the following
properties:

– for any proposition P = A C B where C is a binary connector (∧,∨,⇒),
P � A and P � B,

– ¬P � P ,

– ∃xP � P [t/x] for any ground term t,
– ∀xP � P [t/x] for any ground term t,
– let t and t′ be two propositions or ground terms such that t →R t′. t � t′

(compatibility of the rewrite system and the order),
– � is a well-founded order.

We will additionally suppose the rewrite system to be confluent. By the well-
foundedness of the order, we get that the rewrite rules are terminating. Hence
the normal form of a proposition exists and is unique.

A rewrite rule that fits these condition is for example x∗0 → 0. J. Stuber [12]
gives a more extended example, formulating a piece of set theory with rewrite
rules that satisfies this condition. The quantifier-free rewrite rules of [2] fits this
condition too. We now construct the model, like in [12], using techniques inspired
by L. Bachmair and H. Ganzinger for resolution.

We only consider the ground propositions of the language. For the domain
of the structure M we take all ground normal terms. We naturally interpret a
ground term by its normal form. We now define the interpretation of each atom,
begining with normal atoms. For each normal atom, we let :

{

if Γ, A `cf
R , |A|M = 0

if A ∈ Γ, |A|M = 1

This definition is valid, because the theory is consistent. This definition holds
for any normal atom A because Γ is a complete theory in the sense of definition 5.

Now we have defined the value for normal atoms, we define the interpretation
of all the propositions of the language, beginning with the normal ones. For each
normal proposition, we construct its tree.

– The tree for the proposition A ∨ B is a tree which root is ∨ and which sons
are the two trees of the normal forms of A and B

– The tree of the normal proposition ∃xA is a tree which root is labeled ∃ and
which sons are the trees of the normal forms of A[t/x], for each ground term
t

– and so on for other connectors.

The tree is finite (in the sense that we can’t find an infinite path), because
each time we go down in the tree, we decrease the well-founded order �.

All the leaves are normal atoms, and we know how to assign a truth value of
a normal atom. Thus we can give a truth value for the entire tree of a (normal)
proposition :

– To a tree which root is ∨, we assign the 1 truth value if and only if at least
one of its sons has the 1 thruth value, else we assign the 0 truth value.

– We assign the 1 truth value to a tree which root is ∃ if and only if at least
one of its sons has the 1 truth value.

– and so on for the other connectors.

Finally, the truth value of a non-normal proposition is set as the truth value
of its normal form.

We can easily check that the structure M constructed defines an interpreta-
tion, and that this is a model of the rewrite rules. Now, we have to check that
M is a model of Γ . This is done by induction over the order �, using the fact
that we have for each normal atom :

Γ, A `6 cf
R iff M |= A

We then use lemma 4, and use the fact that at every step time, we deconstruct
a proposition or we rewrite it, so we decrease the well-founded order. 2

6.2 Positive rewrite systems

In this section we suppose that the rewrite rules are confluent, terminating and
that they verify the positivity condition [2] :

Definition 12. A rewrite system is said to be positive if an atomic proposition
rewrites into a proposition which atoms have only positive occurrences.

This definition can be seen as following : an atomic proposition A rewrites
to a proposition P which clausal form does not contain the ¬ connector. For
example, the following rewrite rules is not positive, because B has a negative
occurence :

A → B ⇒ C

But the following are positive :

A → (∀xB[x]) ∨ C

A′ → (¬B′) ⇒ C ′

We already have a complete consistent Henkin theory, and we have to con-
struct a model of it. The point is to construct a model not taking into account
rewrite rules and to prove later that this is really a model of the rewrite rules.
The domain of M is composed of all equivalence classes (modulo the rewrite
rules) of ground terms.

For each ground atom (even non-normal ones) we define :

Definition 13. – if A ∈ Γ then |A|M = 1

– if Γ `6 cf
R A then |A|M = 0

– if Γ `cf
R A and Γ, A `cf

R then, we arbitrarly put |A|M = 0

This definition is well formed. Indeed, the three cases are mutually exclusive,
and describe all the possibility, since Γ is a complete, consistent theory. We have
defined an interpretation, because we have defined it on each ground atom.

This is not hard to prove that M is a model of Γ using lemma 4. Indeed,
when we break a proposition, we get in fine some (non-normal) atoms, that are
already interpreted (this is the main difference with the previous construction
of section 6.1).

Lemma 6. M is a model of Γ

Proof : In fact, we have to prove simultaneously the following. If P is a
predicate, then :

{

P ∈ Γ implies |P |M = 1

Γ `6 cf
R P implies |P |M = 0

We prove it by induction over P . Let’s see some key cases.

– If P is an atom, then we refer to the definition 13
– If P = ¬Q and P ∈ Γ that implies Γ, P `6 cf

R (by consistency), hence, by

a contrapposition of Kleene lemma 3, we have Γ `6 cf
R Q, hence |Q| = 0 by

induction hypothesis, so |P | = 1 by definition 9.

– If P = ¬Q and Γ `6 cf
R P then we use lemma 4.

– If P = ∀xQ and P ∈ Γ , then by lemma 4 and induction hypothesis we get
that for any term t we have |Q[t/x]| = 1 hence |P | = 1 because M is a
model.

– If P = ∀xQ and Γ `6 cf
R ∀xQ, by lemma 4 we get (thanks to the fact that

Γ is a Henkin theory, see definition 7) that there exists a constant c such

that Γ `6 cf
R Q[c/x]. So, |Q[c/x]| = 0 by induction hypothesis, and therefore

|P | = 0. 2

We can remark that the third case of definition 13 doesn’t occur at any time,
just because of the cut elimination theorem (having the two proofs simultane-

aously would imply that Γ `cf
R). But since we are proving this very theorem, we

are forced to take into account such cases.

It remains now to prove that M is a model of the rewrite rules. We can focus
on rewriting atoms, because rewrite rules occurs on atoms. Thus, we have to
check that if A →R P , then |A| = |P |.

We distinguish three cases :

– if A ∈ Γ then |A|M = 1, and |P |M = 1 because M is a model of Γ , and
P ∈ Γ by lemma 4

– if Γ `6 cf
R A then |A|M = 0 and |P |M = 0 because M is a model of Γ .

– if Γ `cf
R A and Γ, A `cf

R , we can say nothing for now on |P |M, but we know
that |A|M = 0, by definition 13.

To prove last case, we need the following lemma :

Lemma 7. If Γ, P+ `cf
R and Γ `cf

R P+ then |P+| = 0.

If Γ, P− `cf
R and Γ `cf

R P− then |P−| = 1.

Here P+ denotes a proposition having only positive occurence of atoms, and
P− a proposition having only negative occurence of atoms. For proof considera-
tions, we need to prove it in a symmetric formulation, though only the positive
part is of interest for us.

This lemma represents a new way to see cut-elimination for positive rewrite
systems. It replaces the fixpoint construction in [2].

Proof of lemma is done by induction on the structure of P , using Kleene
lemmas 2 and 3, and the following corollary of lemma 5, when Kleene lemma
can’t apply (so, in the ∀-left and ∃-right cases).

Corollary 1. Let Γ be a complete consistent Henkin theory. Then, is we have a
proof of the sequent Γ, Γ1 `cf

R ∆1 , then we can find a proof of this same sequent
such that :

– The number of rule applied to proposition coming from Γ1, ∆1 is preserved.
– the first rule is either a rule on a proposition of Γ1, ∆1 either a ¬-left rule

on a proposition of Γ followed by an axiom rule on a proposition of Γ1, ∆1.

Proof of lemma 7 : By induction over the structure of P . We will see only
some significative results (the others are on the same way). We will note P ∗

and P ∗ a signed proposition when we don’t care of its sign. (If P ∗ = P+ then
P ∗ = P− and conversely).

– P ∗ is an atom A. That’s the base case, and the definition of the model :
|P ∗| = |P+| = 0

– P∗ = A∗ ∨ B∗. Then, we get, by Kleene lemmas 3, 2 proofs of :

Γ, A∗ `cf
R

Γ, B∗ `cf
R

Γ `cf
R A∗, B∗

If ∗ = +, we have either Γ `cf
R A+ and by induction hypothesis |A+| = 0,

either Γ `6 cf
R A+, and by the proof of 6, |A+| = 0. We can replace A by B,

and hence we get |A+ ∨ B+| = 0.
If ∗ = −, we will prove that |A− ∧ B−| = 1. If there exists a proof of

Γ `cf
R A− we get the result by induction hypothesis (|A ∨ B| = |A−| = 1).

Else Γ `6 cf
R A− and thus, by Kleene lemma 2, Γ,¬A− `6 cf

R . Equivalently, by

5, ¬A ∈ Γ . So, we turn back to the proof of Γ `cf
R A−, B− we have, add

a ¬-right rule, and a contraction rule, and get a proof of Γ `cf
R B−. By

induction hypothesis, we then have |B−| = 1.
– P ∗ = ¬Q∗. We can apply Kleene lemmas 3 and 2. We get two proofs of the

sequents Γ, Q∗ `cf
R and Γ `cf

R Q∗. We can apply induction hypothesis and

we get |P ∗| = |Q∗|. So, |P+| = 0 and |P−| = 1.

– P ∗ = ∀xQ∗[x]. Kleene lemma 3 give us a proof π of Γ `cf
R Q∗[c/x] where c

is a fresh constant.

We can replace c with any term t, provided a renaming of some other fresh
constant of π, so we have for any ground term t proofs of :

Γ, ∀xQ∗[x] `cf
R (2)

Γ `cf
R Q∗[t/x] (3)

Let’s consider the negative case first. Let t be a ground term. Either we
have Γ, A−[t/x] `6 cf

R and we can conclude that |A−[t/x]| = 1, either we have

Γ, A−[t/x] `cf
R , and we get the same conclusion by induction hypothesis. So,

for each ground term t, |A−[t/x]| = 1, hence |P−| = 1 by definition 9.

The positive case doesn’t work in the same way. If there exists a ground term
t such that Γ, Q+[t/x] `cf

R , we can apply induction hypothesis. |Q+[t/x]| = 0,
hence |P+| = 0.
Else for any ground term t, Q+[t/x] ∈ Γ , because Γ is complete. Suppose
this is the case, we will derive a contradiction with the help of corollary 1.
So, we have three hypothesis. This one, proofs of (2), and (3) for any ground
t.
Having to deal with this contraction rule, we must be a little bit careful to
derive a contradiction. We will derive this contradiction on the number of
rules that we apply in a proposition derived from P in the sequent Γ, P + `cf

R .
Take a proof of such a sequent and call N the number of rules applied on
propositions derived from P +.

We can apply corollary 1. If we have a ¬-left followed by an axiom rule, then
we would have ¬P + ∈ Γ and we could derive the inconsistency of Γ from
the proof of Γ `cf

R P+. We could do the same thing if this were a ∀-left rule
on P , viz. for any ground t, Q+[t/x] ∈ Γ by hypothesis. So we must have a
contraction on P as first rule, and we get the following proof :

π

Γ, P+
1 , P+

2 `cf
R

Γ, P+ `cf
R

Note that the number of rules applied on proposition derived from P1, P2 is
N − 1, thanks to corollary 1.
We can apply on the same way N − 1 times corollary on the proof of
Γ, P+

1 , P+
2 `cf

R . At the end, we get a proof π′ of the sequent Γ, P +
1 , ..., P+

n `cf
R

with no rule on P+
1 = P+

2 = ... = P+
n = P+, not even an axiom rule. So

they don’t play any role in π′ : we can delete them from the proof and we
get a proof of the sequent Γ `cf

R , that is, the inconsistency of Γ .
So in all the cases, we get a contradiction, and there must exists a ground
term t such that Γ, Q+[t/x] `cf

R .
– The other cases are treated in the same way.

2

Now it is easy to check that our model M is a model of rewrite rules. It is
sufficent to check it on atomic propositions. Since we have A →R P+ for each
rewrite rule (positive rewrite system), we have |A|M = |P |M in the three cases :

Γ, A `6 cf
R

Γ `6 cf
R A

Γ, A `cf
R and Γ `cf

R A

thanks to lemmas 7 and 6. 2

6.3 HOL

We consider the rewrite rules of the section 2.2.

We first construct for the terms of the theory a structure following the con-
struction of Andrews [5], Prawitz [6] and Takahashi [7]. Our construction is
slightly different from the one of [5], because we consider another formulation
of HOL (without λ binder but with combinators). Thus we don’t have problems
like α-equivalence, but we are forced to define the interpretation of ST,U,V , KT,U ,
and α(f, t) for any f ,t.

To follow the construction of Andrews [5], we need to have a semi-valuation
on terms.

Definition 14. A semi-valuation ‖ . ‖ on propositional terms (i.e. terms of type
o) is a function which domain is a subset of the terms of type o and range {0, 1}
such that :

– if p →∗
R q then ‖ p ‖=‖ q ‖

– if ‖ α(
.
¬, p) ‖= 0 then ‖ p ‖= 1

– if ‖ α(
.
¬, p) ‖= 1 then ‖ p ‖= 0

– if ‖ α(α(
.
∨, p), q) ‖= 0 then ‖ p ‖=‖ q ‖= 0

– if ‖ α(α(
.
∨, p), q) ‖= 1 then ‖ p ‖= 1 or ‖ q ‖= 1

– if ‖ α(
.

∀, pT→o) ‖= 0 then there exists a term tT such that ‖ α(p, t) ‖= 0

– if ‖ α(
.

∀, pT→o) ‖= 1 then for each term tT , ‖ α(p, t) ‖= 1

The definition is in the same way for the other quantifiers.

A term p of type o can rewrite into q only by the mean of rewrite rules on α
symbol.

We can construct on the same model a semi-valuation definition on proposi-
tions. For example the condition on ∀ becomes :

if ‖ ∀xT P ‖= 0 then there exists a term tT such that ‖ P [x/t] ‖= 0.

With the help of lemma 4, this is very easy to construct a semi-valuation on
propositions using Γ . Let :

P ∈ Γ ⇒ ‖ P ‖= 1

Γ `6 cf
R P ⇒ ‖ ¬P ‖= 0

Now we have to propagate this definition to the terms of type o (i.e. propo-
sitional terms) :

‖ po ‖ is set to ‖ ε(po) ‖

This is easy to check that this is a semi-valuation on terms. For example if
we have ‖ α(

.
¬, po) ‖= 1 then we have ‖ ε(α(

.
¬, p)) ‖= 1 hence ‖ ¬ε(p) ‖= 1

by definition of our semi-valuation on propositions, hence ‖ ε(p) ‖= 0, hence
‖ po ‖= 0. We reason on the same way for all the other connectors. 2

In fact, this is even a partial valuation, but this is of no interest here.
Having this semi-valuation on terms, we can now step by step follow the

construction in Andrews [5], erasing the treatment of λ and adding definitions
for S, K symbols. α(,) replaces the treatment of application.

We first define what a V-complex is, as in [5] :

Definition 15 (V-complex). For each type T We define the set DT of V-
complexes as a pair by induction over the type structure :

– if T is o, then Do = {〈to, v〉, such that v is 1 or 0 and if ‖ to ‖ is defined, then
v =‖ t ‖ and t is in β normal form }

– if α is ι, Dι = {〈tι, ι〉} for each tι in β-normal form.
– ifα is A → B, then DA→B = {〈tA→B , fDA→DB

〉}, where t is in β-normal
form, and f is a function from DA into DB such that for each V-complex
〈t′A, g〉 ∈ DA, we have f(〈t′A, g〉) = 〈β(α(t, t′)B), h〉 ∈ DB.

ι in the second member of Dι doesn’t play any role further. It should be
understand as a dummy constant. DT is the domain of the type T . The key
point of the construction is that when the semi-valuation can’t decide the truth
value of a term of type o, then we give it both.

First of all, we associate to each ground term of type T a cannonical element
in DT :

Lemma 8 (Cannonical elements). To each term tA, we can associate a V-
complex 〈βt, ftA

〉 ∈ DA

Proof : By induction over the type structure of A. For ι, to any tι we associate
〈β(tι), ι〉. To each to we associate 〈β(to), v〉 if v =‖ to ‖ if defined. Else we put
arbitrarly v = 1.

Consider the case of a term t of type A → B. We let ftA→B
be the function

from DA to DB such that for any 〈t′A, g〉 ∈ DA :

ftA→B
(〈t′A, g〉) = 〈β(α(tA→B , t′A,)), fβ(α(tA→B,t′

A
,)B〉

which is a V-complex defined by construction.
It is easy to check that these elements are V-complexes. 2

Now we can define interpretation of all terms modulo an assignment σ map-
ping variables of type T into DT , let |tT |σ.
We let C1 and C2 the first and second components of a V-complex C, and σ1

an assignment mapping variables x of type T to σ(x)1 (hence to a ground term
in β-normal form in DT).

Not surprisingly, we define the first component of |tA|σ in the following way
:

|tA|
1
σ = β(σ1tA)

We then define the second component of |tA|σ by induction over the structure
of the term tA. At each step, we will have to check that we really get a V-complex.

– t is a variable xA, then we put |x|2σ = σ(x)2. Thus, we have |x|σ = σ(x).
– t is a constant cA. Following lemma 8, we let |cA|

2
σ be the function fcA

. Then
we have |cA| = 〈cA, fcA

〉, the cannonical element of DA associated to cA.
– t is a KA,B symbol. Let |KA,B |2σ be the following function f :

DA −→ DB→A

〈tA, g〉 7−→ 〈α(K, tA), h〉

where h is the following function :

DB −→ DA

〈t′B , i〉 7−→ 〈tA, g〉

It remains now to prove that |K|σ = 〈K, f〉 is a V-complex of type A →
B → A. We know that 〈tA, g〉 is in DA by definition. So h is really a function
from DB to DA. Moreover, βα(α(K, tA), t′B) = tA because tA is in normal
form.
Thus 〈α(K, tA), h〉 ∈ DB→A, and f is really a function from DA to DA→B . At
last α(K, tA) is in normal form, because tA is. So f is the expected function,
and 〈K, f〉 is in DA→B→A.

– t is a ST,U,V symbol. Things are the same as in the previous case. We let
|ST,U,V |2σ be the following function f :

DT→U→V −→ D(T→U)→T→V

〈tT→U→V , g〉 7−→ 〈α(S, t), h〉

where h is the following function :

DT→U −→ DT→V

〈t′T→U , i〉 7−→ 〈α(α(S, t), t′), j〉

where j is the following function :

DT −→ DV

〈t′′T , k〉 7−→ 〈βα(α(t, t′′), α(t′, t′′))V , l〉

where l = (g(〈t′′T , k〉)2 (i(〈t′′T , k〉)))
2
.

We check on the same way as in the previous case that the defined terms
are V-complexes.

– t is a
.
¬ connector. We let |

.
¬ |2σ = f a function from Do to Do such that :

f(〈Po, v〉) = 〈
.
¬ Po, v〉

where v is 1 if v = 0 and 0 if v = 1. So we have |
.
¬ |σ = 〈

.
¬, f〉

It remains to prove that when we apply f to a V-complex of type o, we get
back a V-complex of the right shape (see definition 15). If Po is in normal
form, then

.
¬ Po is in n.f. too, so the first member is as expected. If ‖

.
¬ Po ‖

is not defined, then by definition, we have a V-complex.
If, say ‖

.
¬ Po ‖= 1, by definition of a semi-valuation, we must have ‖ Po ‖= 0,

and we see that, for 〈Po, v〉 to be a V-complex, we must have v = 0, so
〈

.
¬ Po, v〉 is a V-complex too, because compatible with the semi-valuation.

– t is a
.
∨ connector. On the same way, we have |

.
∨ |σ = 〈

.
∨, f〉, where f is

define as follows :

Do −→ Do→o

〈Ao, v〉 7−→ 〈α(
.
∨, Ao)o→o, g〉

where g is the following function :

Do −→ Do

〈Bo, w〉 7−→ 〈α(α(
.
∨, Ao), Bo), v ∨ w〉

v ∨ w stands is 1 if one at least of the v and w is 1 else it is 0. As in the
previous case, we have to check that we really have a V-complex. This is
done in the same way.

– t is a
.

∀A connector. Then, we have |
.

∀ |σ = 〈
.

∀A, f〉, where f is defined as
follows :

DA→o −→ Do

〈pA→o, g〉 7−→ 〈
.

∀A p, v〉

Where v = 1 iff g(〈tA, h〉) = 〈 , 1〉 for each V-complex 〈t, h〉 ∈ DA.

We yet have to prove that 〈
.

∀ p, v〉 is a V-complex of type o, and of the
expected shape. The first component is not a problem. We just consider the
case when ‖

.

∀ po ‖ is defined, the other is trivial.

Suppose it’s equal to 1, that means that for each term tA, we have ‖ α(pA→o, tA)o ‖=
1, and, because semi-valuations are compatible with rewrite rules, we have ‖

β(α(pA→o, tA)o) ‖= 1 So, each V-complex of the form 〈β(α(pA→o, tA,) o), w〉
is such that w = 1, by definition 15.
〈pA→o, g〉 is a V-complex, so we have g(〈tA, h〉) = 〈β(α(pA→o, tA)), w〉 hence

w = 1. By our definition, we set v = 1, and 〈
.

∀p, v〉 is a V-complex.

Suppose now ‖
.

∀ po ‖= 0. Let t0A
a term such that ‖ α(pA→o, t0) ‖= 0. Any

V-complex 〈qo, w〉 such that qo =R α(pA→o, tOA
) must have w = 0.

This is in particular the case for g(〈t0, ft0〉) = 〈β(α(pA→o, tOA
,)), w〉, where

ft0 is th cannonical function defined in lemma 8. Hence we set v = 0, and

〈
.

∀p, v〉 is a V-complex.

In conclusion, f is really a function from DA→o to Do, and gives the expected
results. 〈

.

∀, f〉 is a V-complex.
– The remaining logical connectors are treated on the same way as these three

ones.
– tB is α(tA→B , t′A,) B. We let |tB |2σ = (|tA→B |2σ |t′A|σ)

2
. The definition is cor-

rect because |tA→B |σ and |t′A|σ are defined by induction. We can check that
(|tA→B |2σ |t′A|σ)1 = βα(tA→B , t′A), because |tA→B |σ , |t′A|σ are V-complex re-
spectively of the shape 〈β(t), f〉, 〈β(t′), g〉, and because βα(t, t′) = β(α(β(t), β(t′))).

So, we have he following statement, that we will re-use : |α(t, t′)|σ = |t|2σ |t
′|σ

We have intepreted all terms. Hence, by a standard model interpretation, we
are ready to interpret the proposition :

Definition 16. Let P be a proposition of the language and σ an assignment
mapping free variables into V-complexes. We define |P |σ by induction over the
structure of the proposition:

– if P = ε(p) we let |P |σ = |p|2σ
– if P = A ∨ B we let |P |σ = 1 iff |A|σ = 1 or |B|σ = 1
– if P = ∃AxQ we let |P |σ = 1 iff there exists a V-complex c ∈ DA, such that :

|Q|σ:(c/x) = 1
– and so on for other connectors, as in definition 9

We could have chose another definition, proving that for any proposition P ,
there corresponds a unique term to such that P = ε(to) and setting |P |σ = |p|2σ .
Definition 16 avoids the problem of proving existence of p, but raises another
problem : is the model constructed a model of rewrite rules ? The answer is given
by the following lemma.

Lemma 9. Let p be a term or a proposition, and σ an assignment. If p →R q
then |p|σ = |q|σ.

The model constructed is a model of Γ , because interpretation in the models
fits with the interpretation with semi-valuation (where it is defined), so every
proposition in Γ is true in the model, and the model is a model of the rewrite
rules.

6.4 A counterexample to normalization

We here consider a modification of the terminating, confluent rewrite rule of [2].
The rule is the following :

R ∈ R →R ∀y(y ' R ⇒ ¬y ∈ R)

where ¬A is equivalent to A ⇒ ⊥, and y ' z stands for ∀x(y ∈ x ⇒ z ∈ x).
We can refine this rule, replacing ¬A with A ⇒ C, where C is a proposition

(for the moment unspecified) :

R ∈ R →R ∀y(y ' R ⇒ (y ∈ R ⇒ C)) (4)

As in [2], we can construct intuitionnistic cut-free proofs π and π′ of the

sequents R ∈ R `cf
R C, and `cf

R R ∈ R.

R ∈ R, C `cf
R C R ∈ R `cf

R R ∈ R

R ∈ R, (R ∈ R ⇒ C) `cf
R C

R ∈ R, R ∈ R0 `cf
R R ∈ R0

R ∈ R `cf
R R ∈ R0 ⇒ R ∈ R0

R ∈ R `cf
R R ' R

R ∈ R, R ' R ⇒ (R ' R ⇒ C) `cf
R C

R ∈ R, R ∈ R `cf
R C

R ∈ R `cf
R C

π

R ∈ R, R0 ∈ R `cf
R C R0 ∈ R `cf

R R0 ∈ R

(R0 ∈ R ⇒ R ∈ R), R0 ∈ R `cf
R C

R0 ' R, R0 ∈ R `cf
R C

R0 ' R `cf
R R0 ∈ R ⇒ C

`cf
R (R0 ' R ⇒ (R0 ∈ R ⇒ C))

`cf
R R ∈ R

Proofs terms are the same as in [2]. So we can have a proof of `R C combining
π and π′. But this involves a cut :

π π′

`R C
cut

This is not hard to see that we don’t have any mean to prove intuition-
nistically `cf

R C without a cut : there is no rule applyable but the cut rule.
So the normalization algorithm fails, although this calculus may be consistent
(depending on proposition C).

As C is unspecified in 4, we can replace C by any proposition, including
a classical tautology that is not an intuitionnistic tautology, for example the

standard one A∨¬A for some A. We get a specialized rule (4A). We don’t have

any mean to prove `cf
R A ∨ ¬A in cut-free intuitionnistic sequent calculus : this

is the excluded middle rule, and no rule other than ∨-right can apply. So the
intuitionnistic calculus doesn’t have the cut-elimination property and doesn’t
normalize.

But in classical sequent calculus, we have a (trivial) cut-free proof :

A `cf
R A

`cf
R A,¬A

`cf
R A ∨ ¬A

In fact, we are going to see that the classical calculus features the cut elim-
ination property, constructing as before a model for any complete, consistent
Henkin theory with the rewrite rule (4A).

Let Γ be such a theory. We define our model not taking into account the
rewrite rule, just like in section 6.2, by defining the truth value of each atomic
predicate :

|B| = 1 if B ∈ Γ

|B| = 0 if Γ `6 cf
R B

|B| = 1 if Γ `cf
R B and Γ, B `cf

R

The domain for the term is the set of ground terms. We have obviously
constructed a model of Γ . It remains to prove that this is a model of the rewrite
rules. We check it only on atoms. In fact, there is only one atom in non-normal
form : R ∈ R. Note that |R ∈ R| = 1 since we have a proof of the empty sequent

`cf
R R ∈ R (so a proof of Γ `cf

R R ∈ R for any Γ). We have to prove that
|∀y(y ' R ⇒ (y ∈ R ⇒ C))| = 1, with C = A ∨ ¬A.

The key point is that |C| = 1, because either |A| = 1, either |¬A| = 1
(we have a classical model). So, t ∈ R ⇒ C is true for any ground term t.
Hence, whatever the truth value of |t ' R|, we get that, for any ground term t,
|(t ' R ⇒ (t ∈ R ⇒ C))| = 1, and finally |∀y(y ' R ⇒ (y ∈ R ⇒ C))| = 1. 2

7 Conclusion

Deduction modulo is a uniform way to study cut elimination of axiomatic the-
ories, integrating axioms into the deduction rules. It enhances the power of the
deduction system, as we have seen, we can express powerful theories and remain
into first-order logic.

The link between cut-elimination and normalization is not as simple as it
appeared, although the model constructions have many common points with pre-
model construction [2]. The method employed seems a little bit more general,
since we are able to prove cut-elimination even for non normalizing systems. It
even seems that we can extend this result to the intuitionnistic logic.

References

1. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31 (2003) 33–72

2. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic
Logic 68 (2003) 1289–1316

3. Dowek, G., Werner, B.: Peano’s arithmetic as a theory modulo. Types for Proofs
and Programs 98 (1999) 62–77

4. Gentzen, G.: Untersuchungen uber das logische Schliessen. Mathematische
Zeitschrift (1934) 176–210, 405–431

5. Andrews, P.B.: Resolution in type theory. The Journal of Symbolic Logic 36

(1971) 414–432
6. Prawitz, D.: Hauptsatz for higher order logic. The Journal of Symbolic Logic 33

(1968) 452–457
7. Takahashi, M.o.: A proof of cut-elimination theorem in simple type-theory. Journal

of the Mathematical Society of Japan 19 (1967) 399–410
8. Dowek, G.: Introduction to proof theory. Course notes for the 13th European

Summer School in Logic, Language and Information (2001)
9. Hermant, O.: A model-based cut elimination proof. 2nd St-Petersburg Days of

Logic and Computability (2003)
10. Kleene, A.C.: Permutability of inferences in Gentzen’s calculi LK and LJ. Memoirs

of the American Mathematical Society 10 (1952) 1–26, 27–68
11. Cori, R., Lascar, D.: Logique mathématique. Masson (1993)
12. Stuber, J.: A model-based completness proof of extended narrowing and resolution.

IJCAR-2001 (2001) 195–210
13. Szabo, M.E., ed.: Collected Papers of Gerhard Gentzen. Studies in Logic and

the Foundation of Mathematics. North Holland Publishing Company, Amsterdam
(1969)

14. Schűtte, K.: Syntactical and semantical properties of simple type theory. The
Journal of Symbolic Logic 25 (1960) 305–326

15. Smullyan, R.M.: First-Order Logic. Springer-Verlag, Berlin Heidelberg New York
(1968)

Annex

7.1 Proof of lemma 2

By induction over the proof structure, considering the first rule applied.
If the first rule is a rule r on a proposition of Γ, ∆, then we apply the induction

hypothesis on the premises of this rule, and obtain proofs to which we apply the
same rule r. Let’s give the example for the last point of the lemma (this is the
most difficult) :

– If the first rule is, say, a ∨-left on B ∨C ∈ Γ , then by induction hypothesis,
we get two proofs :

π

Γ ′, B, P [c/x] `cf
R ∆

π′

Γ ′, C, P [c′/x] `cf
R ∆

We take a constant d fresh in both proofs π and π′. We replace c by d
everywhere in π and c′ by d everywhere in π′. Hence we get proofs of
Γ ′, B, P [d/x] `cf

R ∆ and Γ ′, C, P [d/x] `cf
R ∆. We can then apply the rule

∨-left on these two sequents and get the required proof.
– If the first rule is a ∀-left, then, applying the induction hypothesis, we get a

proof of Γ ′, B[t/x], P [c/x] `cf
R ∆, c being a fresh constant, hence, does not

appear in t. We can apply the rule ∀-left without problem.
– If the first rule is an ∃-left, we apply the induction hypothesis on the premise

and get a proof of Γ ′, B[c/x], P [d/x] `cf
R ∆. c and d are fresh constants and

are different. Hence, we can apply the rule ∃-left.
– We handle the other rules in the same way.

If the first rule is a rule on one of the A1, ..., An (suppose it is A1) :

– If it’s a weak-left, then we apply induction hypothesis on the premise and
get the needed proof(s). In the case n = 1, we have no more propositions
A1, ..., An. We just have to apply a weak rule (maybe 2 different times) to
get the needed proof(s).

– If it’s a contraction, then we apply the induction hypothesis.
– If it’s an axiome rule, let’s see the case where A is of the shape ∃xP . We

have :

Γ, A1, ..., An `cf
R B, ∆′

axiom

with B ∪ ∆′ = ∆. We replace this proof by the following proof :

Γ, P [c/x] `cf
R P [c/x], ∆′

axiom

Γ, P [c/x] `cf
R B, ∆′

∃-right

we can do that because we don’t have any freshness condition when applying
∃-right. We can do the same for any connector, but the ∀-left, because this
one needs a fresh constant. That’s the reason why we don’t have the Kleene
lemma for the ∀-left rule.

– If it is a connector rule. Suppose A = B ∨ C. Then we have the following
premises :
Γ, B, A2, ..., An `cf

R ∆ Γ, C, A2, ..., An `cf
R ∆

we apply the induction hypothesis, get proofs of :

Γ, B, C `cf
R ∆

Γ, B, B `cf
R ∆

Γ, C, C `cf
R ∆

Γ, C, B `cf
R ∆

and we apply a contraction rule on the two useful proofs to get proofs of
what we needed.
We have the same things for all the other connectors, but ∃. Here, we do the
following : the premise is Γ, P [c/x], A2, ..., An `cf

R ∆. Applying the inductive

hypothesis, we get a proof π of Γ, P [c/x], P [d/x] `cf
R ∆, where d is fresh. In

order to apply the contraction rule, we replace in π th constant d by c.
– We can’t have other rules on A1, ..., An, because of lemma 1.

2

7.2 Proof of lemma 5

By induction over the proof height, considering the last rule applied, and lemma
4 or definition 7 if this last rule is applied on Γ of ∆. We check that we have
Γ = {P,¬P ∈ ∆}, because Γ is complete, and if P ∈ Γ , ¬¬P ∈ Γ , by lemma
2 and 3, and we note that hypothesis that height is less or equal is essential,
because this is our induction hypothesis.

If the first rule is a rule on Γ1, ∆1, there’s nothing to do and we get the proof
we wanted.

If the fisrt rule is an axiom, then it applies at least to one proposition of
Γ1, ∆1. Else we would have P ∈ Γ and P =R Q ∈ ∆. By definition of ∆,
¬P ∈ Γ , so we can prove Γ `cf

R (inconsistency of Γ).

Now, we consider the case of a first rule on Γ or on ∆, that doesn’t touch any
of the propositions in Γ1, ∆1. This can’t be an axiom, by the upper argument.
Then :

– if it’s a contraction or a weakening, we apply the induction hypothesis on the
premise and we get what we wanted, because we continue to have a subset
of Γ (or ∆), so the premise is of the shape Γ, Γ1 `cf

R ∆1, ∆.
– If it is a ∨-left on a proposition of Γ , then we get proofs of the sequent

Γ, A, Γ1 `cf
R ∆1, ∆ and of Γ, B, Γ1 `cf

R ∆1, ∆. By lemma 4 we get that either
A ∈ Γ , either B ∈ Γ . Hence one of these two proofs is in fact a proof of
Γ, Γ1 `cf

R ∆1, ∆, and we can apply the induction hypothesis to this proof
and get what we wanted.

– If it is a ∨-right on a proposition, we can on the same way apply the induction
hypothesis to the sequent Γ, Γ1 `cf

R ∆1, A, B, ∆, because A, B ∈ ∆ : since A∨

B ∈ ∆ we have ¬(A ∨ B) ∈ Γ , and so, Γ,¬(A ∨ B) `6 cf
R . Hence Γ `6 cf

R A∨B,

and by lemma 4 we get that Γ `6 cf
R A and Γ `6 cf

R B. Applying Kleene’s lemma

2 we get the conclusion that Γ,¬A `6 cf
R and Γ,¬B `6 cf

R , hence by definition
5 that ¬A,¬B ∈ Γ , and eventually A, B ∈ ∆ by definition of ∆.

– The other cases are treated exactly in the same way, except from the ∃-left
and ∀-right, that don’t use lemma 4, but that use the definition 7 of Henkin
witnesses instead.

It’s now easy to check that the number of rules on Γ1, ∆1 is less or equal, that
the height is less or equal and that the first rule is on a proposition of Γ1, ∆1.
As said before, the trick of the lemma is that when we write Γ , we mean only a
subset Γ . Of course, we strongly used the three properties that Γ is complete,
consistent and admits Henkin witnesses. 2

7.3 Proof of corollary 1

We apply lemma 5 and get a proof of Γ, Γ1 `cf
R ∆1, ∆ (Remember that we have

finite subsets of Γ and ∆). We distinguish cases on the first rule applied (that
concerns, in any cases, at least one proposition of Γ1, ∆1).

– It’s an axiom on some common proposition of Γ and ∆1. That’s what we
wanted : the subset of ∆ plays no role, so take it empty.

– It’s an axiom on the proposition P of Γ1 and ∆. Since P ∈ ∆, we have that
¬P ∈ Γ by definition of ∆. Hence, we can have a proof of Γ, Γ1 `cf

R ∆1 with
a ¬-left rule on ¬P and an axiom. That’s what we wanted.

– It’s an axiom on a common proposition of Γ1, ∆1. Then we have a proof of
Γ1 `cf

R ∆1

– Else, we have a rule r on one proposition of Γ1, ∆1, and a non-empty proof π
over this rule. The subsets of Γ, ∆ are left unchanged when passing through
this rule. We can hence insert ¬-right rules at the bottom of π and apply the
same rule r and we get a proof of Γ,¬∆, Γ1 `cf

R ∆1. We now remember the

definition of ∆ and check that ¬∆ ⊂ Γ . So, we have a proof of Γ, Γ1 `cf
R ∆1

with a first rule on Γ1, ∆1.

In all these cases, we check that we didn’t changed the number of rules on
Γ1, ∆1 (we only moved them within the proof), so that the announced property
is true. But we could have increased proof height (we don’t care). 2

7.4 Proof of lemma 9

By induction over the structure of p. We distinguish cases if P is a proposition
or if p is a term. Let’s begin with the proposition case.

– if P = ε(p) →R Q = ε(q) then p →R q and by induction hypothesis,
|p|σ = |q|σ , then by definition of |.|σ on propositions, |P |σ = |Q|σ.

– if P = A ∨ B then, either A →R A′, either B →R B′ (→R is a one-
step reduct). By induction hypothesis |A|σ = |A′|σ in the first case, and
|B|σ = |B′|σ in the second case. Thus by definition of |.|σ on propositions,
|P |σ = |Q|σ.

– if P = ∀AxP ′ then P ′ →R P ′′, and |P ′|σ:(c/x) = |P ′′|σ:(c/x) for all V-complex
c ∈ DA by induction hypothesis. Then |P |σ = |Q|σ.

– we apply the same methods for the other connectors.

Now, we have the base cases.

– if P = ε(α(
.
¬, p)) →R ¬ε(p). We set Q = ε(p). Then, let |p|σ = 〈β(p), w〉,

and |α(
.
¬, p)|σ = |

.
¬ |2σ |p|σ = 〈β(

.
¬ p), w〉, by definition. Thus, |P |σ = |Q|σ ,

that is what we wanted.
– if P = ε(α(α(

.
∨, a), b)) →R ε(a) ∨ ε(b) then |ε(a) ∨ ε(b)|σ = 1 iff |a|2σ = 1 or

|b|2σ = 1. Let’s now look at |α(α(
.
∨, a), b)|2σ . We have :

|α(α(
.
∨, a), b)|2σ = (|α(

.
∨, a)|2σ |b|σ)2

= ((|
.
∨ |2σ |a|σ)2|b|σ)2

And this is equal to 1 iff, by definition of |
.
∨ |2σ , |a|2σ = 1 or |b|2σ = 1.

– if P = ε(α(
.

∀A, pA→o,)) →R ∀Axε(α(p, x)). First notice that x should not
be free in p.
Then |∀xε(α(p, x))|σ = 1 iff for all V-complex c ∈ DA, we have |ε(α(p, x))|σ:(c/x) =
1, that is to say |α(p, x)|2σ:(c/x) = (|p|2σ:(c/x)|x|σ:(c/x))

2 = 1. But |x|σ:(c/x) = c

hence, the condition for |∀xε(α(p, x))|σ to be equal to 1 becomes that for
each c ∈ DA, we have (|p|2σ:(c/x)c)

2 = 1.

Since x is not free in p, this is easy to check that |p|σ:(c/x) = |p|σ .
The condition transforms into : |∀xε(α(p, x))|σ = 1 iff (|p|2σc)2 = 1 for any

c ∈ DA. This is the definition of (|
.

∀ |2σ |p|σ)2 = 1.

But, by our former remark, we have |α(
.

∀, p)|σ = |
.

∀ |2σ|p|σ . So the proof is

done : |∀xε(α(p, x))|σ = 1 iff (|
.

∀ |2σ |p|
2
σ)2 = |α(

.

∀, p)|2σ = 1
– The other connectors are treated in a similar way.

Now suppose p is a term of type A. We could apply to it only two kind
of rewrite rules : those on S terms, and those on K terms. Thus we have the
following cases :

– p is α(t, u) with t →R t′, u →R u′ (either t = t′ either u = u′). By induction
hypothesis (or by identity), we have |t|σ = |t′|σ and |u|σ = |u′|σ. This is a
property of the application α that we have |α(t, u)|σ = |t|2σ|u|σ = |t′|2σ |u

′|σ =
|α(t′, u′)|σ .

– α(α(KT,U , x), y) →R x. By definition of |K|σ we have :

|α(α(K, x), y)|σ = (|K|2σ|x|σ)2|y|σ

= |x|σ

– α(α(α(S, x), y), z) →R α(α(x, z), α(y, z)). We have :

|α(α(α(S, x), y), z)|σ = ((|S|2σ |x|σ)2|y|σ)2|z|σ

2

