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Double-Negation Translation: Five Ws
The theory:

I automatic theorem proving: classical logic
I other logics existing: need for translations
I in particular: proof-assistants
I related to the grounds:

F cut-elimination for sequent calculus
F extensions to Deduction Modulo

The practice:
I a shallow encoding of classical into intuitionistic logic
I Zenon modulo’s backend for Dedukti

I existing translations: Kolmogorov’s (1925), Gentzen-Gödel’s (1933),
Kuroda’s (1951), Krivine’s (1990), · · ·

O. Hermant (Mines) Double Negations June 2, 2014 2 / 37



Double-Negation Translation: Five Ws

Objective, minimization:
I turns more formulæ into themselves;
I shifts a classical proof into an intuitionistic proof of the same formula.

Today:
I first-order (classical) logic
I the principle of excluded-middle
I intuitionistic logic
I double-negation translations
I minimization
I if you’re still alive:

F extension to Deduction modulo
F semantic Double-Negation translations
F cut elimination
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Theorem Proving
What do we prove ?

[Definition] Formula in Propositional Logic
I atomic formula: P,Q , · · ·
I special constants: ⊥,>
I assume A ,B are formulæ: A ∧ B ,A ∨ B ,A ⇒ B ,¬A

Example: P ⇒ Q ,P ∧ Q ,Q ∨ ¬Q ,⊥ ⇒ (¬⊥), · · ·

I new category: terms (denoted a, b , c, t , u) and variables (x, y).
Example: f(x), g(f(c), g(a, c)), · · ·

I Example: (∀xP(x))⇒ P(f(a)), ∃y(D(y)⇒ ∀xD(x))
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Theorem Proving
What do we prove ? – Part 2

I a theorem/specification is usually formulated as:
assume A, B and C. Then D follows.

I examples:
F A ` A is a (hopefully provable) sequent
F P(a) ` ∀xP(x) is a (hopefully unprovable) sequent
F A ,B ` A ∧ B, A `, A ` ⊥

I classical logic needs multiconclusion sequent

[Definition] Classical Sequent
A classical sequent is a pair of sets of formulæ, denoted Γ ` ∆

F the sequent A ,B ` C ,D must be understood as: Assume A and B.
Then C or D
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Theorem Proving
How do we prove ?

I we have the formulæ and the statements (sequents), let’s prove them
I many proof systems (even for classical FOL)
I today: sequent calculus (Gentzen (1933))

Endless process ?

I First example of proof:
ax

A ` A ⇒R
` A ⇒ A
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Endless process ?

The real axiom rule The real⇒R rule

ax
Γ,A ` A ,∆

Γ,A ` B ,∆
⇒R

Γ ` A ⇒ B ,∆
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The Classical Sequent Calculus (LK)
ax

Γ,A ` A ,∆

Γ,A ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A ,∆ Γ ` B ,∆
∧R

Γ ` A ∧ B ,∆

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆

Γ ` A ,B ,∆
∨R

Γ ` A ∨ B ,∆

Γ ` A ,∆ Γ,B ` ∆
⇒L

Γ,A ⇒ B ` ∆

Γ,A ` B ,∆
⇒R

Γ ` A ⇒ B ,∆

Γ ` A ,∆
¬L

Γ,¬A ` ∆

Γ,A ` ∆
¬R

Γ ` ¬A ,∆

Γ,A [c/x] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A [t/x],∆
∃R

Γ ` ∃xA ,∆

Γ,A [t/x] ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A [c/x],∆
∀R

Γ ` ∀xA ,∆

O. Hermant (Mines) Double Negations June 2, 2014 7 / 37



Basic Examples

I commutativity of the conjunction:

A ∧ B ` B ∧ A

I an alternative proof:
I this is an example of the liberty allowed by Sequent Calculus
I excluded-middle:

ax
A ` A ¬R
` A ,¬A

∨R
` A ∨ ¬A
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More interesting examples

I uniform continuity implies continuity:
ax

P(x, y) ` P(x, y)
∃R (with y)

P(x, y) ` ∃yP(x, y)
∀L (with x)

∀xP(x, y) ` ∃yP(x, y)
∀R (x fresh)

∀xP(x, y) ` ∀x∃yP(x, y)
∃L (y fresh)

∃y∀xP(x, y) ` ∀x∃yP(x, y)

I the converse is fortunately not provable:

stuck
∃yP(x, y) ` ∀xP(x, y)

∃R (with y)
∃yP(x, y) ` ∃y∀xP(x, y)

∀L (with x)
∀x∃yP(x, y) ` ∃y∀xP(x, y)
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The Excluded Middle
[Theorem] Drinker’s Principle
In every bar, there is a person that, if s/he drinks, then everybody drinks.

I paradoxical ? let’s prove it:
ax

D(t0),D(x) ` D(x),∀xD(x)
⇒R

D(t0) ` D(x),D(x)⇒∀xD(x)
∃R (with x !)

D(t0) ` D(x),∃y(D(y)⇒ ∀xD(x))
∀R (x fresh)

D(t0) ` ∀xD(x),∃y(D(y)⇒ ∀xD(x))
⇒R

` D(t0)⇒∀xD(x),∃y(D(y)⇒ ∀xD(x))
∃R

` ∃y(D(y)⇒ ∀xD(x)),∃y(D(y)⇒ ∀xD(x))
structural rule

` ∃y(D(y)⇒ ∀xD(x))

I basically: either someone does not drink or everybody drinks.
I not informative:

F no constructive witness (the “best man”)
F “Fermat’s theorem is true” or not “Fermat’s theorem is true”

I PEM (A ∨ ¬A for free) rejected by Brouwer, Heyting, Kolmogorov
(and all the constructivists).
F bad also for the “proof-as-program” correpondence (Curry-Howard

correspondence) until very recent advances (control operators)
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The Classical Sequent Calculus (LK)
ax

Γ,A ` A ,∆

Γ,A ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A ,∆ Γ ` B ,∆
∧R

Γ ` A ∧ B ,∆

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆

Γ ` A ,B ,∆
∨R

Γ ` A ∨ B ,∆

Γ ` A ,∆ Γ,B ` ∆
⇒L

Γ,A ⇒ B ` ∆

Γ,A ` B ,∆
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Γ ` A ⇒ B ,∆

Γ ` A ,∆
¬L

Γ,¬A ` ∆

Γ,A ` ∆
¬R

Γ ` ¬A ,∆

Γ,A [c/x] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A [t/x],∆
∃R

Γ ` ∃xA ,∆

Γ,A [t/x] ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A [c/x],∆
∀R

Γ ` ∀xA ,∆
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The Intuitionistic Sequent Calculus (LJ)
ax

Γ,A ` A

Γ,A ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A Γ ` B
∧R

Γ ` A ∧ B

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆
Γ ` A

∨R1
Γ ` A ∨ B

Γ ` B
∨R2

Γ ` A ∨ B

Γ ` A Γ,B ` ∆
⇒L

Γ,A ⇒ B ` ∆

Γ,A ` B
⇒R

Γ ` A ⇒ B

Γ ` A
¬L

Γ,¬A ` ∆

Γ,A `
¬R

Γ ` ¬A

Γ,A [c/x] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A [t/x]
∃R

Γ ` ∃xA

Γ,A [t/x] ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A [c/x]
∀R

Γ ` ∀xA

O. Hermant (Mines) Double Negations June 2, 2014 12 / 37



Example of Proof

I commutativity of the disjunction. Attempt #1:

A ∨ B ` B ∨ A

I compare with proofs in classical logic:
ax

B ` B ,A
∨R

B ` B ∨ A

ax
A ` B ,A

∨R
A ` B ∨ A

∨L
A ∨ B ` B ∨ A

ax
A ` B ,A

ax
B ` B ,A

∨L
A ∨ B ` B ,A

∨R
A ∨ B ` B ∨ A

I in particular, no intuitionistic proof of ` A ∨ ¬A : does it begins with
∨R1, or with ∨R2 ?
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Weakening the statements
The excluded-middle (A ∨ ¬A):

I is not universal: the world is not Manichean ! (“with us, or against us”)

I Equivalent to double-negation principle: ¬¬A ⇒ A .

Double-Negation Principle
¬¬A (“A is not inconsistent”) is equivalent to A

F Still controversial: “If you are not innocent, then you are guilty”
F Exercises: Show, in classical logic, that ` A ⇒ (¬¬A) and ` (¬¬A)⇒ A .

Harder: show ` A ∨ ¬A in intuitionistic logic + DN principle.

I from an intuitionistic point of view, ¬¬B is weaker than B:
ax

A ` A
∨R1

A ` A ∨ ¬A ¬L
¬(A ∨ ¬A),A `

¬R
¬(A ∨ ¬A) ` ¬A

∨R2
¬(A ∨ ¬A) ` A ∨ ¬A

¬L
¬(A ∨ ¬A),¬(A ∨ ¬A) `

structural rule
¬(A ∨ ¬A) `

¬R
` ¬¬(A ∨ ¬A)

The principle of excluded-middle is not inconsistent
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Double-Negation Translations
This drives us to try to systematically “weaken” classical formulæ to turn
them into intuitionistically provable formulæ: Kolmogorov’s Translation

PKo = ¬¬P (atoms)
(B ∧ C)Ko = ¬¬(BKo ∧ CKo)
(B ∨ C)Ko = ¬¬(BKo ∨ CKo)

(B ⇒ C)Ko = ¬¬(BKo ⇒ CKo)
(∀xA)Ko = ¬¬(∀xAKo)
(∃xA)Ko = ¬¬(∃xAKo)

Theorem
Γ ` ∆ is provable in LK iff ΓKo , y∆Ko ` is provable in LJ.

Antinegation
y is an operator, such that:

I y¬A = A ;
I yB = ¬B otherwise.
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How does it work ?
Let us turn a (classical) proof of into a proof of its translation:

ax

A ` A

⇒R

` A ⇒ A

←→

←→

ax
¬A ` ¬A

¬L
¬¬A , ¬A `

¬R
¬¬A ` ¬¬A ⇒R

` (¬¬A)⇒ (¬¬A)
¬L

¬((¬¬A)⇒ (¬¬A)) `

Negation is bouncing:
I systematically: go from left to right, apply the same rule, and go from

right to left

I many double negations are superflous: in the previous case, almost
each of them (not hard to see that ` A ⇒ A has an intuitionistic proof)

I Congratulations ! This is the topic of this talk
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I systematically: go from left to right, apply the same rule, and go from

right to left
I many double negations are superflous: in the previous case, almost

each of them (not hard to see that ` A ⇒ A has an intuitionistic proof)
I Congratulations ! This is the topic of this talk

The Problem
Have the least possible ¬¬ in the translated formula.

I what do we gain ? We preserve the strength of theorems.
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Remarks on LK and LJ

I left-rules seem very similar in both cases
I so, lhs formulæ can be translated by themselves
I this accounts for polarizing the translations

Positive and Negative occurrences
I An occurrence of A in B is positive if:

F B = A
F B = C ? D [? = ∧,∨] and the occurrence of A is in C or in D and

positive
F B = C ⇒ D and the occurrence of A is in C (resp. in D) and negative

(resp. positive)
F B = Qx C [Q = ∀,∃] and the occurrence of A is in C and is positive

I Dually for negative occurrences.
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The Classical Sequent Calculus (LK)
ax

Γ,A ` A ,∆

Γ,A ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A ,∆ Γ ` B ,∆
∧R

Γ ` A ∧ B ,∆

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆

Γ ` A ,B ,∆
∨R

Γ ` A ∨ B ,∆

Γ ` A ,∆ Γ,B ` ∆
⇒L

Γ,A ⇒ B ` ∆

Γ,A ` B ,∆
⇒R

Γ ` A ⇒ B ,∆

Γ ` A ,∆
¬L

Γ,¬A ` ∆

Γ,A ` ∆
¬R

Γ ` ¬A ,∆

Γ,A [c/x] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A [t/x],∆
∃R

Γ ` ∃xA ,∆

Γ,A [t/x] ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A [c/x],∆
∀R

Γ ` ∀xA ,∆

O. Hermant (Mines) Double Negations June 2, 2014 18 / 37



The Intuitionistic Sequent Calculus (LJ)
ax

Γ,A ` A

Γ,A ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A Γ ` B
∧R

Γ ` A ∧ B

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆
Γ ` A

∨R1
Γ ` A ∨ B

Γ ` B
∨R2

Γ ` A ∨ B

Γ ` A Γ,B ` ∆
⇒L

Γ,A ⇒ B ` ∆

Γ,A ` B
⇒R

Γ ` A ⇒ B

Γ ` A
¬L

Γ,¬A ` ∆

Γ,A `
¬R

Γ ` ¬A

Γ,A [c/x] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A [t/x]
∃R

Γ ` ∃xA

Γ,A [t/x] ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A [c/x]
∀R

Γ ` ∀xA
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Light Kolmogorov’s Translation
Moving negation from connectives to formulæ [DowekWerner]:

BK = B (atoms)
(B ∧ C)K = (¬¬BK ∧ ¬¬CK )
(B ∨ C)K = (¬¬BK ∨ ¬¬CK )

(B ⇒ C)K = (¬¬BK ⇒ ¬¬CK )
(∀xA)K = ∀x¬¬AK

(∃xA)K = ∃x¬¬AK

Theorem
Γ ` ∆ is provable in LK iff ΓK ,¬∆K ` is provable in LJ.

Correspondence

AKo = ¬¬AK
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Polarizing Light Kolmogorov’s translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS RHS
BK = B BK = B

(B ∧ C)K = (¬¬BK ∧ ¬¬CK ) (B ∧ C)K = (¬¬BK ∧ ¬¬CK )
(B ∨ C)K = (¬¬BK ∨ ¬¬CK ) (B ∨ C)K = (¬¬BK ∨ ¬¬CK )

(B ⇒ C)K = (¬¬BK ⇒ ¬¬CK ) (B ⇒ C)K = (¬¬BK ⇒ ¬¬CK )
(∀xA)K = ∀x¬¬AK (∀xA)K = ∀x¬¬AK

(∃xA)K = ∃x¬¬AK (∃xA)K = ∃x¬¬AK

Example of translation

((A ∨ B)⇒ C)K is ¬¬(¬¬A ∨ ¬¬B)⇒ ¬¬C
((A ∨ B)⇒ C)K is ¬¬(¬¬A ∨ ¬¬B)⇒ ¬¬C
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Polarizing Light Kolmogorov’s Translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS RHS
BK+ = B BK− = B

(B ∧ C)K+ = ( BK+ ∧ CK+) (B ∧ C)K− = (¬¬BK− ∧ ¬¬CK−)
(B ∨ C)K+ = ( BK+ ∨ CK+) (B ∨ C)K− = (¬¬BK− ∨ ¬¬CK−)

(B ⇒ C)K+ = (¬¬BK− ⇒ CK+) (B ⇒ C)K− = ( BK+ ⇒ ¬¬CK−)
(∀xA)K+ = ∀xAK+ (∀xA)K− = ∀x¬¬AK−

(∃xA)K+ = ∃xAK+ (∃xA)K− = ∃x¬¬AK−

Example of translation

((A ∨ B)⇒ C)K+ is ¬¬(¬¬A ∨ ¬¬B)⇒ C
((A ∨ B)⇒ C)K− is (A ∨ B)⇒ ¬¬C
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Results on Polarized Kolmogorov’s Translation
Theorem
If Γ ` ∆ is provable in LK, then ΓK+,¬∆K− ` is provable in LJ.

Proof: by induction. Negation is still bouncing. Example:

π1

Γ ` A ,∆
π2

Γ ` B ,∆
∧R

Γ ` A ∧ B ,∆

is turned into:

π′1

ΓK+,¬AK−,¬∆K− `

π′2

ΓK+,¬BK−,¬∆K− `

∧R

ΓK+,¬(¬¬AK− ∧ ¬¬BK−),¬∆K− `
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Results on Polarized Kolmogorov’s Translation

Theorem
If Γ ` ∆ is provable in LK, then ΓK+,¬∆K− ` is provable in LJ.

Proof: by induction. Negation is bouncing. Example:

π1

Γ ` A ,∆
π2

Γ ` B ,∆
∧R becomes

Γ ` A ∧ B ,∆

π′1

ΓK+,¬AK−,¬∆K− `
¬R

ΓK+,¬∆K− ` ¬¬AK−

π′2

ΓK+,¬BK−,¬∆K− `
¬R

ΓK+,¬∆K− ` ¬¬BK−
∧R

ΓK+,¬∆K− ` ¬¬AK− ∧ ¬¬BK−
¬L

ΓK+,¬(¬¬AK− ∧ ¬¬BK−),¬∆K− `

Theorem
If ΓK+,¬∆K− ` is provable in LJ, then Γ ` ∆ is provable in LK.

Proof: ad-hoc generalization.

O. Hermant (Mines) Double Negations June 2, 2014 24 / 37



Gödel-Gentzen Translation
Disjunctions and existential quantifiers (the only problematic ones) are
replaced by their De Morgan duals:

LHS RHS
Bgg = ¬¬B Bgg = ¬¬B

(A ∧ B)gg = Agg ∧ Bgg (A ∧ B)gg = Agg ∧ Bgg

(A ∨ B)gg = ¬(¬Agg ∧ ¬Bgg) (A ∨ B)gg = ¬(¬Agg ∧ ¬Bgg)
(A ⇒ B)gg = Agg ⇒ Bgg (A ⇒ B)gg = Agg ⇒ Bgg

(∀xA)gg = ∀xAgg (∀xA)gg = ∀xAgg

(∃xA)gg = ¬∀x¬Agg (∃xA)gg = ¬∀x¬Agg

Example of translation
((A ∨ B)⇒ C)gg is (¬(¬¬¬A ∧ ¬¬¬B))⇒ ¬¬C

Theorem
Γ ` ∆ is provable in LK iff Γgg, y∆gg ` is provable in LJ.
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Polarizing Gödel-Gentzen translation
Let us apply the same idea on this translation:

LHS RHS
Bp = B Bn = ¬¬B

(B ∧ C)p = Bp ∧ Cp (B ∧ C)n = Bn ∧ Cn

(B ∨ C)p = Bp ∨ Cp (B ∨ C)n = ¬(¬Bn ∧ ¬Cn)
(B ⇒ C)p = Bn ⇒ Cp (B ⇒ C)n = Bp ⇒ Cn

(∀xB)p = ∀xBp (∀xB)n = ∀xBn

(∃xB)p = ∃xBp (∃xB)n = ¬∀x¬Bn

Example of translation
((A ∨ B)⇒ C)p is (¬(¬¬¬A ∧ ¬¬¬B))⇒ C
((A ∨ B)⇒ C)n is ((A ∨ B)⇒ ¬¬C

Theorem ?
Γ ` ∆ is provable in LK iff Γgg, y∆gg ` is provable in LJ.
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A Focus on LK→ LJ

I less negations imposes more discipline. Example:

π1

Γ ` A ,∆
π2

Γ ` B ,∆
∧R becomes

Γ ` A ∧ B ,∆

π′1
Γp , yAn, y∆n `

?? . . . . . . . . . . . . . . . . . .
Γp , y∆n ` An

π′2
Γp , yBn, y∆n `. . . . . . . . . . . . . . . . . . ??
Γp , y∆n ` Bn

∧R
Γp , y∆n ` An ∧ Bn

¬L
Γp ,¬(An ∧ Bn), y∆n `

I when An introduces negations (∃,∨,¬ and atomic cases) ?? can be
¬R due to the behavior of yAn

I otherwise An remains of the rhs in the LJ proof.

I the next rule in π1 and π2 must be on A (resp. B).
I the liberty of sequent calculus is a sin! How to constrain it ?
I use Kleene’s inversion lemma
I or ... this is exactly what focusing is about !
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I the liberty of sequent calculus is a sin! How to constrain it ?
I use Kleene’s inversion lemma
I or ... this is exactly what focusing is about !
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A Focus on LK→ LJ
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π1
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A Focused Classical Sequent Calculus

Sequent with focus
A focused sequent Γ ` A ; ∆ has three parts:

I Γ and ∆

I A , the (possibly empty) stoup formula

Γ ` .︸︷︷︸
stoup

; ∆

I when the stoup is not empty, the next rule must apply on its formula,
I under some conditions, it is possible to move/remove a formula

in/from the stoup.
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A Focused Sequent Calculus
ax

Γ,A ` . ; A ,∆

Γ,A ,B ` . ; ∆
∧L

Γ,A ∧ B ` . ; ∆

Γ ` A ; ∆ Γ ` B ; ∆
∧R

Γ ` A ∧ B ; ∆

Γ,A ` . ; ∆ Γ,B ` . ; ∆
∨L

Γ,A ∨ B ` . ; ∆

Γ ` . ; A ,B ,∆
∨R

Γ ` . ; A ∨ B ,∆

Γ ` A ; ∆ Γ,B ` . ; ∆
⇒L

Γ,A ⇒ B ` . ; ∆

Γ,A ` B ; ∆
⇒R

Γ ` A ⇒ B ; ∆

Γ,A [c/x] ` . ; ∆
∃L

Γ,∃xA ` . ; ∆

Γ ` . ; A [t/x],∆
∃R

Γ ` . ; ∃xA ,∆

Γ,A [t/x] ` . ; ∆
∀L

Γ,∀xA ` . ; ∆

Γ ` A [c/x] ; ∆
∀R

Γ ` ∀xA ; ∆

Γ ` A ; ∆
focus

Γ ` . ; A ,∆
Γ ` . ; A ,∆

release
Γ ` A ; ∆
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A Focused Sequent Calculus

Γ ` A ; ∆
focus

Γ ` . ; A ,∆
Γ ` . ; A ,∆

release
Γ ` A ; ∆

Characteristics:
I in release, A is either atomic or of the form ∃xB ,B ∨ C or ¬B;
I in focus, the converse holds: A must not be atomic, nor of the form
∃xB ,B ∨ C nor ¬B.

I the synchronous (outside the stoup) right-rules are ∃R , ¬R , ∨R and
(atomic) axiom: the exact places where {.}n introduces negation

Theorem
If Γ ` ∆ is provable in LK then Γ ` .; ∆ is provable.

Proof: use Kleene’s inversion lemma (holds for all connectives/quantifiers,
except ∃R and ∀L ).
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Translating Focused Proofs in LJ

Γ ` A ; ∆
focus

Γ ` . ; A ,∆
Γ ` . ; A ,∆

release
Γ ` A ; ∆

Theorem
If Γ ` A ; ∆ in focused LK, then Γp , y∆n ` An in LJ

I release is translated by the ¬R rule
I focus is translated by the ¬L rule

I y∆n removes the trailing negation on ∃n (¬∀¬), ∨n (¬ ∧ ¬), ¬n (¬)
and atoms (¬¬)

I what a surprise: focus is forbidden on them, so rule on the lhs:
LK rule ∃R ¬R ∨R ax.
LJ rule ∀L nop ∧L ¬L + ax.
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Going further: Kuroda’s translation
Originating from Glivenko’s remark for propositional logic:

Theorem [Glivenko]
if ` A in LK, then ` ¬¬A in LJ.

Kuroda’s ¬¬-translation:

BKu = B (atoms)
(B ∧ C)Ku = BKu ∧ CKu

(B ∨ C)Ku = BKu ∨ CKu

(B ⇒ C)Ku = BKu ⇒ CKu

(∀xA)Ku = ∀x¬¬AKu

(∃xA)Ku = ∃xAKu

Theorem [Kuroda]

Γ ` ∆ in LK iff ΓKu,¬∆Ku ` in LJ.

I restarts double-negation everytime we pass a universal quantifier.
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Combining Kuroda’s and Gentzen-Gödel’s translations

I work of Frédéric Gilbert (2013), who noticed:
1 Kuroda’s translation of ∀x∀yA

∀x¬¬∀y¬¬A can be simplified: ∀x∀y¬¬A

2 ¬¬A itself can be treated à la Gentzen-Gödel
3 and of course with polarization

Reminder:

Gödel-Gentzen Kuroda
ϕ(P) = ¬¬P ψ(P) = P

ϕ(A ∧ B) = ϕ(A) ∧ ϕ(B) ψ(A ∧ B) = ψ(A) ∧ ψ(B)
ϕ(A ∨ B) = ¬¬(ϕ(A) ∨ ϕ(B)) ψ(A ∨ B) = ψ(A) ∨ ψ(B)
ϕ(A ⇒ B) = ϕ(A)⇒ ϕ(B) ψ(A ⇒ B) = ψ(A)⇒ ψ(B)
ϕ(∃xA) = ¬¬∃xϕ(A) ψ(∃xA) = ∃xψ(A)
ϕ(∀xA) = ∀xϕ(A) ψ(∀xA) = ∀x¬¬ψ(A)
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Combining Kuroda’s and Gentzen-Gödel’s translations

I How does it work ?

GG Kuroda
ϕ(P) = ¬¬P ψ(P) = P

ϕ(A ∧ B) = ϕ(A) ∧ ϕ(B) ψ(A ∧ B) = ψ(A) ∧ ψ(B)
ϕ(A ∨ B) = ¬¬(ϕ(A) ∨ ϕ(B)) ψ(A ∨ B) = ψ(A) ∨ ψ(B)
ϕ(A ⇒ B) = ϕ(A)⇒ ϕ(B) ψ(A ⇒ B) = ψ(A)⇒ ψ(B)
ϕ(∃xA) = ¬¬∃xϕ(A) ψ(∃xA) = ∃xψ(A)
ϕ(∀xA) = ∀xϕ(A) ψ(∀xA) = ∀x¬¬ψ(A)
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Combining Kuroda’s and Gentzen-Gödel’s translations

I How does it work ?

RHS LHS Kuroda
ϕ(P) = ¬¬P χ(P) = P ψ(P) = P

ϕ(A ∧ B) = ϕ(A) ∧ ϕ(B) χ(A ∧ B) = χ(A) ∧ χ(B) ψ(A ∧ B) = ψ(A) ∧ ψ(B)
ϕ(A ∨ B) = ¬¬ψ(A) ∨ ψ(B) χ(A ∨ B) = χ(A) ∨ χ(B) ψ(A ∨ B) = ψ(A) ∨ ψ(B)
ϕ(A ⇒ B) = χ(A)⇒ ϕ(B) χ(A ⇒ B) = ψ(A)⇒ χ(B) ψ(A ⇒ B) = χ(A)⇒ ψ(B)
ϕ(∃xA) = ¬¬∃xψ(A) χ(∃xA) = ∃xχ(A) ψ(∃xA) = ∃xψ(A)
ϕ(∀xA) = ∀xϕ(A) χ(∀xA) = ∀xχ(A) ψ(∀xA) = ∀xϕ(A)

I How to prove that ? Refine focusing into phases.

Example of translation
χ((A ∨ B)⇒ C) is (A ∨ B)⇒ C
ϕ((A ∨ B)⇒ C) is (A ∨ B)⇒ ¬¬C
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ax
Γ,A ` . ; A ,∆

Γ,A ,B ` . ; ∆
∧L

Γ,A ∧ B ` . ; ∆

Γ ` A ; ∆ Γ ` B ; ∆
∧R

Γ ` A ∧ B ; ∆

Γ,A ` . ; ∆ Γ,B ` . ; ∆
∨L

Γ,A ∨ B ` . ; ∆

Γ ` . ; A ,B ,∆
∨R

Γ ` . ; A ∨ B ,∆

Γ ` A ; ∆ Γ,B ` . ; ∆
⇒L

Γ,A ⇒ B ` . ; ∆

Γ,A ` B ; ∆
⇒R

Γ ` A ⇒ B ; ∆

Γ,A [c/x] ` . ; ∆
∃L

Γ,∃xA ` . ; ∆

Γ ` . ; A [t/x],∆
∃R

Γ ` . ; ∃xA ,∆

Γ,A [t/x] ` . ; ∆
∀L

Γ,∀xA ` . ; ∆

Γ ` A [c/x] ; ∆
∀R

Γ ` ∀xA ; ∆

Γ ` A ; ∆
focus

Γ ` . ; A ,∆
Γ ` . ; A ,∆

release
Γ ` A ; ∆
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Results
Theorem [Gilbert]
if Γ0,¬Γ1 ` A ; ∆ in LK↑↓ then χ(Γ0),¬ψ(Γ1),¬ψ(∆) ` ϕ(A) in LJ.

Theorem [Gilbert]
A 7→ ϕ(A) is minimal among the ¬¬-translations.

I 58% of Zenon’s modulo proofs are secretly constructive
I polarizing the translation of rewrite rules in Deduction modulo:

F problem with cut elimination: a rule is usable in the lhs and rhs
F back to a non-polarized one
F further work: use polarized Deduction modulo

I further work: polarize Krivine’s translation

What you hopefully should remember:
I Focusing is a perfect tool to remove double-negations;
I antinegation y.
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