Double Dose of Double-Negation Translations

Olivier Hermant

CRI, MINES ParisTech

June 2, 2014

1/37

O. Hermant (Mines) Double Negations June 2, 2014

Double-Negation Translation: Five Ws

The theory:

- automatic theorem proving: classical logic
- other logics existing: need for translations
- in particular: proof-assistants
- related to the grounds:
 - cut-elimination for sequent calculus
 - extensions to Deduction Modulo

The practice:

- a shallow encoding of classical into intuitionistic logic
- Zenon modulo's backend for Dedukti

 existing translations: Kolmogorov's (1925), Gentzen-Gödel's (1933), Kuroda's (1951), Krivine's (1990), · · ·

Double-Negation Translation: Five Ws

Objective, minimization:

- turns more formulæ into themselves;
- shifts a classical proof into an intuitionistic proof of the same formula.

Today:

- first-order (classical) logic
- the principle of excluded-middle
- intuitionistic logic
- double-negation translations
- minimization
- if you're still alive:
 - * extension to Deduction modulo
 - ★ semantic Double-Negation translations
 - cut elimination

3/37

What do we prove?

[Definition] Formula in Propositional Logic

- atomic formula: P, Q, · · ·
- special constants: ⊥, ⊤
- ▶ assume A, B are formulæ: $A \land B, A \lor B, A \Rightarrow B, \neg A$

Example: $P \Rightarrow Q, P \land Q, Q \lor \neg Q, \bot \Rightarrow (\neg \bot), \cdots$

4/37

What do we prove?

[Definition] Formula in Propositional Logic

- atomic formula: P, Q, · · ·
- special constants: ⊥, ⊤
- ► assume A, B are formulæ: $A \land B, A \lor B, A \Rightarrow B, \neg A$

Example: $P \Rightarrow Q, P \land Q, Q \lor \neg Q, \bot \Rightarrow (\neg \bot), \cdots$

[Definition] Formula in First-order Logic

- atomic formula: P(t), Q(t, u), \cdots
- connectives $\land, \lor, \Rightarrow, \neg, \bot, \top$
- quantifiers \forall and \exists . Assume A is a formula and x a variable: $\forall xA$, $\exists xA$
- new category: terms (denoted a, b, c, t, u) and variables (x, y). Example: f(x), g(f(c), g(a, c)), \cdots
- ► Example: $(\forall x P(x)) \Rightarrow P(f(a)), \exists y (D(y)) \Rightarrow \forall x D(x))$

What do we prove ? - Part 2

a theorem/specification is usually formulated as: assume A, B and C. Then D follows.

What do we prove ? - Part 2

a theorem/specification is usually formulated as: assume A, B and C. Then D follows.

[Definition] Sequent

A sequent is a set of formulæ A_1, \dots, A_n (the assumptions) denoted Γ , together with a formula B (the conclusion). Notation: $\Gamma \vdash B$

5/37

O. Hermant (Mines) Double Negations June 2, 2014

What do we prove ? - Part 2

a theorem/specification is usually formulated as: assume A, B and C. Then D follows.

[Definition] Sequent

A sequent is a set of formulæ A_1, \dots, A_n (the assumptions) denoted Γ , together with a formula B (the conclusion). Notation: $\Gamma \vdash B$

- examples:
 - \star A ⊢ A is a (hopefully provable) sequent
 - \star P(a) ⊢ $\forall x P(x)$ is a (hopefully unprovable) sequent
 - \star $A, B \vdash A \land B, A \vdash, A \vdash \bot$

5/37

O. Hermant (Mines) Double Negations June 2, 2014

What do we prove? - Part 2

a theorem/specification is usually formulated as: assume A, B and C. Then D follows.

[Definition] Sequent

A sequent is a set of formulæ A_1, \dots, A_n (the assumptions) denoted Γ , together with a formula B (the conclusion). Notation: $\Gamma \vdash B$

- examples:
 - \star *A* ⊢ *A* is a (hopefully provable) sequent
 - \star P(a) ⊢ $\forall x P(x)$ is a (hopefully unprovable) sequent
 - \star $A, B \vdash A \land B, A \vdash, A \vdash \bot$
- classical logic needs multiconclusion sequent

[Definition] Classical Sequent

A classical sequent is a pair of sets of formulæ, denoted $\Gamma \vdash \Delta$

* the sequent $A, B \vdash C, D$ must be understood as: Assume A and B. Then C or D

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

	premiss/antecedent	premiss/antecedent	1	
conclusion/consequent		ı	read this way, please	

- in order for the consequent to hold · · ·
- · · · we must show that the antecedent(s) hold

Endless process?

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- ► today: sequent calculus (Gentzen (1933))

The shape of rules:

premiss/antecedent	premiss/antecedent	1	
conclusion/consequent			read this way, please

- in order for the consequent to hold · · ·
- · · · we must show that the antecedent(s) hold

Endless process?

The	axiom rule	The	⇒ _R rule
	ax	ļ ,	A + B
A			$A \Rightarrow B$

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

premiss/antecedent premiss/antecedent conclusion/consequent read this way, please

- in order for the consequent to hold · · ·
- · · · we must show that the antecedent(s) hold

Endless process?

The	axiom rule	The	⇒ _R rule	
0.4		A + B		
A	ax	A	$A \Rightarrow B$	

First example of proof: $\frac{A \vdash A}{\vdash A \Rightarrow A} \Rightarrow_R$

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

premiss/antecedent	premiss/antecedent	
conclusion/consequent		read this way, please

- in order for the consequent to hold · · ·
- · · · we must show that the antecedent(s) hold

Endless process?

The real axiom rule	The real \Rightarrow_R rule
${\Gamma, A \vdash A, \Delta}$ ax	$\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_R$

First example of proof:

$$\frac{\overline{A \vdash A} \stackrel{\text{dx}}{\Rightarrow} A}{\vdash A \Rightarrow A} \Rightarrow_F$$

The Classical Sequent Calculus (LK)

$$\overline{\Gamma, A \vdash A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \land B, \Delta} \land_{R}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, A \lor B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash B, \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \uparrow_{L} \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \uparrow_{R}$$

$$\frac{\Gamma, A \vdash C/x \mid \vdash \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \vdash A \mid x \mid A, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A \mid x \mid A, \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \mid x \mid A, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A \mid x \mid A, \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \mid x \mid A, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

$$A \wedge B \vdash B \wedge A$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_L$$

$$\frac{A,B \vdash B \qquad A,B \vdash A}{A,B \vdash B \land A} \land_{L}$$

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

commutativity of the conjunction:

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

an alternative proof:

$$\frac{A \land B \vdash A}{A \land B \vdash B \land A} \land_{R}$$

commutativity of the conjunction:

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

an alternative proof:

$$\frac{A,B \vdash A}{A \land B \vdash A} \land_{R} \land_{R}$$

$$\frac{A \land B \vdash B \land A}{A} \land_{R}$$

8/37

commutativity of the conjunction:

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

an alternative proof:

commutativity of the conjunction:

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

an alternative proof:

this is an example of the liberty allowed by Sequent Calculus

commutativity of the conjunction:

$$\frac{A,B \vdash B}{A,B \vdash B \land A} \land_{R} \land_{R}$$

$$\frac{A,B \vdash B \land A}{A \land B \vdash B \land A} \land_{L}$$

an alternative proof:

- this is an example of the liberty allowed by Sequent Calculus
- excluded-middle:

$$\frac{\overline{A \vdash A}}{\vdash A, \neg A} \neg_R \\ \overline{\vdash A \lor \neg A} \lor_R$$

More interesting examples

uniform continuity implies continuity:

$$\frac{P(x,y) \vdash P(x,y)}{P(x,y) \vdash \exists y P(x,y)} \exists_{R} \text{ (with } y)$$

$$\frac{\forall x P(x,y) \vdash \exists y P(x,y)}{\forall x P(x,y) \vdash \forall x \exists y P(x,y)} \forall_{R} \text{ (x fresh)}$$

$$\frac{\forall x P(x,y) \vdash \forall x \exists y P(x,y)}{\exists y \forall x P(x,y) \vdash \forall x \exists y P(x,y)} \exists_{L} \text{ (y fresh)}$$

the converse is fortunately not provable:

$$\frac{\frac{\text{stuck}}{\exists y P(x, y) \vdash \forall x P(x, y)}}{\exists y P(x, y) \vdash \exists y \forall x P(x, y)} \exists_{R} \text{ (with } y)} \exists_{R} \text{ (with } x)$$

$$\frac{\forall x \exists y P(x, y) \vdash \exists y \forall x P(x, y)}{\forall x \exists y P(x, y)} \forall_{L} \text{ (with } x)$$

[Theorem] Drinker's Principle

In every bar, there is a person that, if s/he drinks, then everybody drinks.

paradoxical ? let's prove it:

Tet's prove it.

$$\frac{D(t_0), D(x) \vdash D(x), \forall x D(x)}{D(t_0) \vdash D(x), D(x) \Rightarrow \forall x D(x)} \Rightarrow_R \\
\frac{D(t_0) \vdash D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{D(t_0) \vdash \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\forall_R \text{ (x fresh)}} \\
\frac{D(t_0) \vdash \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{\vdash D(t_0) \Rightarrow \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))} \Rightarrow_R \\
\frac{\vdash \exists y (D(y) \Rightarrow \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{\vdash \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\exists_R} \text{ structural rule}$$

10/37

[Theorem] Drinker's Principle

In every bar, there is a person that, if s/he drinks, then everybody drinks.

paradoxical ? let's prove it:

Tet's prove it.
$$\frac{D(t_0), D(x) \vdash D(x), \forall x D(x)}{D(t_0) \vdash D(x), D(x) \Rightarrow \forall x D(x)} \Rightarrow_R \\
\frac{D(t_0) \vdash D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{D(t_0) \vdash \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\forall_R (x \text{ fresh})} \\
\frac{D(t_0) \vdash \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{\vdash D(t_0) \Rightarrow \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\exists_R} \\
\frac{\vdash \exists y (D(y) \Rightarrow \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{\vdash \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\exists_R} \text{structural rule}$$

basically: either someone does not drink or everybody drinks.

June 2, 2014

10 / 37

O. Hermant (Mines) Double Negations

[Theorem] Drinker's Principle

In every bar, there is a person that, if s/he drinks, then everybody drinks.

paradoxical ? let's prove it:

$$\frac{D(t_0), D(x) \vdash D(x), \forall x D(x)}{D(t_0) \vdash D(x), D(x) \Rightarrow \forall x D(x)} \Rightarrow_R \\ \frac{D(t_0) \vdash D(x), D(x) \Rightarrow \forall x D(x)}{D(t_0) \vdash D(x), \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\exists_R \text{ (with } x \text{ !)}} \\ \frac{D(t_0) \vdash \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{\vdash D(t_0) \Rightarrow \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))} \Rightarrow_R \\ \frac{\exists y (D(y) \Rightarrow \forall x D(x), \exists y (D(y) \Rightarrow \forall x D(x))}{\vdash \exists y (D(y) \Rightarrow \forall x D(x))} \xrightarrow{\exists_R \text{ structural rule}}$$

- basically: either someone does not drink or everybody drinks.
- not informative:
 - no constructive witness (the "best man")
 - "Fermat's theorem is true" or not "Fermat's theorem is true"

[Theorem] Drinker's Principle

In every bar, there is a person that, if s/he drinks, then everybody drinks.

paradoxical ? let's prove it:

let's prove it:
$$\frac{D(t_0), D(x) \vdash D(x), \forall xD(x)}{D(t_0) \vdash D(x), D(x) \Rightarrow \forall xD(x)} \Rightarrow_R \\
\frac{D(t_0) \vdash D(x), \exists y(D(y) \Rightarrow \forall xD(x))}{D(t_0) \vdash \forall xD(x), \exists y(D(y) \Rightarrow \forall xD(x))} \xrightarrow{\forall_R \text{ (x fresh)}} \\
\frac{D(t_0) \vdash \forall xD(x), \exists y(D(y) \Rightarrow \forall xD(x))}{\vdash D(t_0) \Rightarrow \forall xD(x), \exists y(D(y) \Rightarrow \forall xD(x))} \Rightarrow_R \\
\vdash \exists y(D(y) \Rightarrow \forall xD(x), \exists y(D(y) \Rightarrow \forall xD(x))} \xrightarrow{\exists_R} \text{ structural rule}$$

- basically: either someone does not drink or everybody drinks.
- not informative:
 - ★ no constructive witness (the "best man")
 - ★ "Fermat's theorem is true" or not "Fermat's theorem is true"
- ▶ PEM ($A \lor \neg A$ for free) rejected by Brouwer, Heyting, Kolmogorov (and all the constructivists).
 - ★ bad also for the "proof-as-program" correpondence (Curry-Howard correspondence) until very recent advances (control operators)

The Classical Sequent Calculus (LK)

$$\overline{\Gamma, A \vdash A, \Delta}$$
 ax

$$\frac{\Gamma, A, B + \Delta}{\Gamma, A \wedge B + \Delta} \wedge_{L} \qquad \frac{\Gamma + A, \Delta}{\Gamma + A \wedge B, \Delta} \wedge_{R}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, A \vee B + \Delta} & \vee_{L} \qquad \frac{\Gamma + A, B, \Delta}{\Gamma + A \vee B, \Delta} \vee_{R}$$

$$\frac{\Gamma + A, \Delta}{\Gamma, A \vee B + \Delta} & \xrightarrow{\Gamma, B + \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A + B, \Delta}{\Gamma + A \Rightarrow B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A + B, \Delta}{\Gamma, A \Rightarrow B + \Delta} & \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A + \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, \neg A, \Delta} & \xrightarrow{\Gamma}$$

O. Hermant (Mines) Double Negations June 2, 2014 11/37

The Intuitionistic Sequent Calculus (LJ)

$$\overline{\Gamma, A \vdash A}$$
 ax

$$\frac{\Gamma, A, B + \Delta}{\Gamma, A \wedge B + \Delta} \wedge_{L} \qquad \frac{\Gamma + A}{\Gamma + A \wedge B} \wedge_{R}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, A \vee B + \Delta} \xrightarrow{\Gamma, B + \Delta} \vee_{L} \qquad \frac{\Gamma + A}{\Gamma + A \vee B} \vee_{R1} \qquad \frac{\Gamma + B}{\Gamma + A \vee B} \vee_{R2}$$

$$\frac{\Gamma + A}{\Gamma, A \wedge B + \Delta} \xrightarrow{\Gamma, B + \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A + B}{\Gamma + A \Rightarrow B} \Rightarrow_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{L} \qquad \frac{\Gamma, A + B}{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

commutativity of the disjunction. Attempt #1:

$$A \vee B \vdash B \vee A$$

commutativity of the disjunction. Attempt #1:

$$\frac{A \lor B \vdash B}{A \lor B \vdash B \lor A} \lor_{R1}$$

13 / 37

O. Hermant (Mines) Double Negations June 2, 2014

commutativity of the disjunction. Attempt #1:

$$\frac{???}{A \vdash B} \quad \frac{B \vdash B}{B \vdash B} \bigvee_{V_L} \frac{A \lor B \vdash B}{A \lor B \vdash B \lor A} \bigvee_{R1}$$

commutativity of the disjunction. Attempt #2:

$$A \lor B \vdash B \lor A$$

O. Hermant (Mines)

commutativity of the disjunction. Attempt #2:

$$\frac{A \lor B \vdash A}{A \lor B \vdash B \lor A} \lor_{R2}$$

June 2, 2014

13 / 37

O. Hermant (Mines) Double Negations

commutativity of the disjunction. Attempt #2:

$$ax \frac{???}{\frac{A \vdash A}{A \lor B \vdash A}} \bigvee_{L} \bigvee_{R2}$$

O. Hermant (Mines)

commutativity of the disjunction. Attempt #3:

$$A \lor B \vdash B \lor A$$

O. Hermant (Mines)

commutativity of the disjunction. Attempt #3:

$$\frac{A \vdash B \lor A \qquad B \vdash B \lor A}{A \lor B \vdash B \lor A} \lor_L$$

O. Hermant (Mines) Double Negations June 2, 2014 13 / 37

commutativity of the disjunction. Attempt #3:

$$\bigvee_{R2} \frac{ax}{A \vdash A} \qquad \frac{B \vdash B}{B \vdash B \lor A} \bigvee_{V_L}^{V_{R1}}$$

$$A \lor B \vdash B \lor A$$

13 / 37

O. Hermant (Mines) June 2, 2014

commutativity of the disjunction. Attempt #3:

$$\vee_{R2} \frac{ax}{A \vdash A} \qquad \frac{B \vdash B}{B \vdash B \lor A} \stackrel{\vee}{\vee_{R1}}$$

$$A \lor B \vdash B \lor A$$

compare with proofs in classical logic:

▶ in particular, no *intuitionistic* proof of $\vdash A \lor \neg A$: does it begins with \lor_{R1} , or with \lor_{R2} ?

O. Hermant (Mines)

The excluded-middle $(A \lor \neg A)$:

▶ is not universal: the world is not Manichean! ("with us, or against us")

14/37

O. Hermant (Mines) Double Negations June 2, 2014

The excluded-middle $(A \lor \neg A)$:

- ▶ is not universal: the world is not Manichean! ("with us, or against us")
- ► Equivalent to double-negation principle: $\neg \neg A \Rightarrow A$.

Double-Negation Principle

 $\neg \neg A$ ("A is not inconsistent") is equivalent to A

14/37

O. Hermant (Mines) Double Negations June 2, 2014

The excluded-middle $(A \lor \neg A)$:

- ▶ is not universal: the world is not Manichean! ("with us, or against us")
- ► Equivalent to double-negation principle: $\neg \neg A \Rightarrow A$.

Double-Negation Principle

 $\neg \neg A$ ("A is not inconsistent") is equivalent to A

- ★ Still controversial: "If you are not innocent, then you are guilty"
- **★** Exercises: Show, in classical logic, that $\vdash A \Rightarrow (\neg \neg A)$ and $\vdash (\neg \neg A) \Rightarrow A$. Harder: show $\vdash A \lor \neg A$ in intuitionistic logic + DN principle.

14/37

The excluded-middle $(A \vee \neg A)$:

- ▶ is not universal: the world is not Manichean! ("with us, or against us")
- ► Equivalent to double-negation principle: $\neg \neg A \Rightarrow A$.

Double-Negation Principle

 $\neg \neg A$ ("A is not inconsistent") is equivalent to A

- ★ Still controversial: "If you are not innocent, then you are guilty"
- **★** Exercises: Show, in classical logic, that $\vdash A \Rightarrow (\neg \neg A)$ and $\vdash (\neg \neg A) \Rightarrow A$. Harder: show $\vdash A \lor \neg A$ in intuitionistic logic + DN principle.
- from an intuitionistic point of view, $\neg \neg B$ is weaker than B:

$$\frac{A + A - ax}{A + A \vee \neg A} \vee_{R1} \\
\frac{-(A \vee \neg A), A \vdash}{\neg (A \vee \neg A) \vdash \neg A} \vee_{R2} \\
\frac{-(A \vee \neg A), \neg (A \vee \neg A) \vdash}{\neg (A \vee \neg A) \vdash} \vee_{R2} \\
\frac{-(A \vee \neg A), \neg (A \vee \neg A) \vdash}{\vdash \neg \neg (A \vee \neg A)} \vee_{R}$$
structural rule

The principle of excluded-middle is not inconsistent

Double-Negation Translations

This drives us to try to systematically "weaken" classical formulæ to turn them into intuitionistically provable formulæ: Kolmogorov's Translation

$$P^{Ko} = \neg \neg P \qquad \text{(atoms)}$$

$$(B \land C)^{Ko} = \neg \neg (B^{Ko} \land C^{Ko})$$

$$(B \lor C)^{Ko} = \neg \neg (B^{Ko} \lor C^{Ko})$$

$$(B \Rightarrow C)^{Ko} = \neg \neg (B^{Ko} \Rightarrow C^{Ko})$$

$$(\forall xA)^{Ko} = \neg \neg (\forall xA^{Ko})$$

$$(\exists xA)^{Ko} = \neg \neg (\exists xA^{Ko})$$

Theorem

 $\Gamma \vdash \Delta$ is provable in LK iff Γ^{Ko} , $\bot \Delta^{Ko} \vdash$ is provable in LJ.

Antinegation

$$\neg A = A$$
;

 $\blacksquare \ \ \, \exists B = \neg B \text{ otherwise.}$

How does it work?

Let us turn a (classical) proof of into a proof of its translation:

Negation is bouncing:

systematically: go from left to right, apply the same rule, and go from right to left

How does it work?

Let us turn a (classical) proof of into a proof of its translation:

Negation is bouncing:

- systematically: go from left to right, apply the same rule, and go from right to left
- many double negations are superflous: in the previous case, almost each of them (not hard to see that ⊢ A ⇒ A has an intuitionistic proof)

16/37

O. Hermant (Mines) Double Negations June 2, 2014

How does it work?

Let us turn a (classical) proof of into a proof of its translation:

Negation is bouncing:

- systematically: go from left to right, apply the same rule, and go from right to left
- ▶ many double negations are superflous: in the previous case, almost each of them (not hard to see that $\vdash A \Rightarrow A$ has an intuitionistic proof)
- Congratulations! This is the topic of this talk

The Problem

Have the least possible ¬¬ in the translated formula.

what do we gain? We preserve the strength of theorems.

16/37

Remarks on LK and LJ

- left-rules seem very similar in both cases
- so, lhs formulæ can be translated by themselves
- this accounts for polarizing the translations

Positive and Negative occurrences

- An occurrence of A in B is positive if:
 - $\star B = A$
 - * B = $C \star D$ [$\star = \land, \lor$] and the occurrence of A is in C or in D and positive
 - * B = $C \Rightarrow D$ and the occurrence of A is in C (resp. in D) and negative (resp. positive)
 - * B = Qx C [$Q = \forall$, \exists] and the occurrence of A is in C and is positive
- Dually for negative occurrences.

▼ロト▼倒ト▼ミト▼ミト ミークへ(*)

O. Hermant (Mines) Double Negations

17/37

The Classical Sequent Calculus (LK)

$$\overline{\Gamma, A \vdash A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \land B, \Delta} \land_{R}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, A \lor B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash B, \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \uparrow_{L} \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \uparrow_{R}$$

$$\frac{\Gamma, A \vdash C/x \mid \vdash \Delta}{\Gamma, \neg A \land \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \vdash A \mid C/x \mid, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A \mid C/x \mid, \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \mid C/x \mid, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

The Intuitionistic Sequent Calculus (LJ)

$$\overline{\Gamma, A \vdash A}$$
 ax

$$\frac{\Gamma, A, B + \Delta}{\Gamma, A \wedge B + \Delta} \wedge_{L} \qquad \frac{\Gamma + A}{\Gamma + A \wedge B} \wedge_{R}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, A \vee B + \Delta} \xrightarrow{\Gamma, B + \Delta} \vee_{L} \qquad \frac{\Gamma + A}{\Gamma + A \vee B} \vee_{R1} \qquad \frac{\Gamma + B}{\Gamma + A \vee B} \vee_{R2}$$

$$\frac{\Gamma + A}{\Gamma, A \wedge B + \Delta} \xrightarrow{\Gamma, B + \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A + B}{\Gamma + A \Rightarrow B} \Rightarrow_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{L} \qquad \frac{\Gamma, A + B}{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

Light Kolmogorov's Translation

Moving negation from connectives to formulæ [DowekWerner]:

$$B^{K} = B$$
 (atoms)

$$(B \wedge C)^{K} = (\neg \neg B^{K} \wedge \neg \neg C^{K})$$

$$(B \vee C)^{K} = (\neg \neg B^{K} \vee \neg \neg C^{K})$$

$$(B \Rightarrow C)^{K} = (\neg \neg B^{K} \Rightarrow \neg \neg C^{K})$$

$$(\forall xA)^{K} = \forall x \neg \neg A^{K}$$

$$(\exists xA)^{K} = \exists x \neg \neg A^{K}$$

Theorem

 $\Gamma \vdash \Delta$ is provable in LK iff Γ^K , $\neg \Delta^K \vdash$ is provable in LJ.

Correspondence

$$A^{Ko} = \neg \neg A^{K}$$

Polarizing Light Kolmogorov's translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS
$$B^K = B$$
 $B^K = B$ $B^K = B$

Example of translation

$$((A \lor B) \Rightarrow C)^K$$
 is $\neg\neg(\neg\neg A \lor \neg\neg B) \Rightarrow \neg\neg C$
 $((A \lor B) \Rightarrow C)^K$ is $\neg\neg(\neg\neg A \lor \neg\neg B) \Rightarrow \neg\neg C$

O. Hermant (Mines) Double Negations June 2, 2014 21 / 37

Polarizing Light Kolmogorov's Translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS
$$B^{K+} = B$$
 $B^{K-} = B$ $B^{K-} = B$ $(B \land C)^{K+} = (B^{K+} \land C^{K+})$ $(B \land C)^{K-} = (\neg B^{K-} \land \neg C^{K-})$ $(B \lor C)^{K+} = (\neg B^{K-} \lor C^{K+})$ $(B \lor C)^{K-} = (\neg B^{K-} \lor \neg C^{K-})$ $(B \Rightarrow C)^{K+} = (\neg B^{K-} \Rightarrow C^{K+})$ $(B \Rightarrow C)^{K-} = (B^{K+} \Rightarrow \neg C^{K-})$ $(\forall xA)^{K+} = \forall xA^{K+}$ $(\forall xA)^{K-} = \forall x \neg A^{K-}$ $(\exists xA)^{K-} = \exists x \neg A^{K-}$

Example of translation

$$((A \lor B) \Rightarrow C)^{K+} \text{ is } \neg \neg (\neg \neg A \lor \neg \neg B) \Rightarrow C$$
$$((A \lor B) \Rightarrow C)^{K-} \text{ is } (A \lor B) \Rightarrow \neg \neg C$$

22 / 37

O. Hermant (Mines) Double Negations June 2, 2014

Theorem

If $\Gamma \vdash \Delta$ is provable in LK, then Γ^{K+} , $\neg \Delta^{K-} \vdash$ is provable in LJ.

Proof: by induction. Negation is still bouncing. Example:

$$\begin{array}{c}
\pi_1 & \pi_2 \\
\hline
\Gamma \vdash A, \Delta & \Gamma \vdash B, \Delta \\
\Gamma \vdash A \land B, \Delta
\end{array}$$

$$\frac{\pi'_1}{\Gamma^{K+}, \neg A^{K-}, \neg \Delta^{K-}} \qquad \frac{\pi'_2}{\Gamma^{K+}, \neg B^{K-}, \neg \Delta^{K-}}$$

$$= = = = = = = = = = = = = = = = = = \land_R$$

Theorem

If $\Gamma \vdash \Delta$ is provable in LK, then Γ^{K+} , $\neg \Delta^{K-} \vdash$ is provable in LJ.

Proof: by induction. Negation is still bouncing. Example:

Theorem

If $\Gamma \vdash \Delta$ is provable in LK, then Γ^{K+} , $\neg \Delta^{K-} \vdash$ is provable in LJ.

Proof: by induction. Negation is still bouncing. Example:

$$\frac{\pi_1}{\Gamma \vdash A, \Delta} \frac{\pi_2}{\Gamma \vdash B, \Delta}$$

$$\uparrow \vdash A \land B, \Delta$$

Theorem

If $\Gamma \vdash \Delta$ is provable in LK, then Γ^{K+} , $\neg \Delta^{K-} \vdash$ is provable in LJ.

Proof: by induction. Negation is still bouncing. Example:

$$\frac{\pi_1}{\Gamma \vdash A, \Delta} \frac{\pi_2}{\Gamma \vdash B, \Delta}$$

$$\Gamma \vdash A \land B, \Delta$$

Theorem

If $\Gamma \vdash \Delta$ is provable in LK, then Γ^{K+} , $\neg \Delta^{K-} \vdash$ is provable in LJ.

Proof: by induction. Negation is bouncing. Example:

$$\frac{\pi_{1}}{\begin{array}{c} \Gamma \vdash A, \Delta \\ \Gamma \vdash A, \Delta \\ \Gamma \vdash A \land B, \Delta \end{array}} \frac{\pi_{2}}{\begin{array}{c} \Gamma \vdash B, \Delta \\ \Gamma \vdash A, \Delta \\ \Gamma \vdash A, \Delta \\ \Gamma \vdash A, \Delta \end{array}} \frac{\pi_{2}}{\begin{array}{c} \Gamma \vdash A, \Delta \\ \Gamma \vdash A$$

Theorem

If Γ^{K+} , $\neg \Delta^{K-} \vdash$ is provable in LJ, then $\Gamma \vdash \Delta$ is provable in LK.

Proof: ad-hoc generalization.

◆ロト ◆御 ト ◆ 重 ト ◆ 重 ・ 夕 Q (*)

O. Hermant (Mines) Double Negations

24 / 37

Gödel-Gentzen Translation

Disjunctions and existential quantifiers (the only problematic ones) are replaced by their De Morgan duals:

LHS RHS
$$B^{gg} = \neg \neg B \qquad B^{gg} = \neg \neg B$$

$$(A \land B)^{gg} = A^{gg} \land B^{gg} \qquad (A \land B)^{gg} = A^{gg} \land B^{gg}$$

$$(A \lor B)^{gg} = \neg (\neg A^{gg} \land \neg B^{gg}) \qquad (A \lor B)^{gg} = \neg (\neg A^{gg} \land \neg B^{gg})$$

$$(A \Rightarrow B)^{gg} = A^{gg} \Rightarrow B^{gg} \qquad (A \Rightarrow B)^{gg} = A^{gg} \Rightarrow B^{gg}$$

$$(\forall xA)^{gg} = \forall xA^{gg} \qquad (\forall xA)^{gg} = \forall xA^{gg}$$

$$(\exists xA)^{gg} = \neg \forall x \neg A^{gg}$$

Example of translation

$$((A \lor B) \Rightarrow C)^{gg}$$
 is $(\neg(\neg\neg\neg A \land \neg\neg\neg B)) \Rightarrow \neg\neg C$

Theorem

 $\Gamma \vdash \Delta$ is provable in LK iff Γ^{gg} , $\neg \Delta^{gg} \vdash$ is provable in LJ.

Polarizing Gödel-Gentzen translation

Let us apply the same idea on this translation:

LHS RHS
$$B^{p} = B \qquad B^{n} = \neg \neg B$$

$$(B \land C)^{p} = B^{p} \land C^{p} \qquad (B \land C)^{n} = B^{n} \land C^{n}$$

$$(B \lor C)^{p} = B^{p} \lor C^{p} \qquad (B \lor C)^{n} = \neg (\neg B^{n} \land \neg C^{n})$$

$$(B \Rightarrow C)^{p} = B^{n} \Rightarrow C^{p} \qquad (B \Rightarrow C)^{n} = B^{p} \Rightarrow C^{n}$$

$$(\forall xB)^{p} = \forall xB^{p} \qquad (\forall xB)^{n} = \forall xB^{n}$$

$$(\exists xB)^{p} = \exists xB^{p} \qquad (\exists xB)^{n} = \neg \forall x \neg B^{n}$$

Example of translation

$$((A \lor B) \Rightarrow C)^p \text{ is } (\neg(\neg\neg\neg A \land \neg\neg\neg B)) \Rightarrow C$$
$$((A \lor B) \Rightarrow C)^n \text{ is } ((A \lor B) \Rightarrow \neg\neg C$$

Theorem?

 $\Gamma \vdash \Delta$ is provable in LK iff Γ^{gg} , $\neg \Delta^{gg} \vdash$ is provable in LJ.

A Focus on LK → LJ

less negations imposes more discipline. Example:

$$\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta}$$

$$\uparrow \vdash A, \Delta \qquad \qquad \uparrow \vdash B, \Delta \qquad \downarrow \downarrow \vdash B, \Delta \qquad \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

- when A^n introduces negations $(\exists, \lor, \neg \text{ and atomic cases})$?? can be \neg_R due to the behavior of $\bot A^n$
- otherwise Aⁿ remains of the rhs in the LJ proof.

O. Hermant (Mines) Double Negations June 2, 2014 27 / 37

A Focus on LK → LJ

less negations imposes more discipline. Example:

$$\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} = \begin{cases}
\frac{\pi_{1}}{\Gamma^{p}, JA^{n}, J\Delta^{n} \vdash} \frac{\pi_{2}}{\Gamma^{p}, JA^{n}, J\Delta^{n} \vdash} \\
\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \land B, \Delta} \frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \end{cases}$$
becomes
$$\frac{\pi_{1}}{\Gamma^{p}, JA^{n}, J\Delta^{n} \vdash} \frac{\pi_{2}}{\Gamma^{p}, J\Delta^{n} \vdash A^{n}, J\Delta^{n} \vdash} \frac{\pi_{2}}{\Gamma^{p}, J\Delta^{n} \vdash A^{n} \land B^{n}} ??$$

- when A^n introduces negations $(\exists, \lor, \neg \text{ and atomic cases})$?? can be \neg_R due to the behavior of $\bot A^n$
- otherwise Aⁿ remains of the rhs in the LJ proof.
- the next rule in π_1 and π_2 must be on A (resp. B).

O. Hermant (Mines) Double Negations June 2, 2014 27 / 37

A Focus on LK → LJ

less negations imposes more discipline. Example:

$$\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} \qquad ?? \frac{\pi'_{1}}{\Gamma^{p}, A^{n}, A^{n} \vdash} \frac{\pi'_{2}}{\Gamma^{p}, B^{n}, A^{n} \vdash} ??$$

$$\uparrow_{P} \vdash A \land B, \Delta \qquad \downarrow_{P} \qquad \downarrow_{P$$

- when A^n introduces negations $(\exists, \lor, \neg \text{ and atomic cases})$?? can be \neg_R due to the behavior of $\bot A^n$
- otherwise Aⁿ remains of the rhs in the LJ proof.
- the next rule in π_1 and π_2 must be on A (resp. B).
- the liberty of sequent calculus is a sin! How to constrain it?
- use Kleene's inversion lemma
- or ... this is exactly what focusing is about !

◆□▶◆□▶◆□▶◆□▶ ■ 釣魚@

A Focused Classical Sequent Calculus

Sequent with focus

A focused sequent $\Gamma \vdash A$; Δ has three parts:

- Γ and Δ
- A, the (possibly empty) stoup formula

$$\Gamma \vdash \underbrace{\cdot \cdot}_{\text{stoup}}; \Delta$$

- when the stoup is not empty, the next rule must apply on its formula,
- under some conditions, it is possible to move/remove a formula in/from the stoup.

A Focused Sequent Calculus

$$\overline{\Gamma, A \vdash .; A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash .; \Delta}{\Gamma, A \land B \vdash .; \Delta} \land_{L} \qquad \frac{\Gamma \vdash A; \Delta}{\Gamma \vdash A \land B; \Delta} \land_{R}$$

$$\frac{\Gamma, A \vdash .; \Delta}{\Gamma, A \lor B \vdash .; \Delta} \lor_{L} \qquad \frac{\Gamma \vdash .; A, B, \Delta}{\Gamma \vdash .; A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, A \Rightarrow B \vdash .; \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B; \Delta}{\Gamma \vdash A \Rightarrow B; \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A[c/x] \vdash .; \Delta}{\Gamma, \exists xA \vdash .; \Delta} \exists_{L} \qquad \frac{\Gamma, A[t/x], \Delta}{\Gamma \vdash .; \exists xA, \Delta} \exists_{R}$$

$$\frac{\Gamma, A[t/x] \vdash .; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \forall_{L} \qquad \frac{\Gamma \vdash A[c/x]; \Delta}{\Gamma \vdash \forall xA; \Delta} \forall_{R}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus} \qquad \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

A Focused Sequent Calculus

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus } \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

Characteristics:

- ▶ in release, A is either atomic or of the form $\exists xB, B \lor C$ or $\neg B$;
- ▶ in focus, the converse holds: A must not be atomic, nor of the form $\exists xB, B \lor C$ nor $\neg B$.
- ▶ the *synchronous* (outside the stoup) right-rules are $\exists_R, \neg_R, \lor_R$ and (atomic) axiom: the exact places where $\{.\}^n$ introduces negation

Theorem

If $\Gamma \vdash \Delta$ is provable in LK then $\Gamma \vdash ...; \Delta$ is provable.

Proof: use Kleene's inversion lemma (holds for all connectives/quantifiers, except \exists_B and \forall_I).

4 D > 4 A > 4 B > 4 B > B 9 Q C

Translating Focused Proofs in LJ

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus } \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

Theorem

If $\Gamma \vdash A$; Δ in focused LK, then Γ^p , $\neg \Delta^n \vdash A^n$ in LJ

- release is translated by the ¬_R rule
- focus is translated by the ¬L rule

31/37

O. Hermant (Mines) Double Negations June 2, 2014

Translating Focused Proofs in LJ

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus } \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

Theorem

If $\Gamma \vdash A$; Δ in focused LK, then Γ^p , $\neg \Delta^n \vdash A^n$ in LJ

- release is translated by the ¬_R rule
- focus is translated by the ¬L rule
- ▶ $\bot \Delta^n$ removes the trailing negation on $\exists^n (\neg \forall \neg), \lor^n (\neg \land \neg), \neg^n (\neg)$ and atoms $(\neg \neg)$
- what a surprise: focus is forbidden on them, so rule on the lhs:

LK rule	\exists_R	\neg_R	VR	ax.
LJ rule	ΑΓ	nop	\wedge_L	\neg_L + ax.

◆□▶◆□▶◆壹▶◆壹▶ 壹 かQ

31/37

Going further: Kuroda's translation

Originating from Glivenko's remark for propositional logic:

Theorem [Glivenko]

if $\vdash A$ in LK, then $\vdash \neg \neg A$ in LJ.

Kuroda's ¬¬-translation:

$$B^{Ku} = B$$
 (atoms)

$$(B \land C)^{Ku} = B^{Ku} \land C^{Ku}$$

$$(B \lor C)^{Ku} = B^{Ku} \lor C^{Ku}$$

$$(B \Rightarrow C)^{Ku} = B^{Ku} \Rightarrow C^{Ku}$$

$$(\forall xA)^{Ku} = \forall x \neg A^{Ku}$$

$$(\exists xA)^{Ku} = \exists xA^{Ku}$$

Theorem [Kuroda]

 $\Gamma \vdash \Delta$ in LK iff Γ^{Ku} , $\neg \Delta^{Ku} \vdash$ in LJ.

restarts double-negation everytime we pass a universal quantifier.

O. Hermant (Mines) Double Negations June 2, 2014 32 / 37

Combining Kuroda's and Gentzen-Gödel's translations

- work of Frédéric Gilbert (2013), who noticed:
 - **1** Kuroda's translation of $\forall x \forall y A$

$$\forall x \neg \neg \forall y \neg \neg A$$
 can be simplified: $\forall x \forall y \neg \neg A$

- ¬¬A itself can be treated à la Gentzen-Gödel
- and of course with polarization

Reminder:

Gödel-Gentzen Kuroda
$$\varphi(P) = \neg \neg P \qquad \qquad \psi(P) = P$$

$$\varphi(A \land B) = \varphi(A) \land \varphi(B) \qquad \psi(A \land B) = \psi(A) \land \psi(B)$$

$$\varphi(A \lor B) = \neg \neg (\varphi(A) \lor \varphi(B)) \qquad \psi(A \lor B) = \psi(A) \lor \psi(B)$$

$$\varphi(A \Rightarrow B) = \varphi(A) \Rightarrow \varphi(B) \qquad \psi(A \Rightarrow B) = \psi(A) \Rightarrow \psi(B)$$

$$\varphi(\exists xA) = \neg \neg \exists x \varphi(A) \qquad \psi(\exists xA) = \exists x \psi(A)$$

$$\varphi(\forall xA) = \forall x \varphi(A) \qquad \psi(\forall xA) = \forall x \neg \neg \psi(A)$$

33 / 37

Combining Kuroda's and Gentzen-Gödel's translations

How does it work ?

$$GG$$

$$\varphi(P) = \neg \neg P$$

$$\varphi(A \land B) = \varphi(A) \land \varphi(B)$$

$$\varphi(A \lor B) = \neg \neg (\varphi(A) \lor \varphi(B))$$

$$\varphi(A \Rightarrow B) = \varphi(A) \Rightarrow \varphi(B)$$

$$\varphi(\exists xA) = \neg \neg \exists x \varphi(A)$$

$$\varphi(\forall xA) = \forall x \varphi(A)$$

Combining Kuroda's and Gentzen-Gödel's translations

How does it work?

How to prove that ? Refine focusing into phases.

Example of translation

$$\chi((A \lor B) \Rightarrow C)$$
 is $(A \lor B) \Rightarrow C$
 $\varphi((A \lor B) \Rightarrow C)$ is $(A \lor B) \Rightarrow \neg \neg C$

June 2, 2014

35/37

O. Hermant (Mines) Double Negations

$$\overline{\Gamma, A \vdash .; A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash .; \Delta}{\Gamma, A \land B \vdash .; \Delta} \land_{L}$$

$$\frac{\Gamma, A \vdash .; \Delta}{\Gamma, A \lor B \vdash .; \Delta} \lor_{L}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, A \Rightarrow B \vdash .; \Delta} \Rightarrow_{L}$$

$$\frac{\Gamma, A[c/x] \vdash .; \Delta}{\Gamma, \exists xA \vdash .; \Delta} \exists_{L}$$

$$\frac{\Gamma, A[t/x] \vdash .; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \forall_{L}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \text{ focus}$$

$$\frac{\Gamma \vdash A; \Delta \qquad \Gamma \vdash B; \Delta}{\Gamma \vdash A \land B; \Delta} \land_{R}$$

$$\frac{\Gamma \vdash .; A, B, \Delta}{\Gamma \vdash .; A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma, A \vdash B; \Delta}{\Gamma \vdash A \Rightarrow B; \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma \vdash .; A[t/x], \Delta}{\Gamma \vdash .; \exists xA, \Delta} \exists_{R}$$

$$\frac{\Gamma \vdash A[c/x]; \Delta}{\Gamma \vdash \forall xA; \Delta} \forall_{R}$$

$$\frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash \forall xA; \Delta} \text{ release}$$

36 / 37

O. Hermant (Mines) Double Negations June 2, 2014

Results

Theorem [Gilbert]

if
$$\Gamma_0$$
, $\neg \Gamma_1 \vdash A$; Δ in $\mathsf{LK}_{\uparrow\downarrow}$ then $\chi(\Gamma_0)$, $\neg \psi(\Gamma_1)$, $\neg \psi(\Delta) \vdash \varphi(A)$ in LJ.

Theorem [Gilbert]

 $A \mapsto \varphi(A)$ is minimal among the $\neg \neg$ -translations.

- ▶ 58% of Zenon's modulo proofs are secretly constructive
- polarizing the translation of rewrite rules in Deduction modulo:
 - ★ problem with cut elimination: a rule is usable in the lhs and rhs
 - back to a non-polarized one
 - ★ further work: use polarized Deduction modulo
- further work: polarize Krivine's translation

What you hopefully should remember:

- Focusing is a perfect tool to remove double-negations;
- antinegation _.

