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tionUnmanned vehi
les are a 
hallenging 
on
ept forfuture missions in spa
e, aeronauti
 and underwa-ter domains. By de
reasing human in the loop,the 
omplexity has moved from interoperability re-quirements to autonomous 
ommand and 
ontrol.Moreover, evolving in an hostile environment, withpoor 
ommuni
ation fa
ilities, vehi
le managementis harder to perform remotely. Lastly, possible lossof equipments, 
ommuni
ation fa
ilities or a wholevehi
le may have dramati
 
onsequen
es. Relyingon distributed 
omputing nodes, a group of spa
e-
raft is 
hara
terized by its own a
tivities to be
ontrolled as well as 
ontingent a
tivities that gen-erates failures (
ommuni
ation jamming, 
ompo-nents shut down. . . ).In addition to autonomous behaviors, the in-
reasing amount of system 
omponents, 
ombinedwith the set of modes and servi
es lead to anun
ontrolled explosion of 
ombinatorial problems.Raised either at design time or operation time,their 
omplexity be
omes untra
table by humanexperts. A trade-o� 
an be formulated by statingin
rementally both 
ost fun
tions and assumptionson the system solution. Using those formulationsdynami
ally to take the right de
ision in an un-expe
ted situation is the key problem for system'sadaptation to its environment. Consequently, itne
essitates an intensive use of on board solving
apabilities as demonstrated in the Deep Spa
e 1Remote Agent Experiment [7℄. Widely investigatedin resear
h and industrial domains, Multi-AgentsSystems (MAS) 
an provide intelligent behaviors todistributed systems[4, 5℄. Several approa
hes existthat 
onsider di�erent levels of rea
tivity, 
ogni-tion, so
iability, de
ision 
apa
ity and 
ommuni
a-

tion expression. The main advantage of those pow-erful frameworks is to enable the modeling of au-tonomous fun
tions, su
h as planning and s
hedul-ing, smart sensing and diagnosis together with 
o-operative and 
ollaborative poli
ies in distributedsystems.Considering spa
e
raft formations, multipleplanning levels are relevant to the eÆ
ien
y of theautonomous behavior. Within the s
ope of this pa-per, we 
onsider a high level that deals with long-term environment and mission updates and a lowlevel for managing short-term 
ommand and 
on-trol. At the high level, global planning has to beperformed for the whole 
onstellation during opera-tions. This requires to 
ompute a mission manage-ment plan and to broad
ast resulting mission goalsto the whole formation. However, due to fault-toleran
e requirements, time and pro
essing powerlimits, all the planning details 
an not be 
onsid-ered 
entrally. Therefore, the global planning fun
-tion remains on upper-approximations and/or suf-�
ient statements of feasibility 
onditions. Spa
e-
raft must lo
ally 
ommand and 
ontrol their a
-tions, ful�lling safely its assigned mission goals. Atthe low level, 
urrent integrated modular avioni
approa
hes make an intensive use of �nite-state de-terministi
 rea
tive automata [1℄. However, thisne
essitates a perfe
t knowledge of the environmentas well as rigid spe
i�
ations of the system behav-ior.Our approa
h introdu
es the use of non-deterministi
 
onstraint-based automata, so thatea
h system 
omponent (su
h as 
amera, thruster,gyro wheels, platform) is represented by anautomaton model. A

ording to environment
hanges, a dedi
ated automata is synthesized au-tomati
ally from the model by the on-board 
on-straint solver. This approa
h provides a moreadaptive behavior, extending the domain of use ofthe spa
e system. Furthermore, the limited 
om-plexity of those automata enables the 
onstru
tionof plans that satisfy other resour
es and feasibility




onstraints at a �ne grain.These two planning levels involve di�erent ab-stra
tions and assumptions over the spa
e
raft 
on-stellation. They raise spe
i�
 feasibility and syn-
hronization problems that must be solved to guar-antee the overall mission exe
ution. Usual plan-ning methods have poor abilities to 
ombine the setof heterogeneous representations su
h as non-linearfeasibility 
onditions, 
umulative resour
es or dis-jun
tive syn
hronizations [8℄. In our approa
h,problems are spe
i�
ally formalized in a multiplemodels approa
h, that 
an be solved jointly or 
on-
urrently [4℄ using a Constraint Programming (CP)approa
h. This allows the designer to deal withnumerous resour
es, feasibility, 
oordination, syn-
hronization and other domain-spe
i�
 
onstraints,while 
onsidering the whole spa
e
raft formation.Furthermore, this approa
h enables an easier spe-
ialization of models toward dedi
ated problems in-stead of using simple deterministi
 heuristi
s thatare redu
ing the operational s
ope of the formation.Deep spa
e probes and earth orbiting formationsare relevant examples of potential target domains.This paper fo
uses on planning problems thato

ur at di�erent levels of the multi-agents ar
hi-te
ture. We �rst des
ribe in x2 how we asso
iate amulti-agent system to an autonomous 
ying forma-tions of spa
e
raft. Then, we expose in x3 solvingapproa
hes for lo
al and global planning fun
tions.2 A Multi-Agent Approa
hfor Autonomous FormationFlying DesignIntrodu
ing autonomous fun
tions in a spa
e-
raft ar
hite
ture raises several problems for de-
ision making, sensing and 
ommuni
ation. Thespa
e domain imposes hard 
onstraints on 
om-ponent safety, system provability, ar
hite
ture se-
urity and behavior predi
tability. The 
on-jun
tion of these requirements urges to globallyspe
ify autonomy-oriented ar
hite
tures and de-
ision fun
tions. This spe
i�
ation must satisfyheterogeneous 
onstraints extra
ted from variousdomains (spa
e
raft engineering, on-board real-time distributed systems, sensing devi
es, physi
sand 
ight dynami
s) as well as mission goals(earth observation, spa
e probes, planetary ob-servations). More parti
ularly, while designingthose distributed systems, 
ollaboration, 
ooper-ation and syn
hronization problems must also betaken into a

ount to insure a global eÆ
ient andsafe behavior. In addition to autonomy problems,

these paradigms in
rease system 
omplexity andmust be 
onsidered together with the individualbehavior of spa
e
raft in order to design globally
onsistent ar
hite
tures [9℄.2.1 Multi-Agents System OverviewThe intelligent planning and 
ontrol of a whole
ying formation leads to manage a representationof spa
e
raft intera
tions within the formation aswell as between the environment and the formation.From this viewpoint, MAS is a good approa
h tomodel a spa
e
raft formation as a distributed au-tonomous ar
hite
ture [2℄. The MAS used in ourapproa
h 
an be 
hara
terized as follow:� Ea
h agent is asso
iated to a unique spa
e
raftof the formation. At the lo
al agent level, thedesign relies on a sense-plan-rea
t 
ontrol loop(time s
ale is between the se
ond and a minutefor spa
e
raft and platform 
ontrol). Solvingdynami
ally lo
al 
ommand and 
ontrol prob-lems provides some degrees of autonomy to theagent to a
hieve short term goals.� We assume 
ommuni
ation network fa
ilitiesare e�e
tive between spa
e
raft (thanks to In-ter Formation Links te
hniques). We alsoassume that distributed fault-tolerant algo-rithms 
an be used for solving 
onsensus be-tween agents [5℄. More parti
ularly, 
on-sensus is mandatory for syn
hronizing plan-ning a
tivities and organizing the agent hier-ar
hy. The long-term global 
ommanding loop(s
aled from a minute up to several hours) in-volves planning problems extended with 
ol-laboration and 
ooperation models.Asso
iating 
onstraint based planning te
hniqueswith multiple models formulation, and advan
edsear
h te
hniques like any-time solving, guaranteesde
ision predi
tability. This parti
ular 
ombina-tion of ar
hite
ture and de
ision method improvesthe system 
exibility, safety, survivability, perfor-man
e and liveness. As a 
onsequen
e, the agentar
hite
ture integrates both rea
tive and delibera-tive behaviors. The resulting system is an hybridar
hite
ture where agents follow long term plan tomeet the mission obje
tives but 
an also rea
t veryqui
kly to unpredi
ted events.2.2 Global MAS Ar
hite
tureTo perform the distribution of goals to spa
e
raft,a hierar
hy is de�ned over the agents of the system.This simpli�es the design of agents intera
tions by



only de�ning a set of stri
t 
ommuni
ation and a
-tion rules, su
h that ea
h agent behavior is spe
i�eda

ording to its relative position in the system. Atthe top of the hierar
hy, a single agent is ele
ted by
onsensus to be the leader of the whole formation.This leader is in 
harge of mission management andgoals assignment inside the formation, within thelong-term 
ommand loop. The agents whi
h arenot leader are 
onsidered as subordinates. Everysubordinate is at the same hierar
hi
al level, underthe leader agent. They are not in 
harge of mis-sion management and mission planning. On
e theleader has established and 
ommuni
ated a missionplan, ea
h subordinate extra
ts its partial plan.It remains responsible for a lo
al 
ommand and
ontrol, by planning and exe
uting a sequen
e ofa
tions that mat
hes its assigned goals (see x3),within the short term loop.2.3 Lo
al Agent Ar
hite
ture2.3.1 System ComponentsAt the lo
al level, ea
h agent is de�ned by meansof system 
omponents and behaviors. In additionto 
lassi
al spa
e
raft system (AOCS, FDIR, En-gine 
ontrol), the set of 
omponents en
ompassesfun
tions dedi
ated to its own behavior as well asa
tivities related to the global formation.� A 
ontrol-
ommand exe
utive whi
h is in
harge of a
tion exe
ution a

ording to the
omputed plan. This exe
utive 
an trigger re-planning a
tions when the drift between a
-tion prevision and real exe
ution be
omes toomu
h important;� A knowledge base to store fa
ts and beliefs rel-ative to 
urrent environment and other agents.� One or more planning 
omponents to generatemission or lo
al plan;� A 
ommuni
ation appli
ative in order to en-sure the message 
ommuni
ation with otherspa
e
raft and thus other agents.Ea
h ar
hite
tural 
omponent is made of sev-eral sub-parts. For instan
e, the knowledge base
ontains an updatable database that store fa
tsand beliefs, a 
onsisten
y veri�
ation system that
he
ks the information validity, and a user interfa
efor update and 
onsultation.In the following, we assume that this ar
hite
tureis 
ommon to leader and subordinates spa
e
raft.The di�eren
es are relying only on the behaviorwithin the MAS hierar
hy.
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Figure 1: Autonomous agent ar
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Figure 2: Leader behaviorThe leader agent is in 
harge of the mission planelaboration that it broad
asts to other agents. Itre
eives goal realization requests from ground op-erators and shall insert them into a mission plan.For this purpose, the leader 
olle
ts data from otheragents to be permanently aware of the 
onstellationstate in terms of resour
e usage and operational sit-uation (Attitude, Position, Time, Velo
ity). It de-
ides when a new mission plan shall be 
omputeda

ording to the 
urrent formation situation: faultyspa
e
raft, goal realization requests, validity of the
urrent plan, warning events raised by subordinate,et
.2.3.3 Subordinate Agent Behavior
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al 
ommand and 
ontrol for mission plan exe
u-
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al ar
hite
turetion. Before a mission plan 
omputing, subordi-nates send to the leader their own status and avail-ability. This a
tion is also made periodi
ally dur-ing the system operation. On
e a mission plan hasbeen 
omputed and 
ommuni
ated by the leader,ea
h subordinate extra
ts the partial plan 
orre-sponding to the set of lo
al goals it has to a
hieve,with asso
iated timeline along the global mission.Ea
h subordinate agent is in 
harge of a
hievingthose goals by lo
aly 
ommanding and 
ontrolingthe spa
e
raft, taking into a

ount environment pa-rameters. This involves the dynami
 replanning ofon-board a
tivities, satisfying lo
al feasibility andsafety 
onstraints (see �gure 3).2.4 Agent CoordinationModeling the a
tions of agents group needs a spe
-i�
ation for the 
ollaboration, 
ooperation and syn-
hronization pro
esses [6℄. Those pro
esses de-�ne the overall formation behavior as a 
onsistentgroup of autonomous entities.2.4.1 Collaboration & CooperationThe 
ollaboration 
onsiders the way several agents
an jointly realize a same goal. On the 
ontrary,the 
oordination 
onsiders the ways several agentsor groups of agents 
an a
hieve di�erents goals si-multaneously, sharing the same global resour
es.These two 
on
epts globally bring into play thesame things: goals, resour
es, distributed entities.They are ensured using the same approa
h in theplan generation, by introdu
ing spe
i�
 goal allo-
ation and resour
e 
onsumption models. These

models enable the possible sharing of a global re-sour
e and the distributed realization of a goal.In our approa
h, the 
ollaboration and 
oopera-tion rely on the mission plan 
omputing. This planin
ludes 
onstraint-based models that de�ne theplanning and s
heduling of inter-spa
e
raft opera-tions, shared resour
e utilization as well as 
ommona
tivities [2℄. Additionally, 
ooperation and 
ollab-oration are reinfor
ed by distributed me
hanismsrelying on message 
ommuni
ation and knowledgeex
hange (for instan
e, the leader ele
tion me
ha-nism or the distributed plan 
he
king).2.4.2 Syn
hronisationInside the MAS, the syn
hronization is ne
essaryto s
hedule 
orre
tly the sets of distributed a
-tions, involving several spa
e
raft simultaneously.If we 
onsider two platforms embedding a samedistributed observation instrument (a distributedinterferometer), their moves and relative position-ing must be perfe
tly syn
hronized in order to re-alize an observation. Thus, some syn
hronizationa
tions shall be in
luded in the plan of ea
h spa
e-
raft.First, 
onstraint-based timing models are intro-du
ed at the mission plan level. Those are usualya 
ombination of disjun
tive and pre
eden
e 
on-straints between operations. Se
ond, a syn
hro-nization phase is introdu
ed in the lo
al plan, rely-ing on message ex
hange and/or other me
hanismlike an a

urate spa
e
raft relative positioning sys-tem.



3 Layered PlanningIn order to behave autonomously, the spa
e
raftformation shall be able to anti
ipate its evolutionfor short, medium term and long term with a di�er-ent a

ura
y. On a planning point of view, meetingall these requirements is equivalent to generate along term plan with a very �ne detail level. Ea
hspa
e
raft a
tion shall be detailed (thruster igni-tion, mode swit
hing. . . ) on a long time interval,while the dynami
al aspe
t of spa
e
raft formationrequires a good planning and replanning rea
tivityto answer rapidly to new requests or unpredi
tedevents. This requires to take into a

ount a lot ofparameters and 
onstraints (power level, memory,attitudes, instrument distribution. . . ) while qual-ity plans shall be generated in short time to ensurethe safety and liveness of the formation. Gener-ating a plan with su
h 
riteria involves 
omplexmodels resolution and is time and power 
onsum-ing. Be
ause of the indu
ed 
omplexity, obtaininga great planning rea
tivity level for this kind ofproblems is out of the s
ope of 
urrent planners.Another way to broa
h this problem is to de-
ompose the planning a
tivity and to distribute itonto the available pro
essing resour
es of all thespa
e
raft of the formation: the layered planning
on
ept 
onsists in separating the mission manage-ment aspe
ts from the 
ontrol 
ommand of spa
e-
raft. Two planning levels are so distinguished, the�rst one is 
entralized onto the leader and a�e
tsthe whole formation; the se
ond is distributed ontoagents and 
on
erns ea
h spa
e
raft individually.A

ording to this de
omposition, the planning re-lies on:� Long term a
tivities, that 
orrespond to themission management loop. It relies on missionplanning and 
onsiders the evolution of spa
e-
raft formation at a 
oarse grain, determin-ing formation traje
tory and s
heduling mis-sion goal;� Short term prevision, that relies on spa
e
rafta
tion s
heduling and 
ontrol 
ommand rea
-tivity. This results from lo
al planning a
tiv-ity, de�ning from time to time the a
tions tobe led by ea
h spa
e
raft to meet the �nal mis-sion goals;� Medium term anti
ipation, whi
h is dis-pat
hed on both mission and lo
al planningas a tuning of ea
h one a

ording to plan-ning parameterization (planning horizon, timegrain. . . ).

Nevertheless, distributing a part of the planninga
tivity onto spa
e
raft of the formation raises sev-eral problems for the 
entralized mission plan gen-eration as for lo
al plans generation. As the lo
alspa
e
raft a
tivity is no more dire
tly taken into a
-
ount in mission planning, it is ne
essary to upperapproximate or to make use of suÆ
ient 
onditionsto model lo
al behaviors.Thus, when a spa
e
raft 
omputes its lo
al a
-tion plan, the solving is performed a

ording tothe mission plan that has been 
ommuni
ated byits leader. This lo
al plan shall follow the guide-lines spe
i�ed by the mission plan, in
luding goalsdeadlines and syn
hronizations with other agents.3.1 Mission PlanningThe global planning is interested in building a mis-sion plan that satis�es as well as possible the 
ur-rent mission obje
tives. This leads to 
onsider sev-eral problems simultaneously, for spa
e
raft traje
-tory determination, mission goals s
heduling, ne
-essary a
tions for standard spa
e
raft operation,and on-board resour
e management.3.1.1 Traje
tory Determination
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Figure 5: Traje
tory graph interpolation pro
essThe traje
tory determination is based on thesear
h of a path in a graph [3℄. A graph G(X;U) isbuilt using several possible traje
tories determinedby an orbitography 
omputing that 
an be realizedon-board as on ground (see �gure 5). This graphinterpollation results in a set of verti
es linked to-gether by traje
tory edges. Ea
h vertex is asso-
iated to a navigation point or to a possible or-bit (periodi
al traje
tory). Su
h orbit verti
es areuseful to model spa
e
raft 
y
li
 traje
tories forearth orbiting formations as for spa
e probes, whenthey exe
ute in-orbit manoeuvres around a 
eles-tial body. Edges represent transition traje
toriesbetween navigation points and orbit verti
es.



A path model ensures the 
orre
tness of spa
e-
raft moves along traje
tories by stating 
ow andtransition 
onstraints over the verti
es of the as-so
iated graph. Then, a vertex 
an be rea
hed atmost on
e in a path, and when it is rea
hed, theformation must leave it (Kirshho� law):8x 2 X; Xe2Æ+x v(e) = Xe2Æ�x v(e) � 1Where x is a vertex of G, Æ+x the set of edgesin
oming to x, Æ�x is the set of edges outgoing fromx, and v(e) 2 f0; 1g is the valuation of edge e.A timing model is used for the expression of en-try date de and exit date ds over ea
h vertex of thegraph. If navigation points are 
overed in a nulltime (de = ds), orbit verti
es 
orrespond to peri-odi
 moves of formation and the expression of timespent over a vertex is slightly di�erent:8x 2 Xo; ds(x) = de(x) +�!s M(x)�!e + kT (x)Where �!s and �!e are entry and exit ve
tors ofx, M(x) is the swith
hing 
oeÆ
ient matrix of xa

ording to in
oming and outgoing edges, and Txis the period of orbit onto x.Thus, the traje
tory model pre
isely determinesthe position and time of spa
e
raft in the missionplan.3.1.2 Goal Satisfa
tionThe spa
e
raft formation mission in
ludes the sat-isfa
tion of a list of goals for observation or nav-igation. Moreover, the standard spa
e
raft oper-ation at a high level implies several other goalsthat shall also be in
luded in the mission plan. Agoal requires the use of a set of resour
es, avail-able among the formation (instruments, power. . . ),and 
an be realized a

ording to spe
i�
 time inter-vals and spa
e
raft positions and attitudes. Thus,a goal 
an be realized a

ording to spe
i�
 opor-tunities determined before the plan generation ina

ordan
e with the traje
tory graph. Ea
h goaloportunity is atta
hed to a vertex of the graph.Let Og be the set of oportunities for goal g, thenan oportunity o 2 O is used to realize g if the pred-i
ate fixed(o) is true. Of 
ourse, this means thatthe time and resour
e 
onstraints are veri�ed forthis oportunity. Thus, the goal g is realized when:8g; realized(g) = _o2Ogfixed(o)Some spe
i�
 spa
e
raft a
tivities require a pe-riodi
 a
tivation. For instan
e, earth-spa
e
raft


ommuni
ation that are made in ground stationvisibility intervals. Thus, a goal 
an be realizedperiodi
ally a

ording to its oportunities. In thesame way, goals that model a spa
e
raft a
tivitylike thrust or attitude 
orre
tion shall be realizeda

ording to spa
e
raft position and attitude. A
onditional goal notion C is introdu
ed that en-for
e a goal realization only if the traje
tory andattitude of spa
e
raft require it:8g; 9v; C(g) ^ Vog 2 P , realized(g)Where P is the path and Vog is a vertex of P onwhi
h an oportunity for g is satis�ed.Due to goal 
omplexity and formation distribu-tion, the realization of several goals in the sametime interval introdu
es a large 
omplexity that isnot tra
table with a
tual models. A goal ex
lusionis so stated to ensure that several goals 
an't berealized in the same time interval:8g1; g2;[d(g1); d(g1) +D(g1)℄ \ [d(g2); d(g2) +D(g2)℄ = ;Where d is the realization date fun
tion and D isthe duration fun
tion. The realization date is �xedpre
isely by global plan, duration is determined byupper bounds a

ording to lo
al models.3.1.3 Resour
es ConsumptionAt the mission planning level, both ex
lusive and
umulative resour
es are taken into a

ount. Ea
hgoal requires a set of ex
lusive resour
es (instru-ments, spa
e
raft. . . ) and a set of 
umulative re-sour
es (power, memory, ergol. . . ) for its real-ization. These amounts are upper approximateda

ording to lo
al models and domain knowledge.Both 
umulative and ex
lusive resour
es are allo-
ated to goals a

ording to their needs:8g;8�; realized(g),Xs2F��(s; g) = N (�; g)Where � is an ex
lusive resour
e, � is the af-fe
tation fun
tion of spa
e
raft resour
e to goalsand N is the need fun
tion of goals for resour
e.For 
umulative resour
es, a 
onsumption shall ad-ditionaly be stated in order to ensure goal feasibil-ity. As goals 
an only be realized onto verti
es ofthe graph, this 
onsumption is stated only for timethat 
orresponds to a vertex lo
ation in the graph:�v(t) = �v(de(v))�Xg �N (�; g)�R(g; v; t)�



Where �v(t) is the value of resour
e � at time ton vertex v and R(g; v; t) is true if goal g is realizedon vertex v before time t. Introdu
ing the boundvalues of resour
e �, it is possible to state the re-sour
e 
onsumption at any time and then beforeand after ea
h goal exe
ution.3.2 Lo
al Command and ControlOn
e a global mission plan has been 
omputed andtransmitted by the leader, ea
h spa
e
raft buildsits own lo
al plan to manage its a
tions in orderto realize its part of the mission. In addition tothe mission goals given by high level planning, lo-
al goals 
orresponding to spa
e
raft 
ommand andsafety pro
edures have to be realized. Like everytraditional s
heduling te
hniques, lo
al planning isbounded by a time horizon 0 � t � tmax. Plan isenlarged in time as ne
essary, leading to 
onsiderthe lo
al planning a
tivity as a task to be in
ludedin a
tion s
hedule. Spa
e
raft resour
es are takeninto a

ount with high a

ura
y. The bound givenby global plan 
an be optimized su
h that availableresour
e are saved. Thus, ea
h part of the missionplan 
an be lo
ally optimized by ea
h agent, savingtime and resour
es.3.2.1 Dis
rete 
ontrol using 
onstraint-based timed automataSpa
e
raft 
ommand and 
ontrol is 
hara
terizedby di�erent 
omponents to manage, in
luding pay-loads, 
ommuni
ations and platform devi
es. Ea
h
omponent is 
onstrained by 
ontinuous physi
allaws (ele
tri
 power supply, temperature, enginethrust level, . . . ). Already in use in the avioni
 do-main, dis
rete state/transition automata 
an rep-resent 
omponent modes as well as de
ision makingwith respe
t to 
ontinuous laws. In fa
t, a state �kis assimilated to a 
ontinuous behavior of the kth
omponent, while a transition Æ(�ki ; �kj ) models anabrupt 
hange of behavior between states �ki and�kj .In our approa
h, a transition Æt+1 is triggered atthe time t+1 when an and-
omposition of a set ofsignals S be
omes true in the interval [t; t+ 1[:S(t) = ? ^ S(t+ 1) = > ) Æt+1(�ki ; �kj )A signal 
an be a 
ommand sele
ted by the agentor a 
ontingent event raised by the agent environ-ment. The �rst 
lass of signal represents the agent
ommanding over the 
omponents, while the se
-ond one de�nes the environment stimuli on theagent. Traditional te
hniques adopted by engineers

are based on deterministi
 rea
tive automata. Inany given state, the automata 
an rea
h exa
tlyone state. Those automata 
an not be adapted dy-nami
ally to environment 
hanges and we proposeto widen this approa
h by raising the determinis-ti
 assumption (su
h that multiple states 
an berea
hed from a given state):8�ki ; �j ;Æt+1(�ki ; �kj ) ^ Ck(t) = �ki ) Ck(t+ 1) = �kjwhere Ck(t) is the 
omponent state. During theexe
ution, the sele
tion of a unique transition isde
ided by instan
iating 
ommands that optimizethe path of future states a

ording to the status of
ontingent events.3.2.2 Feasibility 
onditionsIn our model, a 
omponent state 
orresponds to aset of real-time tasks to perform R(�). As several
omponents may share a unique pro
essor, the to-tal workload assigned to a unique pro
essor mustremain s
hedulable. Ea
h real-time task r that be-longs to a state exe
ution, (eg. r 2 R(�)) is repre-sented by an a
tivation period Tr and a worst 
aseduration time 
r. In addition to the previous 
on-straints, we apply the Liu and Layland feasibility
onditions to guarantee the s
hedulability of all thetasks at any time:8t; feasible(t),Xk Xr2R(Ck(t)) 
rTr � 1Other feasibility 
onstraints, involved by on-board 
umulative resour
es (ergol, power sup-ply. . . ) may also be spe
i�ed. We assume thatin a given state, a 
omponent 
onsumes a resour
ein a regular way, su
h that the overall resour
e 
on-sumption statement is given among the time hori-zon. The amount A(t) of available resour
es 
anbe de�ned as follows:A(t) = A(t� 1) +Xk a(Ck(t� 1))where ea
h a(�) is a worst 
ase 
onsumption ofthe resour
e in the state �.3.2.3 Generating determisti
 automataThose 
onstraints di�er from traditional resour
es
heduling 
onstraints be
ause the 
umulatedamount depends on the 
urrent state of the wholesystem. Therefore, sear
h methods like task inter-val or edge �nder 
an not eÆ
iently be used to im-prove the solving. However, the problem remains



tra
ktable be
ause the number of states and tran-sitions is limited. The problem 
onsists in solvingthe 
ommand signals and their asso
iated time linein order to rea
h the state spe
i�ed by higher levelgoals. Two kinds of sear
h approa
hes 
an be 
on-du
ted:� Complete sear
h with 
ertain external events:
onsists in solving 
ompletely the 
ommandsto be raised and their asso
iated timing byassuming a perfe
t knowledge (boolean valu-ation in time) of 
ontingent events raised bythe environment.� Non-
omplete sear
h with un
ertain externalevents: 
onsists in solving partially the 
om-mands to be raised, keeping open-disjun
tionswhen un
ertainty remain on the boolean valu-ation of 
ontingent events among the time line.4 Preliminary ResultsThe layered planning for spa
e
raft formation hasbeen experimented in a simulation approa
h. Themission planning has been tested for formations ofone to six spa
e
raft, for earth orbiting and deepspa
e like missions, on a Sun Ultra 5 workstation.No advan
ed sear
h strategy nor heuristi
s havebeen developed, the sear
h has been led with thedefault global solving me
hanism. For orbiting mis-sions, a plan s
heduling 150 mission goals (in
lud-ing periodi
 ones) is generated in 105 se
onds. Fordeep spa
e missions, planning is 
omplexi�ed bytraje
tory model but up to 40 goals (in
luding 
on-ditional and periodi
 ones) are s
heduled in 80 se
-onds onto a 20 verti
es graph.The lo
al planning 
omponent has been lesstested. For a thruster example made of two au-tomata with a tenth of states for ea
h one, an op-timal solution in
luding syn
hronization point isfound in less than 4 se
onds.5 Con
lusion, Further WorksWe have demonstrated how relevant are layered
onstraint model-based planning to the su

essof missions that involve autonomous spa
e
raft.Combined to MAS ar
hite
ture, this enables thesolving of 
omplex distributed planning problemsand provides a more adaptive and 
exible behaviorto the group of spa
e
raft. Nevertheless, the way ofmodeling does depend on the level of planning andinvolves many assumptions, either on the planning

horizon or on the approximations. The links be-tween planning levels should be investigated deeplyin order to enable multiple goal exe
ution at thesame time, maximizing the formation performan
eand eÆ
ien
y. On the theoreti
al side, latti
es ofassumptions should be formalized in order to dis-tribute independent solving goals. On the pra
ti
alside, further experiments involving huge lo
al plan-ning examples shall be performed to extend pre-liminary results. Advan
ed anytime sear
h strate-gies and solving heuristi
s shall be developed toimprove the planning rea
tivity.6 A
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