Multi-Levels Planning for Spacecraft Autonomy

Christophe Guettier, Jean Clair Poncet

Axlog Ingénierie
19-21, rue du 8 mai 1945
94110 Arcueil, F
christophe.guettier@Qaxlog.fr, jean-clair.poncetQaxlog.fr

Keywords Spacecraft Formation, Planning &
Scheduling, Multi-Agents System, Constraint Pro-
gramming.

1 Introduction

Unmanned vehicles are a challenging concept for
future missions in space, aeronautic and underwa-
ter domains. By decreasing human in the loop,
the complexity has moved from interoperability re-
quirements to autonomous command and control.
Moreover, evolving in an hostile environment, with
poor communication facilities, vehicle management
is harder to perform remotely. Lastly, possible loss
of equipments, communication facilities or a whole
vehicle may have dramatic consequences. Relying
on distributed computing nodes, a group of space-
craft is characterized by its own activities to be
controlled as well as contingent activities that gen-
erates failures (communication jamming, compo-
nents shut down...).

In addition to autonomous behaviors, the in-
creasing amount of system components, combined
with the set of modes and services lead to an
uncontrolled explosion of combinatorial problems.
Raised either at design time or operation time,
their complexity becomes untractable by human
experts. A trade-off can be formulated by stating
incrementally both cost functions and assumptions
on the system solution. Using those formulations
dynamically to take the right decision in an un-
expected situation is the key problem for system’s
adaptation to its environment. Consequently, it
necessitates an intensive use of on board solving
capabilities as demonstrated in the Deep Space 1
Remote Agent Experiment [7]. Widely investigated
in research and industrial domains, Multi-Agents
Systems (MAS) can provide intelligent behaviors to
distributed systems[4, 5]. Several approaches exist
that consider different levels of reactivity, cogni-
tion, sociability, decision capacity and communica-

tion expression. The main advantage of those pow-
erful frameworks is to enable the modeling of au-
tonomous functions, such as planning and schedul-
ing, smart sensing and diagnosis together with co-
operative and collaborative policies in distributed
systems.

Considering spacecraft formations, multiple
planning levels are relevant to the efficiency of the
autonomous behavior. Within the scope of this pa-
per, we consider a high level that deals with long-
term environment and mission updates and a low
level for managing short-term command and con-
trol. At the high level, global planning has to be
performed for the whole constellation during opera-
tions. This requires to compute a mission manage-
ment plan and to broadcast resulting mission goals
to the whole formation. However, due to fault-
tolerance requirements, time and processing power
limits, all the planning details can not be consid-
ered centrally. Therefore, the global planning func-
tion remains on upper-approximations and/or suf-
ficient statements of feasibility conditions. Space-
craft must locally command and control their ac-
tions, fulfilling safely its assigned mission goals. At
the low level, current integrated modular avionic
approaches make an intensive use of finite-state de-
terministic reactive automata [1]. However, this
necessitates a perfect knowledge of the environment
as well as rigid specifications of the system behav-
ior.

Our approach introduces the use of non-
deterministic constraint-based automata, so that
each system component (such as camera, thruster,
gyro wheels, platform) is represented by an
automaton model. According to environment
changes, a dedicated automata is synthesized au-
tomatically from the model by the on-board con-
straint solver. This approach provides a more
adaptive behavior, extending the domain of use of
the space system. Furthermore, the limited com-
plexity of those automata enables the construction
of plans that satisfy other resources and feasibility

constraints at a fine grain.

These two planning levels involve different ab-
stractions and assumptions over the spacecraft con-
stellation. They raise specific feasibility and syn-
chronization problems that must be solved to guar-
antee the overall mission execution. Usual plan-
ning methods have poor abilities to combine the set
of heterogeneous representations such as non-linear
feasibility conditions, cumulative resources or dis-
junctive synchronizations [8]. In our approach,
problems are specifically formalized in a multiple
models approach, that can be solved jointly or con-
currently [4] using a Constraint Programming (CP)
approach. This allows the designer to deal with
numerous resources, feasibility, coordination, syn-
chronization and other domain-specific constraints,
while considering the whole spacecraft formation.
Furthermore, this approach enables an easier spe-
cialization of models toward dedicated problems in-
stead of using simple deterministic heuristics that
are reducing the operational scope of the formation.
Deep space probes and earth orbiting formations
are relevant examples of potential target domains.

This paper focuses on planning problems that
occur at different levels of the multi-agents archi-
tecture. We first describe in §2 how we associate a
multi-agent system to an autonomous flying forma-
tions of spacecraft. Then, we expose in §3 solving
approaches for local and global planning functions.

2 A Multi-Agent Approach
for Autonomous Formation
Flying Design

Introducing autonomous functions in a space-
craft architecture raises several problems for de-
cision making, sensing and communication. The
space domain imposes hard constraints on com-
ponent safety, system provability, architecture se-
curity and behavior predictability. = The con-
junction of these requirements urges to globally
specify autonomy-oriented architectures and de-
cision functions. This specification must satisfy
heterogeneous constraints extracted from various
domains (spacecraft engineering, on-board real-
time distributed systems, sensing devices, physics
and flight dynamics) as well as mission goals
(earth observation, space probes, planetary ob-
servations). More particularly, while designing
those distributed systems, collaboration, cooper-
ation and synchronization problems must also be
taken into account to insure a global efficient and
safe behavior. In addition to autonomy problems,

these paradigms increase system complexity and
must be considered together with the individual
behavior of spacecraft in order to design globally
consistent architectures [9].

2.1 Multi-Agents System Overview

The intelligent planning and control of a whole
flying formation leads to manage a representation
of spacecraft interactions within the formation as
well as between the environment and the formation.
From this viewpoint, MAS is a good approach to
model a spacecraft formation as a distributed au-
tonomous architecture [2]. The MAS used in our
approach can be characterized as follow:

e Each agent is associated to a unique spacecraft
of the formation. At the local agent level, the
design relies on a sense-plan-react control loop
(time scale is between the second and a minute
for spacecraft and platform control). Solving
dynamically local command and control prob-
lems provides some degrees of autonomy to the
agent to achieve short term goals.

e We assume communication network facilities
are effective between spacecraft (thanks to In-
ter Formation Links techniques). We also
assume that distributed fault-tolerant algo-
rithms can be used for solving consensus be-
tween agents [5]. More particularly, con-
sensus is mandatory for synchronizing plan-
ning activities and organizing the agent hier-
archy. The long-term global commanding loop
(scaled from a minute up to several hours) in-
volves planning problems extended with col-
laboration and cooperation models.

Associating constraint based planning techniques
with multiple models formulation, and advanced
search techniques like any-time solving, guarantees
decision predictability. This particular combina-
tion of architecture and decision method improves
the system flexibility, safety, survivability, perfor-
mance and liveness. As a consequence, the agent
architecture integrates both reactive and delibera-
tive behaviors. The resulting system is an hybrid
architecture where agents follow long term plan to
meet the mission objectives but can also react very
quickly to unpredicted events.

2.2 Global MAS Architecture

To perform the distribution of goals to spacecraft,
a hierarchy is defined over the agents of the system.
This simplifies the design of agents interactions by

only defining a set of strict communication and ac-
tion rules, such that each agent behavior is specified
according to its relative position in the system. At
the top of the hierarchy, a single agent is elected by
consensus to be the leader of the whole formation.
This leader is in charge of mission management and
goals assignment inside the formation, within the
long-term command loop. The agents which are
not, leader are considered as subordinates. Every
subordinate is at the same hierarchical level, under
the leader agent. They are not in charge of mis-
sion management and mission planning. Once the
leader has established and communicated a mission
plan, each subordinate extracts its partial plan.
It remains responsible for a local command and
control, by planning and executing a sequence of
actions that matches its assigned goals (see §3),
within the short term loop.

2.3 Local Agent Architecture
2.3.1 System Components

At the local level, each agent is defined by means
of system components and behaviors. In addition
to classical spacecraft system (AOCS, FDIR, En-
gine control), the set of components encompasses
functions dedicated to its own behavior as well as
activities related to the global formation.

e A control-command executive which is in
charge of action execution according to the
computed plan. This executive can trigger re-
planning actions when the drift between ac-
tion prevision and real execution becomes too
much important;

e A knowledge base to store facts and beliefs rel-
ative to current environment and other agents.

e One or more planning components to generate
mission or local plan;

o A communication applicative in order to en-
sure the message communication with other
spacecraft and thus other agents.

Each architectural component is made of sev-
eral sub-parts. For instance, the knowledge base
contains an updatable database that store facts
and beliefs, a consistency verification system that
checks the information validity, and a user interface
for update and consultation.

In the following, we assume that this architecture
is common to leader and subordinates spacecraft.
The differences are relying only on the behavior
within the MAS hierarchy.

Control-command Com

Platform

Payload

Figure 1: Autonomous agent architecture

2.3.2 Leader Agent Behavior

Knowledge Sc.)lvg
mission plan solution |

Wait for - - — - - - — -~ | Same behavio
mission requests as a subordinal

Broadcast plan
surbordinates

Figure 2: Leader behavior

The leader agent is in charge of the mission plan
elaboration that it broadcasts to other agents. It
receives goal realization requests from ground op-
erators and shall insert them into a mission plan.
For this purpose, the leader collects data from other
agents to be permanently aware of the constellation
state in terms of resource usage and operational sit-
uation (Attitude, Position, Time, Velocity). It de-
cides when a new mission plan shall be computed
according to the current formation situation: faulty
spacecraft, goal realization requests, validity of the
current plan, warning events raised by subordinate,
etc.

2.3.3 Subordinate Agent Behavior

faults / prediction

Inform leader

Wait for
mission goals solution

Knowledge

Figure 4: Subordinate behavior

The role of subordinate agents is limited to lo-
cal command and control for mission plan execu-

High level Command and Control Functigns Constraint Model-based Knowledge|
Automata Synthesis =1 [System Automata Model]
‘ Constraint Solver ‘ Knowledge -
+ Revision [Physiscal Model]
Automata interpreter ! [Global Systems Constraints]
1
.
L | Current State A [Pl
Management] - — -
Behavior prediction functions
‘ Constraint Solver ‘
{Aquisition Tasks| [Actuation Task% Processing Tasl}
High level goals
Real Time Scheduler
—= Consulting / Asserting Knowledge V ¢
~—

—=> Task/Function activation

—p» Data Flow

Toward higher level agents

Figure 3: Local architecture

tion. Before a mission plan computing, subordi-
nates send to the leader their own status and avail-
ability. This action is also made periodically dur-
ing the system operation. Once a mission plan has
been computed and communicated by the leader,
each subordinate extracts the partial plan corre-
sponding to the set of local goals it has to achieve,
with associated timeline along the global mission.
Each subordinate agent is in charge of achieving
those goals by localy commanding and controling
the spacecraft, taking into account environment pa-
rameters. This involves the dynamic replanning of
on-board activities, satisfying local feasibility and
safety constraints (see figure 3).

2.4 Agent Coordination

Modeling the actions of agents group needs a spec-
ification for the collaboration, cooperation and syn-
chronization processes [6]. Those processes de-
fine the overall formation behavior as a consistent
group of autonomous entities.

2.4.1 Collaboration & Cooperation

The collaboration considers the way several agents
can jointly realize a same goal. On the contrary,
the coordination considers the ways several agents
or groups of agents can achieve differents goals si-
multaneously, sharing the same global resources.
These two concepts globally bring into play the
same things: goals, resources, distributed entities.
They are ensured using the same approach in the
plan generation, by introducing specific goal allo-
cation and resource consumption models. These

models enable the possible sharing of a global re-
source and the distributed realization of a goal.

In our approach, the collaboration and coopera-
tion rely on the mission plan computing. This plan
includes constraint-based models that define the
planning and scheduling of inter-spacecraft opera-
tions, shared resource utilization as well as common
activities [2]. Additionally, cooperation and collab-
oration are reinforced by distributed mechanisms
relying on message communication and knowledge
exchange (for instance, the leader election mecha-
nism or the distributed plan checking).

2.4.2 Synchronisation

Inside the MAS, the synchronization is necessary
to schedule correctly the sets of distributed ac-
tions, involving several spacecraft simultaneously.
If we consider two platforms embedding a same
distributed observation instrument (a distributed
interferometer), their moves and relative position-
ing must be perfectly synchronized in order to re-
alize an observation. Thus, some synchronization
actions shall be included in the plan of each space-
craft.

First, constraint-based timing models are intro-
duced at the mission plan level. Those are usualy
a combination of disjunctive and precedence con-
straints between operations. Second, a synchro-
nization phase is introduced in the local plan, rely-
ing on message exchange and/or other mechanism
like an accurate spacecraft relative positioning sys-
tem.

3 Layered Planning

In order to behave autonomously, the spacecraft
formation shall be able to anticipate its evolution
for short, medium term and long term with a differ-
ent accuracy. On a planning point of view, meeting
all these requirements is equivalent to generate a
long term plan with a very fine detail level. Each
spacecraft action shall be detailed (thruster igni-
tion, mode switching...) on a long time interval,
while the dynamical aspect of spacecraft formation
requires a good planning and replanning reactivity
to answer rapidly to new requests or unpredicted
events. This requires to take into account a lot of
parameters and constraints (power level, memory,
attitudes, instrument distribution...) while qual-
ity plans shall be generated in short time to ensure
the safety and liveness of the formation. Gener-
ating a plan with such criteria involves complex
models resolution and is time and power consum-
ing. Because of the induced complexity, obtaining
a great planning reactivity level for this kind of
problems is out of the scope of current planners.

Another way to broach this problem is to de-
compose the planning activity and to distribute it
onto the available processing resources of all the
spacecraft of the formation: the layered planning
concept consists in separating the mission manage-
ment aspects from the control command of space-
craft. Two planning levels are so distinguished, the
first one is centralized onto the leader and affects
the whole formation; the second is distributed onto
agents and concerns each spacecraft individually.
According to this decomposition, the planning re-
lies on:

e Long term activities, that correspond to the
mission management loop. It relies on mission
planning and considers the evolution of space-
craft formation at a coarse grain, determin-
ing formation trajectory and scheduling mis-
sion goal,;

e Short term prevision, that relies on spacecraft
action scheduling and control command reac-
tivity. This results from local planning activ-
ity, defining from time to time the actions to
be led by each spacecraft to meet the final mis-
sion goals;

e Medium term anticipation, which is dis-
patched on both mission and local planning
as a tuning of each one according to plan-
ning parameterization (planning horizon, time
grain...).

Nevertheless, distributing a part of the planning
activity onto spacecraft of the formation raises sev-
eral problems for the centralized mission plan gen-
eration as for local plans generation. As the local
spacecraft activity is no more directly taken into ac-
count in mission planning, it is necessary to upper
approximate or to make use of sufficient conditions
to model local behaviors.

Thus, when a spacecraft computes its local ac-
tion plan, the solving is performed according to
the mission plan that has been communicated by
its leader. This local plan shall follow the guide-
lines specified by the mission plan, including goals
deadlines and synchronizations with other agents.

3.1 Mission Planning

The global planning is interested in building a mis-
sion plan that satisfies as well as possible the cur-
rent mission objectives. This leads to consider sev-
eral problems simultaneously, for spacecraft trajec-
tory determination, mission goals scheduling, nec-
essary actions for standard spacecraft operation,
and on-board resource management.

3.1.1 Trajectory Determination

Trajectory event Event
determination interpolation

Interpolate
O Trajectory

Trajectory
events

Orbit data (PVT]

trajectories
Graph
construction

Figure 5: Trajectory graph interpolation process

The trajectory determination is based on the
search of a path in a graph [3]. A graph G(X,U) is
built using several possible trajectories determined
by an orbitography computing that can be realized
on-board as on ground (see figure 5). This graph
interpollation results in a set of vertices linked to-
gether by trajectory edges. Each vertex is asso-
ciated to a navigation point or to a possible or-
bit (periodical trajectory). Such orbit vertices are
useful to model spacecraft cyclic trajectories for
earth orbiting formations as for space probes, when
they execute in-orbit manoeuvres around a celes-
tial body. Edges represent transition trajectories
between navigation points and orbit vertices.

A path model ensures the correctness of space-
craft moves along trajectories by stating flow and
transition constraints over the vertices of the as-
sociated graph. Then, a vertex can be reached at
most once in a path, and when it is reached, the
formation must leave it (Kirshhoff law):

Vo e X, Zv(e): Zv(e)gl

865:— ecd,

Where z is a vertex of G, §;} the set of edges
incoming to x, 0, is the set of edges outgoing from
z, and v(e) € {0,1} is the valuation of edge e.

A timing model is used for the expression of en-
try date d. and exit date d, over each vertex of the
graph. If navigation points are covered in a null
time (d. = ds), orbit vertices correspond to peri-
odic moves of formation and the expression of time
spent over a vertex is slightly different:

Vi € X,,ds(2) = do(2) + § M(2z)€ + kT(z)

Where § and € are entry and exit vectors of
x, M(z) is the swithching coefficient matrix of x
according to incoming and outgoing edges, and T,
is the period of orbit onto z.

Thus, the trajectory model precisely determines
the position and time of spacecraft in the mission
plan.

3.1.2 Goal Satisfaction

The spacecraft formation mission includes the sat-
isfaction of a list of goals for observation or nav-
igation. Moreover, the standard spacecraft oper-
ation at a high level implies several other goals
that shall also be included in the mission plan. A
goal requires the use of a set of resources, avail-
able among the formation (instruments, power. . .),
and can be realized according to specific time inter-
vals and spacecraft positions and attitudes. Thus,
a goal can be realized according to specific opor-
tunities determined before the plan generation in
accordance with the trajectory graph. Each goal
oportunity is attached to a vertex of the graph.
Let O, be the set of oportunities for goal g, then
an oportunity o € O is used to realize g if the pred-
icate fized(o) is true. Of course, this means that
the time and resource constraints are verified for
this oportunity. Thus, the goal g is realized when:

Vg, realized(g) = \/ fized(o)

0€0,

Some specific spacecraft activities require a pe-
riodic activation. For instance, earth-spacecraft

communication that are made in ground station
visibility intervals. Thus, a goal can be realized
periodically according to its oportunities. In the
same way, goals that model a spacecraft activity
like thrust or attitude correction shall be realized
according to spacecraft position and attitude. A
conditional goal notion C' is introduced that en-
force a goal realization only if the trajectory and
attitude of spacecraft require it:

Vg,3v,C(g) N V,, € P & realized(g)

Where P is the path and V;,, is a vertex of P on
which an oportunity for g is satisfied.

Due to goal complexity and formation distribu-
tion, the realization of several goals in the same
time interval introduces a large complexity that is
not tractable with actual models. A goal exclusion
is so stated to ensure that several goals can’t be
realized in the same time interval:

v,glag27
[d(g1),d(g1) + D(g1)] N [d(g2),d(g2) + D(g2)] = 0

Where d is the realization date function and D is
the duration function. The realization date is fixed
precisely by global plan, duration is determined by
upper bounds according to local models.

3.1.3 Resources Consumption

At the mission planning level, both exclusive and
cumulative resources are taken into account. Each
goal requires a set of exclusive resources (instru-
ments, spacecraft...) and a set of cumulative re-
sources (power, memory, ergol...) for its real-
ization. These amounts are upper approximated
according to local models and domain knowledge.
Both cumulative and exclusive resources are allo-
cated to goals according to their needs:

VgaVPa Tealized(g) < ZFP(Sag) = N(pa g)
seF

Where p is an exclusive resource, ' is the af-
fectation function of spacecraft resource to goals
and N is the need function of goals for resource.
For cumulative resources, a consumption shall ad-
ditionaly be stated in order to ensure goal feasibil-
ity. As goals can only be realized onto vertices of
the graph, this consumption is stated only for time
that corresponds to a vertex location in the graph:

po(t) = pu(de(v)) = > (N(p,g) x R(g,v,1))

g

Where p,(t) is the value of resource p at time ¢
on vertex v and R(g,v,t) is true if goal g is realized
on vertex v before time ¢. Introducing the bound
values of resource p, it is possible to state the re-
source consumption at any time and then before
and after each goal execution.

3.2 Local Command and Control

Once a global mission plan has been computed and
transmitted by the leader, each spacecraft builds
its own local plan to manage its actions in order
to realize its part of the mission. In addition to
the mission goals given by high level planning, lo-
cal goals corresponding to spacecraft command and
safety procedures have to be realized. Like every
traditional scheduling techniques, local planning is
bounded by a time horizon 0 < t < t,,4,. Plan is
enlarged in time as necessary, leading to consider
the local planning activity as a task to be included
in action schedule. Spacecraft resources are taken
into account with high accuracy. The bound given
by global plan can be optimized such that available
resource are saved. Thus, each part of the mission
plan can be locally optimized by each agent, saving
time and resources.

3.2.1 Discrete control using constraint-
based timed automata

Spacecraft command and control is characterized
by different components to manage, including pay-
loads, communications and platform devices. Each
component is constrained by continuous physical
laws (electric power supply, temperature, engine
thrust level, ...). Already in use in the avionic do-
main, discrete state/transition automata can rep-
resent component modes as well as decision making
with respect to continuous laws. In fact, a state o*
is assimilated to a continuous behavior of the k!

component, while a transition §(c¥,o¥) models an

iV
abrupt change of behavior between states oF and
ok

In our approach, a transition 6/ is triggered at
the time ¢ + 1 when an and-composition of a set of
signals S becomes true in the interval [¢,¢ + 1[:

Sty=L A S(t+1)=T =" (of,0h)

A signal can be a command selected by the agent
or a contingent event raised by the agent environ-
ment. The first class of signal represents the agent
commanding over the components, while the sec-
ond one defines the environment stimuli on the
agent. Traditional techniques adopted by engineers

are based on deterministic reactive automata. In
any given state, the automata can reach exactly
one state. Those automata can not be adapted dy-
namically to environment changes and we propose
to widen this approach by raising the determinis-
tic assumption (such that multiple states can be
reached from a given state):

Vaf,

5t+1(af,af) ANCFt)=of = CF(t+1) = af

(Tj,

where C*(t) is the component state. During the
execution, the selection of a unique transition is
decided by instanciating commands that optimize
the path of future states according to the status of
contingent events.

3.2.2 Feasibility conditions

In our model, a component state corresponds to a
set of real-time tasks to perform R(c). As several
components may share a unique processor, the to-
tal workload assigned to a unique processor must
remain schedulable. Each real-time task r that be-
longs to a state execution, (eg. r € R(c)) is repre-
sented by an activation period 7). and a worst case
duration time ¢,. In addition to the previous con-
straints, we apply the Liu and Layland feasibility
conditions to guarantee the schedulability of all the
tasks at any time:

Vt, feasible(t) < Z Z o <1

kE reR(Cr(t) "

Other feasibility constraints, involved by on-
board cumulative resources (ergol, power sup-
ply...) may also be specified. We assume that
in a given state, a component consumes a resource
in a regular way, such that the overall resource con-
sumption statement is given among the time hori-
zon. The amount A(¢) of available resources can
be defined as follows:

Aty = At — 1) + > a(Cy(t - 1))
k

where each a(o) is a worst case consumption of
the resource in the state o.

3.2.3 Generating determistic automata

Those constraints differ from traditional resource
scheduling constraints because the cumulated
amount depends on the current state of the whole
system. Therefore, search methods like task inter-
val or edge finder can not efficiently be used to im-
prove the solving. However, the problem remains

tracktable because the number of states and tran-
sitions is limited. The problem consists in solving
the command signals and their associated time line
in order to reach the state specified by higher level
goals. Two kinds of search approaches can be con-
ducted:

e Complete search with certain external events:
consists in solving completely the commands
to be raised and their associated timing by
assuming a perfect knowledge (boolean valu-
ation in time) of contingent events raised by
the environment.

e Non-complete search with uncertain external
events: consists in solving partially the com-
mands to be raised, keeping open-disjunctions
when uncertainty remain on the boolean valu-
ation of contingent events among the time line.

4 Preliminary Results

The layered planning for spacecraft formation has
been experimented in a simulation approach. The
mission planning has been tested for formations of
one to six spacecraft, for earth orbiting and deep
space like missions, on a Sun Ultra 5 workstation.
No advanced search strategy nor heuristics have
been developed, the search has been led with the
default global solving mechanism. For orbiting mis-
sions, a plan scheduling 150 mission goals (includ-
ing periodic ones) is generated in 105 seconds. For
deep space missions, planning is complexified by
trajectory model but up to 40 goals (including con-
ditional and periodic ones) are scheduled in 80 sec-
onds onto a 20 vertices graph.

The local planning component has been less
tested. For a thruster example made of two au-
tomata with a tenth of states for each one, an op-
timal solution including synchronization point is
found in less than 4 seconds.

5 Conclusion, Further Works

We have demonstrated how relevant are layered
constraint model-based planning to the success
of missions that involve autonomous spacecraft.
Combined to MAS architecture, this enables the
solving of complex distributed planning problems
and provides a more adaptive and flexible behavior
to the group of spacecraft. Nevertheless, the way of
modeling does depend on the level of planning and
involves many assumptions, either on the planning

horizon or on the approximations. The links be-
tween planning levels should be investigated deeply
in order to enable multiple goal execution at the
same time, maximizing the formation performance
and efficiency. On the theoretical side, lattices of
assumptions should be formalized in order to dis-
tribute independent solving goals. On the practical
side, further experiments involving huge local plan-
ning examples shall be performed to extend pre-
liminary results. Advanced anytime search strate-
gies and solving heuristics shall be developed to
improve the planning reactivity.

6 Acknowledgement

This work has been conducted under ESA/ESTEC
contract. As a technical officer, we thank Eric
Bornschlegl for his continuous support as well as
his efforts for providing models of realistic target
platforms.

References

[1] G. Berry, A. Bouali, X. Fornari, E. Ledinot, E. Nas-
sor, R. de Simone, “Esterel: a formal method applied
to avionic software development”, Science of Computer
Programming, 36(2000) 5-25

[2] C. Guettier, J.C. Poncet, “Automatic Planning for
Autonomous Spacecrafts Constellation”, in Proceedings
of the 2nd NASA Intl. Workshop on Planning and
Scheduling for Space, San-Francisco, 2000

[3] M. Gondran, M. Minoux, “Graphes et algorithmes”,
Editions Eyrolles, 1995

[4] J. Jourdan, “Concurrence et coopération de modeles
multiples dans les langages de contraintes (CLP) et
(CC) : Vers une méthodologie de programmation par
modélisation”, PhD Thesis, Université Denis Diderot,
Paris VII, 1995

[5] N. Lynch, “Distributed Algorithms”, Morgan Kauf-
mann Publishers, San Mateo, CA, 1996

[6] J.M.P. O’Hare, N.R. Jennings, “Foundations of Dis-
tributed Artificial Intelligence”, Sizth-Generation Com-
puter Technology series, 1996

[7] N. Muscettola, P. Pandurang Nayak, B. Pell, B.C.
Williams, “Remote Agent: To boldly go where no Al
system has gone before”, NASA Ames Research Cen-
ter, 1998

[8] D.S. Weld, “Recent advances in AI Planning”, Tech Re-
port UW-CSE-98-10-01, Dept. of CSE, Univ. of Wash-
ington, 1998; also in AI Magazine 1999

[9] M. Woodridge, N.R. Jennings, “Intelligent Agents:
Theory and Practice”, Knowledge Engineering Review,
October 199/

