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Abstract— Autonomous agents are a challenging concept
for future unmanned air operations in hostile environments.
Previous aeronautic missions highlight the lack of on-board
reasoning abilities to increase the decision making capability,
to efficiently react to unexpected events or to adapt plans to
unexpected situation changes. If many agent-based system
approaches exhibit reasoning functionalities, the complexity
of air missions prevents from using the underlying generic
models onto realistic missions. By taking advantage of con-
straint programming techniques, this paper demonstrates
how a dedicated planning method can manage unmanned
air vehicles into a realistic mission.
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I. INTRODUCTION

Mission planning requires to tackle globally the manage-
ment of air operations, dealing simultaneously with several
related system functionalities and operational needs. As an
example, for each mission timeframe, tactical constraints
such as aircraft coordination within the formation have to
be compliant with system constraints, like resource usage
(self-protection, kerosene,...) or aircraft performance.

Recent research carried out in space [JMM+00] and aero-
nautics [Yav94] domains emphasized the benefit of using
Multi Agent Systems (MAS) [HJ96] as a constructive ap-
proach to tackle coordination and collaboration problems.
MAS allows the design of global intelligent behaviors mod-
eled through symbolic and logical representations [HJ96],
[WJ94]. For instance, it is possible to formally specify how
several agents can collaborate to perform a global ”goal
oriented” mission or to perform specific actions.

Those combinatorial problems have been widely inves-
tigated in the Constraint Programming (CP) community.
Stemming from logic programming, integer and mathemat-
ical programming, Constraint Logic Programming (CLP)
languages are recognized as powerful tools to cope with dif-
ficult and large combinatorial problems [DHS90], [GH99].
Replacing variable unification by constraint satisfaction, it
offers higher compositionality to express and solve complex
NP-Hard problems requiring mathematical structures.

This work has been led for the Western European Armement Group
within the Misure project.
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This paper first introduces the specific issues of air mis-
sions involving autonomous aircraft (§ II) before represent-
ing flying formations as a MAS (§ III). The three fol-
lowing parts (§ IV,V,VI) detail the different variables and
constraints used to model the planning problem. We will
then express the advantages of the CLP approach in term
of solving capabilities in section § III-C. At last, we will
present (§ VII) a set of experimentations led on a realistic
scenario with their subsequent results.

II. AIR MISSIONS USING AUTONOMOUS AIRCRAFT

A mission is composed of several formations, and is di-
rected by a mission leader. Each formation is in turn de-
composed in a wing commander and several wingmen, re-
spectively denoted formation leader and followers in the
sequel. The following roles are generally assigned for a
given mission:

mission leader commands the set of formations by con-
structing a global long-term plan with timing directives
during mission preparation or cruise flights;

formation leader commands and controls its formation by
providing a local medium term plan, striving to respect
mission leader directives;

followers control their attitude according to the leader
one. In the following, their temporal and spatial represen-
tation is assumed to be equivalent to the leader one.

Aircraft within a same formation have far more oppor-
tunities for communication and coordination than between
formations. Therefore, it is possible to replan within a
formation more frequently than for the whole mission. Re-
placing the pilot also removes its capability to locally plan
a subpart of the mission or to control the aircraft in a com-
plex situation. Being a formation leader or a follower, those
skills are required when considering reactions to the op-
ponent behavior, and more critically when an unexpected
threat occurs. Thus, on-line planning ability becomes nec-
essary at different scales of the mission.

A. Navigation into a hostile environment

Finding a route for each formation within the set of pos-
sible navigation points to achieve the whole mission is a
difficult matter. Nowadays, this planning problem is solved



well in advance (it corresponds to Air Task Order and Air
Command Order of NATO procedure, for example) and
cannot easily be updated during air operations. The plan-
ning problem must consider simultaneously several feasi-
bility conditions:

o collaborative constraints: the planning must take into ac-
count formations interoperability (for example, when jam-
ming while allocating weapon frequencies;

o opponent threats: some flyby areas can be highly risky
or may necessitate a specific formation (to perform Sup-
pression of Enemy Air Defense (SEAD), Battle Damage
Assessment (BDA), ...);

o aircraft performances: a given aircraft must cross a nav-
igation point respecting its own performance such as max-
imal acceleration and turning rate.

o available resources: such as kerosene, self-protection de-
vices (like decoys, jamming pods) or weaponry. Those
resource constraints will be represented at the formation
level.

B. Optimizing behaviors

Retrieving a feasible solution may not be enough for eval-
uating a mission. At every level of the mission, the com-
manding and control problem would also take into account
many optimization criteria extracted from a set of assess-
ing parameters such as air operations performance, aircraft
survivability and safety as well as mission flexibility. Most
of those parameters would necessitate more than a sim-
ple optimization criteria within a static planning process.
Planning on the fly according to mission and environment
updates would certainly tend to increase these parameters
and to make the mission more robust to opponent strategy.

III. FLYING FORMATIONS AS A MULTI-AGENT SYSTEM

A MAS is mapped to the flying formation by associat-
ing an agent to each aircraft [BSD+99]. During the mis-
sion, formation (resp. mission) leaders solve medium (resp.
long) term goals. They correspond to deliberative agents
whereas the followers behave like reactive agents, leading
to a hybrid deliberative/reactive architecture [HJ96].

A. Constraint model-based planning

The solving efficiency relies on the planning abilities of
the proactive agent. In our approach, it consists in solving
a set of combinatorial problems expressed as constraint-
based models (navigation path or aircraft dynamics). Each
addressed problem is modeled separately, but can be solved
either independentely or commonly. The modeling method
[Jou95], [Fro95], [GP00] extracts invariant from each prob-
lem and simplifies them until a tractable expression is
found. The models can then be specialized by adding
constraints corresponding to real-life assumptions. This
approach has yet proven efficient on task scheduling or
resource allocation [DHS90], [VSD95], [GH99]. By en-
abling compositional, generic and flexible way to separate
modeling from search strategy, Constraint Logic Program-
ming (CLP) efficiently sustains the approach used. Log-
ical predicates correspond to constraints interpreted over

finite domains expressible as {U, +, —, *,>,=}, U € P(R)
[VSD95]. Predicates composition is then converted into
logical expressions. This leads to a more understandable
and modular problem representation.

B. Architecture integration for on-board planning

In our approach, a formation leader must react efficiently
to any update. This involves adapting the former plan or
computing a new one according to the change importance
and the available time. Layered architectures, involving a
high-level planning and low-level execution are well suited
to combine both behaviors, according to situation aware-
ness [HV97], as successfully experimented during the Deep
Space One mission [JMM+00].

B.1 Representing the global problem using multiple models

The modeling and solving phases of the generic addressed
problem rely on a multi-model approach. As shown on fig.
[1], each model owns internally a set of variables and con-
straints and so can be solved independently of the others.
We compose them by unifying part of the variables and
adding inter-model constraints. A plan subsequently corre-
spond to a partial or complete assignement of the variables,
according to the goals.

In the addressed domain of on-board planning (see fig.
[1]), a complete plan is a set of edges to fly by for each
formation, constrained by feasible mechanical parameters
(altitude, speed, etc.). In this context, the planning phase
consists in solving all the models.

B.2 Goals specification

Schema [2] expresses the great range of possible problems
specifiable and tractable goals for defining MAS function-
alities. Once the environment is given, any subpart of the
variables can be assigned and any subpart of the models
can be solved according to the goal. Additional constraints
are added by assigning a set of variables or adding a cost
function such as cumulated time or global kerozene con-
sumption (§ II-B).

This high level of modularity enables to design several
functionalities and integrate them into the multi-agent ar-
chitecture. For instance, our experimental architecture
considers a long term planning functionality assigned to
the mission commander, and a medium term control one
assigned to each formation leader.

The long term planner (assigned to mission leader) solves
all the models and binds all the variables setting mandatory
meeting points with temporal synchronization. The mis-
sion commander ensures this functionality in time-windows
when communication is possible (before the mission or dur-
ing cruise flight), and delivers its solution to each formation
leader. Section § VII-B presents a global planning experi-
ment on a realistic scenario.

The short term controller (assigned to formation leader)
adapts solution according to the preliminary instantiation
of the models. Then, models used to repair the local plan
depends on the formation and accidents such as a tank
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subject to additional constraints on variables

Fig. 2. Specification of a practical problem

loss or a new threat detection. We detail a significant sub-
problem instance and two interesting situations in section
§ VII-C.

C. Using CP solving capabilities

The presented models are purely declarative and can be
used in different ways. This section presents how they can
deal with slightly heterogeneous problems efficiently at dif-
ferent levels of granularity. Models and search techniques
have been implemented using the Sicstus Prolog CLP(FD)
library [VSD95]. In order to solve efficiently this global
problem, mathematical composition of models is trans-
formed into a concurrent search. Each model is associated
with a solving process that explores a local solution space
to the corresponding sub-problem. Thus, processes can
exchange partial solutions by satisfying relations between
models. All solving processes can run simultaneously in or-
der to find a global solution that satisfies all the constraints
of the problem.

IV. ENVIRONMENT MODEL

This model takes into account two physical aspects of the
air mission. The spatial representation aims at modeling
the static geographical map of the area in which the mis-
sion takes place. The threat model matches the enemy’s
positions.

A. Spatial representation

For each formation, the mission environment is modeled
by a set of vertices which are the representation of naviga-
tion points. Each vertex has physical coordinates, includ-
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ing altitude. Vertices are linked by oriented edges which
are the representation of the area the formation must fly
by to reach a navigation point from another. Linked navi-
gation points are entry and exit points of the defined area.
The formation can wait on an area by flying back to the
entry point after the exit navigation point has been reached
(see fig. [3]). However, the formation must leave the area
through the exit navigation point. Thus the formation can
fly by the area 2n + 1 times, n being the count of waiting
cycles.

The graph G is denoted by G = (X,U), where X is the
set of vertices (navigation points), and U is the set of edges
(areas). It can be dynamically updated by other on-board
avionic and positioning systems.

B. Threat Model

The different formations are threatened by a group of
radars distributed along the way to the target. Each air-
craft can protect itself from the enemy by a limited ability
to hide. To represent this fact, we constrain the problem
by saying that the self-protection used during the mission
must not overcome an available amount.

Each edge is weighted by the threat it represents for a
formation to fly along. This threat depends on the altitude
of flight, on the minimal distance of the edge from the axis
of the radar and on the edge length. The threat is a static
characteristic of an edge.

The notations used in the constraints are the same as
those represented on fig. [4]. Let P be the nearest point
from the radar axis, H be its projection on the axis, M be



Fig. 4. Threat Model

the radar itself, and P(M) be its power. The edge es p is
then weighted by the term T¢, :
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The global constraint over the graph follows the cumu-
lative model described in the next section, leading to equa-
tion (1):

Y T.é.< ) SP (1)

e edge p plane

where S P, is the amount of self-protection available for
aircraft p. This constraint is easy to propagate and very
useful to prune the domains of path variables, cutting the
complexity of path planning.

V. SINGLE FORMATION PLANNING AND CONTROL

Different flight models are used to take into account a
group of flight parameters : speed, pitch angle, time at
different nav points. For each model, specific constraints
allow to control efficiently the flight parameters considered
for the pilot’s safety and the aircraft integrity. Non linear
equations extracted from the dynamics of flight [Hal84] are
simplified around typical flight values to lead to efficient
linear or quadratic constraints.

In the following, let e, , be the oriented edge linking nav-
igation point x to navigation point y, ||es,,|| be its length,
ce be the number of cycles around edge e and v, , be the
average speed flying by it. Let d., , be 1 if the patrol fol-
lows the edge (otherwise 0). Finally, let C be the kerosene
consumption on edge e. To insure an internal coherence
of the models, several constraints will be used to bind the
values of related variables.

A. Path navigation model

Path consistency is asserted by the following constraints
(2), where w™ (v) and w™ (v) are respectively the set of edges
outgoing from v and incoming into v:

Y be<

e € wt(v)

Yo € X \ {Start},

Y s <1 (2

e € w(v)

s =1 (3)

e € wt(Start)

VeeU, 6 =0=c¢c. =0 (4)

The first inequality in (2) stands for the limit conditions
of end of path. Limit condition for the starting navigation
point Start is modeled by imposing (3). Finally, equation
(4) ensures consistency between path and waiting cycles.

B. Cumulative model for resources and timing constraints

This model is useful for various discrete cumulative con-
straints, such as timing on navigation points as well as
resource consumption (kerosene, self protection). The cu-
mulative models are recursively defined with the following
generic formulation, well-known in Operation Research as
path algebra formulations [GM95]. ¢(v) is the intermediate
cumulative value when reaching navigation point v, and w,
the local weight associated to area e. We obtain equation
(5), where t(Start) = 0:

2

eu,w € w (V)

Yo e X, t(v) = e, o (We, , (2¢e, , + 1) +t(u))

(5)
C. Dynamics model

The dynamics model manages aircraft attitude using
velocity, pitch angle and acceleration. Pairs of possible
incoming/outgoing edges are propagated. Physical con-
straints implied by the aircraft limits are appropriate to
prune the domains of the different variables and solve the
global problem. The maximum pitch angle ¢,,,, and the
maximum thrust (inducing a maximum acceleration 7,4, )
are taken into account not to deteriorate the cell struc-
ture of the aircraft and the pilot’s safety. Speed is con-
strained statically to take values in the domain of flight
[mach 0.7, mach 1.3].

C.1 Speed Variable and Constraints

Speed value is strongly linked by timing to flyby dates
T, Of formation a on the different navigation points, which
is modeled by equation (6):

V€w7y S U, Ta(y) = Ta(Q?) + ||e$,y|| (6)

Vea,y

C.2 Turning Rate Constraint

This constraint links the average speed of the aircraft
with the pitch angle during turns. In order to simplify the
equations, we assume a nominal behavior characterized by:

1. no sideslip during the turn;
2. all the turn is in a same horizontal plane.

In the following feasibility condition, let R be the max-
imal distance from navigation point y to begin to turn
(R = 138 kts), g be the gravity constant, and V' be the
average speed for the whole turn. The angle between edges
e and f is denoted ae ;. Beyond e = 0.24 rad, the
turn is always feasible.

arctan <V2. .ae,f> < Gmaz

1
2.R.g
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On the angle domain [0, @q.], it is possible to reason
on tan (¢maz)- Lastly, by replacing V' by the approxima-
tion V = (%), the feasibility condition becomes linear
according to problem variables, since the right-hand term
does not contain any constrained variable and can be stat-
ically pre-calculated. This results in inequality (7):

2.Ryg

Ve + Vf < 2.
Qe, f

tg(dmaz)-—— (7)

C.3 Acceleration

The acceleration is discretized on the edge BE. Let
Gimaz be the maximum acceleration worth to the pilot or
the cell structure. Ensuring safety leads to the condition
ﬁ.(‘/f — V.) < Giuaz- Using the minimal static over
approximation with distance ||BE|| = R.a.,f, the condi-
tion is recasted into the following quadratic constraint (8):

1
R.Oéej

(Vf - ‘/e)(vf + ‘/6) S 2-Gmaz (8)

D. Consumption Constraints

The consumption is calculated on each edge taken by
the formation, for a turboreactor plane. The constraints
are based on thrust, drag and air density calculus. Let
p(h) be the air density at altitude h, h(x) be the altitude
of vertex x, and k1 1, k1,2 and k; 3 be three constants of the
aircraft used, depending of its specific consumption, drag
when incidence = 0, wing surface and aspect ratio.

The following equation contains a term for a plane flight
and one for the overcost induced by the altitude changings.

Cem,y = 6em,y' ||e$7y|| .
1 h(y) — h(x)
i 1 I(y) — hix)
e P W) sl S el
h
where p— (z) -2|- (y)

In the domain of flight considered, we can linearize the
equation around mach 1 with a limited loss of quality of
the results obtained. Replacing v., , by a(1+wu,, ,) where

formation a ‘%_%/

formation b

Fig. 6. Formation b covers Formation a while entering area ez y

a is the sound celerity and u., , is in [~0.3,0.3], and then
linearizing the equation we obtain (9):

C,

Ca,y

= 662,3,' [K/371 + K/3,2-Uem,y] (9)

where r3 1 and k32 are linear combinations of k1 1, k1,2
and s 3 ponderated by terms containing p(p) and a.

The global consumption is obtained for each aircraft by
cumulating the consumption on each edge. It is urged not
to overcome the initial amount of kerozene, which can re-
veal pruning-efficient at the end of the mission.

VI. INTER FORMATION PLANNING WITH
COLLABORATIVE MODELS

Inter-formation coordination and collaboration can be
defined by a new constraint set called collaboration con-
straints.

Let t,(z) be the flyby date of formation a on navigation
point z, as defined by the cumulative model. As x is an
exit point for an area and an entry point for another area,
to(z) is the date of a transition between two areas. A basic
coordination constraint will be defined as (10):

ta(w) +dmzn S tb(y) S ta(w) +dmaz (]-0)
Thus, another transition date t,(y) can be constrained
to a sliding time window of fixed width d,,4.

depending on t,(x).

dmin;

This generic constraint scheme acts as a powerful basis
for building any higher level collaboration constraint. We
have actually implemented several such constraints like ex-
clusive or joint flyby of an area, formation covering while
entering, crossing or exiting an area, and successive oper-
ation in an area. In all these constraints, d,,;, and d,,qz
remain useful for defining minimum and maximum delays,
making constraints more or less flexible.

VII. EXPERIMENTATION ON A REALISTIC SCENARIO

Experimentation on the models described above
(§ IV,V,VI) has been done on a realistic scenario depicted
in fig. [9]. The problem is to find a feasible navigation plan
for 4 flying formations among 28 nav points, connected by
65 edges, satisfying 12 coordination constraints and op-
posed to 14 sol-air sites threats. Realistic values have also
been chosen for aircraft parameters, characterizing mod-
ern air fighters. The overall mission is depicted in fig. [7],
where the expert solution is represented.



Fig. 7. Expert solution on the real map

A. Mission inter-operability

All formations are coming from the same nav point s;.
Formations F} and F> must cross simultaneously nav point
s¢ to perform SEAD. Formations F3 and Fy must cross nav
point s5, and then take different routes (resp. by s7, sio,
s12 and sg, s12). Threats are localized in the sg, sg zone,
where the mission objective is (imposed as a constraint).

Formation F, must cross nav point s; before formation
F3, to perform a BDA. In the same way, to satisfy system
inter-operability, formation F3 must cross nav point sy be-
fore formation Fj crosses nav point sg. Formations F}, Fj
and Fy must escape by nav point s;» and formation Fb by
nav point s11. Those mission interoperability requirements
have been represented using the coordination formalisms.

B. The long-term planning problem instance

In our approach, solving the global problem corresponds
to a long-term planning function assigned to the mission
leader. The problem under consideration involves solving
a conjunction of all the models described in fig. [1] and
minimizing the total duration of the mission as a cost ob-
jective, such as formulated in fig. [8]. Fig. [7] presents the
expert solution, characterized by a loop between s, and sy
for satisfying coordination constraints.

Fig. [9] pictures the graph that models the mission envi-
ronment, structuring the input problem!. Aircraft poten-
tial trajectories have been interpolated and involve several

I The experiments have been performed using the standard interna-
tional units (m,m.s~1,m.s~2)

For each Formation
find solutions for {all models variables}
such that {minimize the mission completion time}
subject to coordination constraints between formations

Fig. 8. Specification of the long-term planning problem

Fig. 9. Planner solution on the graph structure

altitudes for more accurate experimentations. The paths
of the solution described in the sequel are highlighted.

B.1 On the problem complexity

Due to the number of variables and the hybrid nature of
the global problem, it is difficult to give a good approxima-
tion of the complexity. The problem is to solve a feasible
navigation plan under cumulative constraints. It differs
from the class of scheduling problems with cumulative re-
sources (known to be NP-hard) as we must construct a con-
sistent set of tasks and not only assign a timeline to each
possible task. Furthermore, compared to traditional plan-
ning approaches [W98] (also characterized as NP-hard),
additional domain-specific constraints are taken into ac-
count. In the presented example, the problem instance is
composed of 792 discrete variables and 15186 constraints.
Optimization stands for minimizing the global mission du-
ration, other optimization criteria closer to criteria pre-
sented in § II-B can also be formulated.

B.2 Experimenting the long-term planning functionality

A solution is retrieved by our implementation in 30 sec-
onds on a Pentium II/500. For simplicity, the following
tables summarize results and give main values. Timings
are given in seconds, while the altitudes are denoted low
(< 3500 ft) and high (> 3500 ft).



Fy S1 —> 82 — 815 — S14 — S6 — S12

area lentry | texit | speed | cycles | altitude
§1 — §2 0 55 0.9 0 high
S$2 — S15 55 106 1.1 0 high
S15 — S14 106 125 1.3 0 high
$14 — Sg 125 149 1.3 0 high
$6 — S12 149 163 1.1 0 high
Fy : s1 — 82 — S15 — S14 —> S6 — S8 —> §7 — S11
area, tentry terit speed | cycles | altitude
S1 — §2 0 55 0.9 0 high
$2 — S15 55 106 1.1 0 high
S15 — S14 106 125 1.3 0 high
$14 — Sg 125 149 1.3 0 high
S6 — S8 149 162 1.3 0 high
§8 — S7 162 166 1.3 0 high
ST — S11 166 178 1.2 0 high
F3 ;81 — 82 — S84 — 85 —> S13 —» 87 — S10 — S12
area tentry | lexit | speed | cycles altitude
$1 — S2 0 45 1.1 0 high
§2 — S4 45 53 1.1 0 high
S4 — S5 53 150 0.9 0 high — low
S5 —» 513 149 166 0.7 0 low
s$13 — S7 166 172 1.3 0 low
$7 — S10 172 181 1.3 0 low — high
s10 — S10 ¢ 181 183 1.3 0 high — low
S10 — S12 183 202 1.0 0 low — high

@ F3 went into a dive because of a limited amount of protection
Fy: s1—2X (82 = 84) = S5 — S9 — 512

area tentry | tewit | speed | cycles |  altitude
§1 — §2 0 43 1.3 0 high — low
S§2 —> S4 43 82 0.7 1 low
S4 — S5 82 165 1.0 0 low
$5 — S9 165 192 0.8 0 low — high
S9 — §12 192 209 1.3 0 high

Compared to the solution given by military experts (ver-
tices s2, s4, fig. [7]), the waiting points are located on simi-
lar edges. Furthermore, the formation speeds and altitudes
are varying when necessary.

C. The formation command and control medium term
planning problem

Once a first global plan has been delivered by the mis-
sion leader, each formation leader can refine and adapt its
own plan according to a more accurate representation of
its immediate environment. In this scenario, coordination
constraints have been already solved by the mission leader
and are relaxed in the cost function for each formation.

Starting from the initial global plan, each formation
can solve incrementally its own plan by minimizing delays
with pre-planed meeting dates. The global problem rep-
resented in fig. [1] can be decomposed into independent
sub-problems specified in fig. [10]. Therefore, the problem
is distributed over the set of formations, where the global
quality of coordination is the common objective.

For each Formation
find solutions for {path planning, resource, speed}
such that {maximize the synchronization
with the global long-term plan}
subject to O

Fig. 10. Specification of the formation command and control problem

In each experiment, the planner gives a first solution in
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= Optimal (3430 ms), 2 and 6 sec late

Fig. 11. Formation planning with over-constrained self-protection
(5000)

a few seconds (0.64 s,1.60 s,1.29 s,1.28 s)2. Although
we may not guarantee an optimal solution within aircraft
dynamics time frame, due to the incremental nature of the
optimization, good solutions (represented as grey lines in
fig. [11]) can be found in reasonable time.

C.1 Resource constraints experiments

As a first problem instance, the global planning level
may have over-estimated the self protection resource of for-
mation F,. Thus the existing plan is no longer feasible,
and should be locally recovered by the formation leader.
The following experiments show various situations for this
formation where the selfprotection resource is bounded?
respectively by 9000, 7000, 5000 instead of 10000 as as-
serted by the mission leader. Satisfying the actual resource
level generates safer trajectories characterized by an alti-
tude lower than the initial one (represented in dashed lines
in fig. [11]), but delays some dates of synchronization of the
global plan. An optimal solution is found for each situation
(represented as a dark line in fig. [11]), that characterizes
a trade-off between safer altitudes and short delays. In the
three examples, it took half a minute for the planner to
find the optimal solution in the worst case (9000).

C.2 Unexpected threat experiments

In the second problem instance, an unexpected threat is
discovered by the formation between sy and sg (represented
as a cross in fig. [12]). This urges the formation leader to
replan an escape path that maximize the ability for the
mission leader to recover the whole mission. As shown in
fig. [12], several potential paths are proposed by the on-
board mission manager as an update of the input graph
structure. The planner chooses a safer path, but delays
the meeting date up to 13 s.

VIII. CONCLUSION

We have proposed a highly modular constraint based
formulation for planning aircraft missions that involve au-
tonomous behaviors. A better alternative has been given

2Those values correspond to a run performed by a code interpreter,
and can be divided by three by optimized compilation

3The unit of this model is arbitrary, it represents the aircraft ability
to jam a threat.



Fig. 12. Formation planning with an unexpected threat

to heuristic-based behavior of traditional multi-agent plan-
ners and a new way, sketched in [GP00], has been opened
to tackle complex cooperative behaviors. We have demon-
strated that the solving methods described in this pa-
per can be integrated into dedicated multi-agent architec-
tures at different levels, according to reactivity and locality
trade-off. Furthermore, depending on the situation aware-
ness, a multi-agent architecture can decide to solve over a
same related model-based representation or to distribute
the solving over a set of independent problem instances.

The pertinence of using Constraint Model Based Pro-
gramming for specifying and solving the complex problem
of a Multi-Agent plan has been shown. Generally stud-
ied independently, several models extracted from heteroge-
neous domains, such as the theory of dynamics of flight,
tactics and operational research, have been expressed in
a single formulation. The set of models is not exhaustive
and many other domains may also be addressed. This work
highlights the feasibility of the approach for tackling com-
plex MAS problems by solving these different models con-
currently.

This demonstration relies onto approximations, discrete
representations that have been performed to implement fi-
nite domain constraints. Those models are interesting for
medium and long term planning but should be refined to
achieve short term control. In spite of those approxima-
tions, experiments onto realistic scenarios have exhibited
interesting results, relevant to the operational expectations
summarized in section § II-A and § II-B. Furthermore, with
little work on solving strategies, the computation time re-
mains in mission planning timeframe. Lastly, providing an
optimized solution at any time is of a particular interest
for embedded purposes.

Further works will investigate finer grain anytime search
strategies for a better reactivity, when minor changes to
the current plan are needed. Stronger search strategies,
involving incremental concurrent optimization and branch
and bound can also be studied for major planning updates.
To be efficiently integrated into future MAS architectures,
trade-offs between these different levels of reactivity have
to be formalized. Lastly, the distribution of search over
several agents will also be extended to weakly dependent

sub-problems.
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