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omAbstra
t| Autonomous agents are a 
hallenging 
on
eptfor future unmanned air operations in hostile environments.Previous aeronauti
 missions highlight the la
k of on-boardreasoning abilities to in
rease the de
ision making 
apability,to eÆ
iently rea
t to unexpe
ted events or to adapt plans tounexpe
ted situation 
hanges. If many agent-based systemapproa
hes exhibit reasoning fun
tionalities, the 
omplexityof air missions prevents from using the underlying generi
models onto realisti
 missions. By taking advantage of 
on-straint programming te
hniques, this paper demonstrateshow a dedi
ated planning method 
an manage unmannedair vehi
les into a realisti
 mission.Keywords| Autonomy, Mission Planning, Multi-AgentSystem, Constraint ProgrammingI. Introdu
tionMission planning requires to ta
kle globally the manage-ment of air operations, dealing simultaneously with severalrelated system fun
tionalities and operational needs. As anexample, for ea
h mission timeframe, ta
ti
al 
onstraintssu
h as air
raft 
oordination within the formation have tobe 
ompliant with system 
onstraints, like resour
e usage(self-prote
tion, kerosene,. . . ) or air
raft performan
e.Re
ent resear
h 
arried out in spa
e [JMM+00℄ and aero-nauti
s [Yav94℄ domains emphasized the bene�t of usingMulti Agent Systems (MAS) [HJ96℄ as a 
onstru
tive ap-proa
h to ta
kle 
oordination and 
ollaboration problems.MAS allows the design of global intelligent behaviors mod-eled through symboli
 and logi
al representations [HJ96℄,[WJ94℄. For instan
e, it is possible to formally spe
ify howseveral agents 
an 
ollaborate to perform a global "goaloriented" mission or to perform spe
i�
 a
tions.Those 
ombinatorial problems have been widely inves-tigated in the Constraint Programming (CP) 
ommunity.Stemming from logi
 programming, integer and mathemat-i
al programming, Constraint Logi
 Programming (CLP)languages are re
ognized as powerful tools to 
ope with dif-�
ult and large 
ombinatorial problems [DHS90℄, [GH99℄.Repla
ing variable uni�
ation by 
onstraint satisfa
tion, ito�ers higher 
ompositionality to express and solve 
omplexNP-Hard problems requiring mathemati
al stru
tures.This work has been led for the Western European Armement Groupwithin the Misure proje
t.

This paper �rst introdu
es the spe
i�
 issues of air mis-sions involving autonomous air
raft (x II) before represent-ing 
ying formations as a MAS (x III). The three fol-lowing parts (x IV,V,VI) detail the di�erent variables and
onstraints used to model the planning problem. We willthen express the advantages of the CLP approa
h in termof solving 
apabilities in se
tion x III-C. At last, we willpresent (x VII) a set of experimentations led on a realisti
s
enario with their subsequent results.II. Air missions using autonomous air
raftA mission is 
omposed of several formations, and is di-re
ted by a mission leader. Ea
h formation is in turn de-
omposed in a wing 
ommander and several wingmen, re-spe
tively denoted formation leader and followers in thesequel. The following roles are generally assigned for agiven mission:mission leader 
ommands the set of formations by 
on-stru
ting a global long-term plan with timing dire
tivesduring mission preparation or 
ruise 
ights;formation leader 
ommands and 
ontrols its formation byproviding a lo
al medium term plan, striving to respe
tmission leader dire
tives;followers 
ontrol their attitude a

ording to the leaderone. In the following, their temporal and spatial represen-tation is assumed to be equivalent to the leader one.Air
raft within a same formation have far more oppor-tunities for 
ommuni
ation and 
oordination than betweenformations. Therefore, it is possible to replan within aformation more frequently than for the whole mission. Re-pla
ing the pilot also removes its 
apability to lo
ally plana subpart of the mission or to 
ontrol the air
raft in a 
om-plex situation. Being a formation leader or a follower, thoseskills are required when 
onsidering rea
tions to the op-ponent behavior, and more 
riti
ally when an unexpe
tedthreat o

urs. Thus, on-line planning ability be
omes ne
-essary at di�erent s
ales of the mission.A. Navigation into a hostile environmentFinding a route for ea
h formation within the set of pos-sible navigation points to a
hieve the whole mission is adiÆ
ult matter. Nowadays, this planning problem is solved



2well in advan
e (it 
orresponds to Air Task Order and AirCommand Order of NATO pro
edure, for example) and
annot easily be updated during air operations. The plan-ning problem must 
onsider simultaneously several feasi-bility 
onditions:� 
ollaborative 
onstraints: the planning must take into a
-
ount formations interoperability (for example, when jam-ming while allo
ating weapon frequen
ies;� opponent threats: some 
yby areas 
an be highly riskyor may ne
essitate a spe
i�
 formation (to perform Sup-pression of Enemy Air Defense (SEAD), Battle DamageAssessment (BDA), . . . );� air
raft performan
es: a given air
raft must 
ross a nav-igation point respe
ting its own performan
e su
h as max-imal a

eleration and turning rate.� available resour
es: su
h as kerosene, self-prote
tion de-vi
es (like de
oys, jamming pods) or weaponry. Thoseresour
e 
onstraints will be represented at the formationlevel.B. Optimizing behaviorsRetrieving a feasible solution may not be enough for eval-uating a mission. At every level of the mission, the 
om-manding and 
ontrol problem would also take into a

ountmany optimization 
riteria extra
ted from a set of assess-ing parameters su
h as air operations performan
e, air
raftsurvivability and safety as well as mission 
exibility. Mostof those parameters would ne
essitate more than a sim-ple optimization 
riteria within a stati
 planning pro
ess.Planning on the 
y a

ording to mission and environmentupdates would 
ertainly tend to in
rease these parametersand to make the mission more robust to opponent strategy.III. Flying formations as a Multi-Agent SystemA MAS is mapped to the 
ying formation by asso
iat-ing an agent to ea
h air
raft [BSD+99℄. During the mis-sion, formation (resp. mission) leaders solve medium (resp.long) term goals. They 
orrespond to deliberative agentswhereas the followers behave like rea
tive agents, leadingto a hybrid deliberative/rea
tive ar
hite
ture [HJ96℄.A. Constraint model-based planningThe solving eÆ
ien
y relies on the planning abilities ofthe proa
tive agent. In our approa
h, it 
onsists in solvinga set of 
ombinatorial problems expressed as 
onstraint-based models (navigation path or air
raft dynami
s). Ea
haddressed problem is modeled separately, but 
an be solvedeither independentely or 
ommonly. The modeling method[Jou95℄, [Fro95℄, [GP00℄ extra
ts invariant from ea
h prob-lem and simpli�es them until a tra
table expression isfound. The models 
an then be spe
ialized by adding
onstraints 
orresponding to real-life assumptions. Thisapproa
h has yet proven eÆ
ient on task s
heduling orresour
e allo
ation [DHS90℄, [VSD95℄, [GH99℄. By en-abling 
ompositional, generi
 and 
exible way to separatemodeling from sear
h strategy, Constraint Logi
 Program-ming (CLP) eÆ
iently sustains the approa
h used. Log-i
al predi
ates 
orrespond to 
onstraints interpreted over

�nite domains expressible as fU;+;�; �; >;=g; U 2 P(R)[VSD95℄. Predi
ates 
omposition is then 
onverted intologi
al expressions. This leads to a more understandableand modular problem representation.B. Ar
hite
ture integration for on-board planningIn our approa
h, a formation leader must rea
t eÆ
ientlyto any update. This involves adapting the former plan or
omputing a new one a

ording to the 
hange importan
eand the available time. Layered ar
hite
tures, involving ahigh-level planning and low-level exe
ution are well suitedto 
ombine both behaviors, a

ording to situation aware-ness [HV97℄, as su

essfully experimented during the DeepSpa
e One mission [JMM+00℄.B.1 Representing the global problem using multiple modelsThe modeling and solving phases of the generi
 addressedproblem rely on a multi-model approa
h. As shown on �g.[1℄, ea
h model owns internally a set of variables and 
on-straints and so 
an be solved independently of the others.We 
ompose them by unifying part of the variables andadding inter-model 
onstraints. A plan subsequently 
orre-spond to a partial or 
omplete assignement of the variables,a

ording to the goals.In the addressed domain of on-board planning (see �g.[1℄), a 
omplete plan is a set of edges to 
y by for ea
hformation, 
onstrained by feasible me
hani
al parameters(altitude, speed, et
.). In this 
ontext, the planning phase
onsists in solving all the models.B.2 Goals spe
i�
ationS
hema [2℄ expresses the great range of possible problemsspe
i�able and tra
table goals for de�ning MAS fun
tion-alities. On
e the environment is given, any subpart of thevariables 
an be assigned and any subpart of the models
an be solved a

ording to the goal. Additional 
onstraintsare added by assigning a set of variables or adding a 
ostfun
tion su
h as 
umulated time or global kerozene 
on-sumption (x II-B).This high level of modularity enables to design severalfun
tionalities and integrate them into the multi-agent ar-
hite
ture. For instan
e, our experimental ar
hite
ture
onsiders a long term planning fun
tionality assigned tothe mission 
ommander, and a medium term 
ontrol oneassigned to ea
h formation leader.The long term planner (assigned to mission leader) solvesall the models and binds all the variables setting mandatorymeeting points with temporal syn
hronization. The mis-sion 
ommander ensures this fun
tionality in time-windowswhen 
ommuni
ation is possible (before the mission or dur-ing 
ruise 
ight), and delivers its solution to ea
h formationleader. Se
tion x VII-B presents a global planning experi-ment on a realisti
 s
enario.The short term 
ontroller (assigned to formation leader)adapts solution a

ording to the preliminary instantiationof the models. Then, models used to repair the lo
al plandepends on the formation and a

idents su
h as a tank
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Path Planning ModelÆeiKir
hho� Laws Operational time Modelti, ÆekiCumulative ModelCumulative ModelThreat ModelÆei , globThreat Waiting 
y
les Model
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Rei�ed Coordinationbeween formationsSpeed ModelTurning RateA

elerationvei

Plan 
onsisten
yÆe = 0) 
e = 0Mid-term Control Uni�
ation Uni�
ationNavigation point orderingUni�
ation Edge duration
Uni�
ation Fly by duration

Syn
hronization Constraints
Fig. 1. The multi-model approa
h of on-board planningFor ea
h Formationfind solutions for {set of variables}su
h that optimize an obje
tive fun
tioninvolving a subset of variablessubje
t to additional 
onstraints on variablesFig. 2. Spe
i�
ation of a pra
ti
al problemloss or a new threat dete
tion. We detail a signi�
ant sub-problem instan
e and two interesting situations in se
tionx VII-C.C. Using CP solving 
apabilitiesThe presented models are purely de
larative and 
an beused in di�erent ways. This se
tion presents how they 
andeal with slightly heterogeneous problems eÆ
iently at dif-ferent levels of granularity. Models and sear
h te
hniqueshave been implemented using the Si
stus Prolog CLP(FD)library [VSD95℄. In order to solve eÆ
iently this globalproblem, mathemati
al 
omposition of models is trans-formed into a 
on
urrent sear
h. Ea
h model is asso
iatedwith a solving pro
ess that explores a lo
al solution spa
eto the 
orresponding sub-problem. Thus, pro
esses 
anex
hange partial solutions by satisfying relations betweenmodels. All solving pro
esses 
an run simultaneously in or-der to �nd a global solution that satis�es all the 
onstraintsof the problem.IV. Environment ModelThis model takes into a

ount two physi
al aspe
ts of theair mission. The spatial representation aims at modelingthe stati
 geographi
al map of the area in whi
h the mis-sion takes pla
e. The threat model mat
hes the enemy'spositions.A. Spatial representationFor ea
h formation, the mission environment is modeledby a set of verti
es whi
h are the representation of naviga-tion points. Ea
h vertex has physi
al 
oordinates, in
lud-

(2n + 1 flybyes)

entry point exit pointFig. 3. Flyby of an areaing altitude. Verti
es are linked by oriented edges whi
hare the representation of the area the formation must 
yby to rea
h a navigation point from another. Linked navi-gation points are entry and exit points of the de�ned area.The formation 
an wait on an area by 
ying ba
k to theentry point after the exit navigation point has been rea
hed(see �g. [3℄). However, the formation must leave the areathrough the exit navigation point. Thus the formation 
an
y by the area 2n+ 1 times, n being the 
ount of waiting
y
les.The graph G is denoted by G = (X;U), where X is theset of verti
es (navigation points), and U is the set of edges(areas). It 
an be dynami
ally updated by other on-boardavioni
 and positioning systems.B. Threat ModelThe di�erent formations are threatened by a group ofradars distributed along the way to the target. Ea
h air-
raft 
an prote
t itself from the enemy by a limited abilityto hide. To represent this fa
t, we 
onstrain the problemby saying that the self-prote
tion used during the missionmust not over
ome an available amount.Ea
h edge is weighted by the threat it represents for aformation to 
y along. This threat depends on the altitudeof 
ight, on the minimal distan
e of the edge from the axisof the radar and on the edge length. The threat is a stati

hara
teristi
 of an edge.The notations used in the 
onstraints are the same asthose represented on �g. [4℄. Let P be the nearest pointfrom the radar axis, H be its proje
tion on the axis, M be
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cone threat = constant

radar

P

H
RA

B

MFig. 4. Threat Modelthe radar itself, and P(M) be its power. The edge eA;B isthen weighted by the term TeA;B :TeA;B = XM radar P (M): kMHkkMPk : keA;BkThe global 
onstraint over the graph follows the 
umu-lative model des
ribed in the next se
tion, leading to equa-tion (1): Xe edge Te:Æe � Xp planeSPp (1)where SPp is the amount of self-prote
tion available forair
raft p. This 
onstraint is easy to propagate and veryuseful to prune the domains of path variables, 
utting the
omplexity of path planning.V. Single formation planning and 
ontrolDi�erent 
ight models are used to take into a

ount agroup of 
ight parameters : speed, pit
h angle, time atdi�erent nav points. For ea
h model, spe
i�
 
onstraintsallow to 
ontrol eÆ
iently the 
ight parameters 
onsideredfor the pilot's safety and the air
raft integrity. Non linearequations extra
ted from the dynami
s of 
ight [Hal84℄ aresimpli�ed around typi
al 
ight values to lead to eÆ
ientlinear or quadrati
 
onstraints.In the following, let ex;y be the oriented edge linking nav-igation point x to navigation point y, kex;yk be its length,
e be the number of 
y
les around edge e and vex;y be theaverage speed 
ying by it. Let Æex;y be 1 if the patrol fol-lows the edge (otherwise 0). Finally, let Ce be the kerosene
onsumption on edge e. To insure an internal 
oheren
eof the models, several 
onstraints will be used to bind thevalues of related variables.A. Path navigation modelPath 
onsisten
y is asserted by the following 
onstraints(2), where !+(v) and !�(v) are respe
tively the set of edgesoutgoing from v and in
oming into v:8v 2 X n fStartg; Xe 2 !+(v)Æe � Xe 2 !�(v)Æe � 1 (2)Xe 2 !+(Start)Æe = 1 (3)

8e 2 U; Æe = 0) 
e = 0 (4)The �rst inequality in (2) stands for the limit 
onditionsof end of path. Limit 
ondition for the starting navigationpoint Start is modeled by imposing (3). Finally, equation(4) ensures 
onsisten
y between path and waiting 
y
les.B. Cumulative model for resour
es and timing 
onstraintsThis model is useful for various dis
rete 
umulative 
on-straints, su
h as timing on navigation points as well asresour
e 
onsumption (kerosene, self prote
tion). The 
u-mulative models are re
ursively de�ned with the followinggeneri
 formulation, well-known in Operation Resear
h aspath algebra formulations [GM95℄. t(v) is the intermediate
umulative value when rea
hing navigation point v, and wethe lo
al weight asso
iated to area e. We obtain equation(5), where t(Start) = 0:8v 2 X; t(v) = Xeu;v 2 !�(v)Æeu;v (weu;v (2
eu;v + 1) + t(u))(5)C. Dynami
s modelThe dynami
s model manages air
raft attitude usingvelo
ity, pit
h angle and a

eleration. Pairs of possiblein
oming/outgoing edges are propagated. Physi
al 
on-straints implied by the air
raft limits are appropriate toprune the domains of the di�erent variables and solve theglobal problem. The maximum pit
h angle �max and themaximum thrust (indu
ing a maximum a

eleration 
max)are taken into a

ount not to deteriorate the 
ell stru
-ture of the air
raft and the pilot's safety. Speed is 
on-strained stati
ally to take values in the domain of 
ight[ma
h 0:7;ma
h 1:3℄.C.1 Speed Variable and ConstraintsSpeed value is strongly linked by timing to 
yby dates�a of formation a on the di�erent navigation points, whi
his modeled by equation (6):8ex;y 2 U; �a(y) = �a(x) + kex;ykvex;y (6)C.2 Turning Rate ConstraintThis 
onstraint links the average speed of the air
raftwith the pit
h angle during turns. In order to simplify theequations, we assume a nominal behavior 
hara
terized by:1. no sideslip during the turn;2. all the turn is in a same horizontal plane.In the following feasibility 
ondition, let R be the max-imal distan
e from navigation point y to begin to turn(R = 138 kts), g be the gravity 
onstant, and V be theaverage speed for the whole turn. The angle between edgese and f is denoted �e;f . Beyond �max = 0:24 rad, theturn is always feasible.ar
tan�V 2: 12:R:g :�e;f� � �max
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zone in which

follows the edge
the aircraft

circle in which the formation
is allowed to turn

a

x

y

R

BE
Ve

z

VfFig. 5. Model of the turning rateOn the angle domain [0; �max℄, it is possible to reasonon tan (�max). Lastly, by repla
ing V by the approxima-tion V = �Ve+Vf2 �, the feasibility 
ondition be
omes lineara

ording to problem variables, sin
e the right-hand termdoes not 
ontain any 
onstrained variable and 
an be stat-i
ally pre-
al
ulated. This results in inequality (7):Ve + Vf � 2:stg(�max):2:R:g�e;f (7)C.3 A

elerationThe a

eleration is dis
retized on the edge BE. LetGmax be the maximum a

eleration worth to the pilot orthe 
ell stru
ture. Ensuring safety leads to the 
onditionVkBEk :(Vf � Ve) � Gmax. Using the minimal stati
 overapproximation with distan
e kBEk = R:�e;f , the 
ondi-tion is re
asted into the following quadrati
 
onstraint (8):1R:�e;f :(Vf � Ve):(Vf + Ve) � 2:Gmax (8)D. Consumption ConstraintsThe 
onsumption is 
al
ulated on ea
h edge taken bythe formation, for a turborea
tor plane. The 
onstraintsare based on thrust, drag and air density 
al
ulus. Let�(h) be the air density at altitude h, h(x) be the altitudeof vertex x, and �1;1, �1;2 and �1;3 be three 
onstants of theair
raft used, depending of its spe
i�
 
onsumption, dragwhen in
iden
e = 0, wing surfa
e and aspe
t ratio.The following equation 
ontains a term for a plane 
ightand one for the over
ost indu
ed by the altitude 
hangings.Cex;y = Æex;y : kex;yk :"�1;1:v2ex;y :� (p) + �1;2: 1v2ex;y :� (p) + �1;3: h(y)� h(x)vex;y : kex;yk#where p = h(x) + h(y)2In the domain of 
ight 
onsidered, we 
an linearize theequation around ma
h 1 with a limited loss of quality ofthe results obtained. Repla
ing vex;y by a(1+uex;y ) where

x y

formation b

formation aFig. 6. Formation b 
overs Formation a while entering area ex;ya is the sound 
elerity and uex;y is in [�0:3; 0:3℄, and thenlinearizing the equation we obtain (9):Cex;y = Æex;y : ��3;1 + �3;2:uex;y � (9)where �3;1 and �3;2 are linear 
ombinations of �1;1, �1;2and �1;3 ponderated by terms 
ontaining �(p) and a.The global 
onsumption is obtained for ea
h air
raft by
umulating the 
onsumption on ea
h edge. It is urged notto over
ome the initial amount of kerozene, whi
h 
an re-veal pruning-eÆ
ient at the end of the mission.VI. Inter formation planning with
ollaborative modelsInter-formation 
oordination and 
ollaboration 
an bede�ned by a new 
onstraint set 
alled 
ollaboration 
on-straints.Let ta(x) be the 
yby date of formation a on navigationpoint x, as de�ned by the 
umulative model. As x is anexit point for an area and an entry point for another area,ta(x) is the date of a transition between two areas. A basi

oordination 
onstraint will be de�ned as (10):ta(x) + dmin � tb(y) � ta(x) + dmax (10)Thus, another transition date tb(y) 
an be 
onstrainedto a sliding time window of �xed width dmax � dmin,depending on ta(x).This generi
 
onstraint s
heme a
ts as a powerful basisfor building any higher level 
ollaboration 
onstraint. Wehave a
tually implemented several su
h 
onstraints like ex-
lusive or joint 
yby of an area, formation 
overing whileentering, 
rossing or exiting an area, and su

essive oper-ation in an area. In all these 
onstraints, dmin and dmaxremain useful for de�ning minimum and maximum delays,making 
onstraints more or less 
exible.VII. Experimentation on a realisti
 s
enarioExperimentation on the models des
ribed above(x IV,V,VI) has been done on a realisti
 s
enario depi
tedin �g. [9℄. The problem is to �nd a feasible navigation planfor 4 
ying formations among 28 nav points, 
onne
ted by65 edges, satisfying 12 
oordination 
onstraints and op-posed to 14 sol-air sites threats. Realisti
 values have alsobeen 
hosen for air
raft parameters, 
hara
terizing mod-ern air �ghters. The overall mission is depi
ted in �g. [7℄,where the expert solution is represented.
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Fig. 7. Expert solution on the real mapA. Mission inter-operabilityAll formations are 
oming from the same nav point s1.Formations F1 and F2 must 
ross simultaneously nav points6 to perform SEAD. Formations F3 and F4 must 
ross navpoint s5, and then take di�erent routes (resp. by s7, s10,s12 and s9, s12). Threats are lo
alized in the s9; s8 zone,where the mission obje
tive is (imposed as a 
onstraint).Formation F2 must 
ross nav point s7 before formationF3, to perform a BDA. In the same way, to satisfy systeminter-operability, formation F3 must 
ross nav point s7 be-fore formation F4 
rosses nav point s9. Formations F1, F3and F4 must es
ape by nav point s12 and formation F2 bynav point s11. Those mission interoperability requirementshave been represented using the 
oordination formalisms.B. The long-term planning problem instan
eIn our approa
h, solving the global problem 
orrespondsto a long-term planning fun
tion assigned to the missionleader. The problem under 
onsideration involves solvinga 
onjun
tion of all the models des
ribed in �g. [1℄ andminimizing the total duration of the mission as a 
ost ob-je
tive, su
h as formulated in �g. [8℄. Fig. [7℄ presents theexpert solution, 
hara
terized by a loop between s2 and s4for satisfying 
oordination 
onstraints.Fig. [9℄ pi
tures the graph that models the mission envi-ronment, stru
turing the input problem1. Air
raft poten-tial traje
tories have been interpolated and involve several1The experiments have been performed using the standard interna-tional units (m;m:s�1;m:s�2)

For ea
h Formationfind solutions for {all models variables}su
h that {minimize the mission 
ompletion time}subje
t to 
oordination 
onstraints between formationsFig. 8. Spe
i�
ation of the long-term planning problem
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F1
F2
F3
F4Fig. 9. Planner solution on the graph stru
turealtitudes for more a

urate experimentations. The pathsof the solution des
ribed in the sequel are highlighted.B.1 On the problem 
omplexityDue to the number of variables and the hybrid nature ofthe global problem, it is diÆ
ult to give a good approxima-tion of the 
omplexity. The problem is to solve a feasiblenavigation plan under 
umulative 
onstraints. It di�ersfrom the 
lass of s
heduling problems with 
umulative re-sour
es (known to be NP-hard) as we must 
onstru
t a 
on-sistent set of tasks and not only assign a timeline to ea
hpossible task. Furthermore, 
ompared to traditional plan-ning approa
hes [W98℄ (also 
hara
terized as NP-hard),additional domain-spe
i�
 
onstraints are taken into a
-
ount. In the presented example, the problem instan
e is
omposed of 792 dis
rete variables and 15186 
onstraints.Optimization stands for minimizing the global mission du-ration, other optimization 
riteria 
loser to 
riteria pre-sented in x II-B 
an also be formulated.B.2 Experimenting the long-term planning fun
tionalityA solution is retrieved by our implementation in 30 se
-onds on a Pentium II/500. For simpli
ity, the followingtables summarize results and give main values. Timingsare given in se
onds, while the altitudes are denoted low(< 3500 ft) and high (> 3500 ft).



7F1 : s1 ! s2 ! s15 ! s14 ! s6 ! s12area tentry texit speed 
y
les altitudes1 ! s2 0 55 0:9 0 highs2 ! s15 55 106 1:1 0 highs15 ! s14 106 125 1:3 0 highs14 ! s6 125 149 1:3 0 highs6 ! s12 149 163 1:1 0 highF2 : s1 ! s2 ! s15 ! s14 ! s6 ! s8 ! s7 ! s11area tentry texit speed 
y
les altitudes1 ! s2 0 55 0:9 0 highs2 ! s15 55 106 1:1 0 highs15 ! s14 106 125 1:3 0 highs14 ! s6 125 149 1:3 0 highs6 ! s8 149 162 1:3 0 highs8 ! s7 162 166 1:3 0 highs7 ! s11 166 178 1:2 0 highF3 : s1 ! s2 ! s4 ! s5 ! s13 ! s7 ! s10 ! s12area tentry texit speed 
y
les altitudes1 ! s2 0 45 1:1 0 highs2 ! s4 45 53 1:1 0 highs4 ! s5 53 150 0:9 0 high ! lows5 ! s13 149 166 0:7 0 lows13 ! s7 166 172 1:3 0 lows7 ! s10 172 181 1:3 0 low ! highs10 ! s10 a 181 183 1:3 0 high ! lows10 ! s12 183 202 1:0 0 low ! highaF3 went into a dive be
ause of a limited amount of prote
tionF4 : s1 ! 2� (s2 ! s4)! s5 ! s9 ! s12area tentry texit speed 
y
les altitudes1 ! s2 0 43 1:3 0 high ! lows2 ! s4 43 82 0:7 1 lows4 ! s5 82 165 1:0 0 lows5 ! s9 165 192 0:8 0 low ! highs9 ! s12 192 209 1:3 0 highCompared to the solution given by military experts (ver-ti
es s2; s4, �g. [7℄), the waiting points are lo
ated on simi-lar edges. Furthermore, the formation speeds and altitudesare varying when ne
essary.C. The formation 
ommand and 
ontrol medium termplanning problemOn
e a �rst global plan has been delivered by the mis-sion leader, ea
h formation leader 
an re�ne and adapt itsown plan a

ording to a more a

urate representation ofits immediate environment. In this s
enario, 
oordination
onstraints have been already solved by the mission leaderand are relaxed in the 
ost fun
tion for ea
h formation.Starting from the initial global plan, ea
h formation
an solve in
rementally its own plan by minimizing delayswith pre-planed meeting dates. The global problem rep-resented in �g. [1℄ 
an be de
omposed into independentsub-problems spe
i�ed in �g. [10℄. Therefore, the problemis distributed over the set of formations, where the globalquality of 
oordination is the 
ommon obje
tive.For ea
h Formationfind solutions for {path planning, resour
e, speed}su
h that {maximize the syn
hronizationwith the global long-term plan}subje
t to 2Fig. 10. Spe
i�
ation of the formation 
ommand and 
ontrol problemIn ea
h experiment, the planner gives a �rst solution in
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Optimal (3430 ms), 2 and 6 sec lateFig. 11. Formation planning with over-
onstrained self-prote
tion(5000)a few se
onds (0:64 s; 1:60 s; 1:29 s; 1:28 s)2. Althoughwe may not guarantee an optimal solution within air
raftdynami
s time frame, due to the in
remental nature of theoptimization, good solutions (represented as grey lines in�g. [11℄) 
an be found in reasonable time.C.1 Resour
e 
onstraints experimentsAs a �rst problem instan
e, the global planning levelmay have over-estimated the self prote
tion resour
e of for-mation F2. Thus the existing plan is no longer feasible,and should be lo
ally re
overed by the formation leader.The following experiments show various situations for thisformation where the selfprote
tion resour
e is bounded3respe
tively by 9000; 7000; 5000 instead of 10000 as as-serted by the mission leader. Satisfying the a
tual resour
elevel generates safer traje
tories 
hara
terized by an alti-tude lower than the initial one (represented in dashed linesin �g. [11℄), but delays some dates of syn
hronization of theglobal plan. An optimal solution is found for ea
h situation(represented as a dark line in �g. [11℄), that 
hara
terizesa trade-o� between safer altitudes and short delays. In thethree examples, it took half a minute for the planner to�nd the optimal solution in the worst 
ase (9000).C.2 Unexpe
ted threat experimentsIn the se
ond problem instan
e, an unexpe
ted threat isdis
overed by the formation between s2 and s6 (representedas a 
ross in �g. [12℄). This urges the formation leader toreplan an es
ape path that maximize the ability for themission leader to re
over the whole mission. As shown in�g. [12℄, several potential paths are proposed by the on-board mission manager as an update of the input graphstru
ture. The planner 
hooses a safer path, but delaysthe meeting date up to 13 s.VIII. Con
lusionWe have proposed a highly modular 
onstraint basedformulation for planning air
raft missions that involve au-tonomous behaviors. A better alternative has been given2Those values 
orrespond to a run performed by a 
ode interpreter,and 
an be divided by three by optimized 
ompilation3The unit of this model is arbitrary, it represents the air
raft abilityto jam a threat.
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ted threatto heuristi
-based behavior of traditional multi-agent plan-ners and a new way, sket
hed in [GP00℄, has been openedto ta
kle 
omplex 
ooperative behaviors. We have demon-strated that the solving methods des
ribed in this pa-per 
an be integrated into dedi
ated multi-agent ar
hite
-tures at di�erent levels, a

ording to rea
tivity and lo
alitytrade-o�. Furthermore, depending on the situation aware-ness, a multi-agent ar
hite
ture 
an de
ide to solve over asame related model-based representation or to distributethe solving over a set of independent problem instan
es.The pertinen
e of using Constraint Model Based Pro-gramming for spe
ifying and solving the 
omplex problemof a Multi-Agent plan has been shown. Generally stud-ied independently, several models extra
ted from heteroge-neous domains, su
h as the theory of dynami
s of 
ight,ta
ti
s and operational resear
h, have been expressed ina single formulation. The set of models is not exhaustiveand many other domains may also be addressed. This workhighlights the feasibility of the approa
h for ta
kling 
om-plex MAS problems by solving these di�erent models 
on-
urrently.This demonstration relies onto approximations, dis
reterepresentations that have been performed to implement �-nite domain 
onstraints. Those models are interesting formedium and long term planning but should be re�ned toa
hieve short term 
ontrol. In spite of those approxima-tions, experiments onto realisti
 s
enarios have exhibitedinteresting results, relevant to the operational expe
tationssummarized in se
tion x II-A and x II-B. Furthermore, withlittle work on solving strategies, the 
omputation time re-mains in mission planning timeframe. Lastly, providing anoptimized solution at any time is of a parti
ular interestfor embedded purposes.Further works will investigate �ner grain anytime sear
hstrategies for a better rea
tivity, when minor 
hanges tothe 
urrent plan are needed. Stronger sear
h strategies,involving in
remental 
on
urrent optimization and bran
hand bound 
an also be studied for major planning updates.To be eÆ
iently integrated into future MAS ar
hite
tures,trade-o�s between these di�erent levels of rea
tivity haveto be formalized. Lastly, the distribution of sear
h overseveral agents will also be extended to weakly dependent

sub-problems.A
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