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Abstract

We propose an operational semantics for lazy constraint functional programs that is generic in the sense
of allowing the integration of different constraint solvers into an existing kernel language in a rather clean
way. The design of the semantics has been driven by two principles often contradicting each other: the need
to support laziness in the constraint side, and the need to adhere to the black box principle of constraint
programming as much as possible. We start by taking a previous semantics for Curry with equality and
disequality constraints over Herbrand terms and showing how to decouple constraint handling from a neutral
kernel semantics. Then, we define a Generic Constraint Solver Interface that allows us to add new solvers,
thus showing the applicability of the method. The paper contains also discussions on the role played by the
type system and on how to incorporate constraint solver cooperation in this setting.
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1 Introduction

Functional logic programming (FLP) and, particularly, the language Curry [5], pro-

poses a standardization of multiparadigm declarative programming where syntax,

type discipline and (most of the) declarative semantics are borrowed from Haskell

and deduction methods such as needed narrowing, residuation or encapsulated search

provide the operational semantics necessary to cover most of the functionality of

existing logic programming languages.
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One of the most powerful and interesting features that FLP can adopt from

logic programming is constraint programming. However, this integration is not

as seamless as desired, due in part to the lazy semantics of Curry. Shortly, lazy

evaluation imposes a demand driven strategy to the evaluation of expressions that

is somehow aware of the internal structure of expressions being evaluated, while

constraint programming as incorporated in CLP [7], follows a black-box approach.

This conflict has precluded the treatment of constraint terms as first class citizens

in the execution model of FLP.

Thus, the treatment of constraints in FLP has either dropped the black box

requirement or is essentially ad-hoc. Some examples:

• Domain-specific semantics for Curry plus one constraint domain – e.g. [10,4] –

are hard to extend and difficult to implement/verify.

• The use of CRWL to specify a CFL programming language as a whole (TOY [8])

is an interesting formal exercise, but the specifications tend to be quite lengthy

and, of course, this gives up the black box principle.

• On the practical side, there are a number of implementations (PAKCS, Sloth)

where constraint domains are added interfacing existing solvers with a FL host

system. However, this is usually done in an ad-hoc manner and it is hard to

justify the correctness of the resulting implementation.

Our position is that the idea of interfacing Curry with external (perhaps existing)

solvers is a very practical one that should not be given up, 5 but that it must be

done in a uniform way, so that existing semantics do not have to suffer modifications

in order to accomodate a new constraint domain.

This is mainly motivated by our own experience implementing Curry (Sloth [3]).

Currently, we have support for several constraint extensions in Sloth, taking advan-

tage of the solvers available in the underlying Ciao Prolog system. Linear and finite

domain constraints use, essentially, the existing solver as is, but we do not have

a formal semantics for these extensions. On the other hand, our implementation

of disequality constraints [4] has a domain-specific semantics. Incorporating the

other solvers in that semantics would have made it unmanageable. However, a

close inspection of the semantics showed that most of the semantics was unaware of

constraints and that interaction occured at certain specific points. Isolating those

points was the key for a modular semantics.

Our proposal rests on previous work [11] where a trivalued framework for con-

straint domains was introduced. This means that the black-box principle, as defined

in [7] is modified, but not abandoned: only one extra basic operation is assumed for

constraint domains. The reader is referred to that paper for a discussion on why

this extension is needed in order to have solvers aware of lazy evaluation.

The paper is organized as follows. Next section reviews some basic definitions

on constraints and the syntax of our language. In Section 3 we introduce a pre-

sentation of an operational semantics for Curry where the Herbrand (H) operators
are completely decoupled from a constraint-neutral core. Then, in section 4 we

introduce a generic constraint solver interface and show how to integrate new con-

5 The Curry report advocates this, but does not say how to build such an interface.
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straint solvers in Curry using this approach. Section 5 discusses how to – partially

– achieve solver cooperation within our framework and what influences it has from

other cooperation frameworks. Section 6 points some places where the language or

its type system needs to be modified to support this framework. Section 7 concludes

and points issues for future research.

2 Preliminaries

A number of presentations exist for constraint and constraint logic programming.

The following pretends to be as general as possible, and is liberally based on Jaffar

and Maher’s survey [7]. Let Σ = (PS ,FS ) be a signature composed of a set PS of

predicate symbols and a set FS of function symbols. A primitive constraint has the

form p(t1, . . . , tn), where p ∈ PS and the ti’s are (open) terms made from functors

in FS and variables. A constraint is a (first-order) formula built from primitive

constraints. Generally, only a proper subset L of these are considered admissible

constraints for a given domain. A Σ-structure D consists of a domain D and an

interpretation for every predicate and function symbol in Σ. The pair (D,L) is

called the constraint domain.

The language L contains constraints which are, respectively, identical to true and

false in D, and is usually closed under variable renaming, conjunction and existential

quantification. In order to be computationally useful, every constraint domain is

expected to support, at least, the following operations and tests on constraints:

(i) Test for consistency or satisfiability, D � ∃̃c, where ∃̃c denotes the existential

closure of c.

(ii) The implication or entailment of one constraint by another: D � c → c′,

or more generally, the implication of a disjunction of constraints by another:

D � c→ c1 ∨ · · · ∨ cn.

(iii) The projection of a constraint c onto variables x̄ in order to obtain an equiv-

alent, hopefully simpler, c′ such that D � c′ ↔ ∃−x̄c, where ∃−x̄c denotes the

existential closure of c on all its variables except those in x̄.

(iv) Detecting that, given a constraint c, there is a single value for x consistent with

c, i.e. D � ∃z.∀x, ȳ.c(x, ȳ)→ x = z. We say x is grounded by c.

Accommodating these definitions in a language with types, lazy semantics and

higher order features requires a number of changes which should be kept to a min-

imum in order to preserve the good properties of the traditional framework. The

most obvious is that now the domain D must be an information domain, e.g. a

cpo, so that undefined or partially defined values can be dealt with appropriately.

Elements of FS will be interpreted as (well typed) continuous functions. Elements

of PS will be interpreted as typed functions to a domain with a bottom element and

two total values, e.g. {⊥, Success, Failure}. Notice that this forces the introduc-

tion of three-valued interpretations for constraints.

Having a small, standard set of operations like those listed above is what allows

CLP to be such a flexible framework. For our lazy scheme we will just require an

additional test on the constraint domain:
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5. Test for strictness: a constraint c is strict in variable x iff replacing ⊥ for x in

c gives an indefinite constraint. In other words, D � ∃̃c[⊥/x] = ⊥.

Remember that existential quantification must be interpreted in a three valued

setting – i.e. as a least upper bound – etc. We are not working out the details of

this extension here.

3 Decoupling Curry from the Herbrand domain

Given the considerations above, our first step will be to take Curry to a state with no

built in constraint operators — not even equality of data terms. This semantics will

be refined stepwise in order to obtain a definition generic enough to accommodate

other constraint systems.

3.1 The core Curry semantics

This semantics is intended to resemble the one in the Curry report. 6 However,

we have split the standard ⇒ relation into two new relations ⇓, ↓ (both big step)

relating terms with its normal and head normal forms respectively. 7 This allows

us to have a standard HNF evaluation mechanism to refer to when integrating lazy

evaluation of constraints into the semantics. Also, matching against a definitional

tree has been renamed from Eval[[]], to an auxiliary relation labelled as Match[[,]].

The core semantics is shown in Figures 1 (reduction to HNF) and 2 (reduction

to NF).

Answers and constraints

The standard operational semantics in the Curry report defines an element of an

answer set as a tuple {σ[]e}, namely a term in normal form and an associated

substitution. Following [4] we consider both an answer substitution and a constraint

{c;σ[]e}

but now c will be a constraint store possibly made of heterogeneous constraints

(i.e. constraints from different domains). Moreover, c is intended to be treated as

an abstract data type (defined in 3.2), i.e. it will only be accessed from the semantic

rules by means of a restricted set of operators. This is an immediate space saver,

as adding new domains does not make the core bigger.

Auxiliary functions

The replacement of a position in a term by a disjunctive expression (resulting in

another disjunctive expression) is carried out by the auxiliary function replace:

replace(e, p, {γ1;σ1[]e1, . . . , γn;σn[]en}) = {γ1;σ1[]σ1(e)[e1]p, . . . , γn;σn[]σn(e)[en]p}

Function clean removes inconsistencies from the constraint stores. These inconsis-

tencies can arise after any reduction step. Function clean can be defined as follows:

6 In fact, it is an evolution of the semantics in our paper on disequality constraints [4].
7 NF and HNF henceforth
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Computation step for expressions:

Eval[[ei]] ⇓ Ei

Eval[[e1&e2]] ↓ replace(e1&e2, i, Ei)
i ∈ {1, 2}

Eval[[c(e1, . . . , en)]] ↓ {ǫ; id []c(e1, . . . , en)}
c ∈ DC

Match[[f(e1, . . . , en), T ]] ↓ D

Eval[[f(e1, . . . , en)]] ↓ D
T ∈ DT (f)

Computation step for operation-rooted expression e:

dt(e, T ) = e′ Eval[[e′]] ↓ D

Match[[e, T ]] ↓ D

dt(e, rule(l=r)) = {ǫ;σ[]σ(r)} if σ(l) = e

dt(e, branch(π, p, T1, . . . , Tk)) =






























D if e|p = c(e1, . . . , en), pat(Ti)|p = c(x1, . . . , xn) and

Match[[e, Ti]] ↓ D

∅ if e|p = c(. . . ) and pat(Ti) 6= c(. . . ), i = 1, . . . , k
⋃k

i=1{ǫ;σi[]σi(e)} if e|p = x and σi = [x 7→ pat(Ti)|p]

replace(e, p,D) if e|p = f(e1, . . . , en) and Eval[[e|p]] ↓ D

Computation step for answers

Eval[[e]] ↓ {c1;σ1[]e1 . . . cn;σn[]en} Eval[[D]] ↓ D′

Eval[[{c;σ[]e} ∪D]] ↓ clean({σ1c ∧ σc1;σ · σ1[]e1 . . . σnc ∧ σcn;σ · σn[]en} ∪D′)

Fig. 1: Head normal form Curry operational rules

Eval[[ei]] ⇓ Di

Eval[[c(e1, . . . , en)]] ⇓ replace(c(e1, . . . , en), i,Di)
i ∈ {1, . . . , n}

Eval[[e]] ↓ D Eval[[D]] ⇓ c

Eval[[e]] ⇓ c
if e 6= c(t1, . . . , tn), c /∈ DC

Fig. 2: Normal form Curry operational rules

• clean(∅) = ∅

• clean({c;σ[]e} ∪D)= clean(D) if c is inconsistent.

• clean({c;σ[]e} ∪D) = {c;σ[]e} ∪ clean(D) otherwise.

3.2 Constraints and constraint stores

Following [4], we assume a syntactic category CP of constraint predicate symbols,

so that atomic constraints take the form of Curry terms p(eτ11 , . . . , eτnn ), with p ∈
CP , and type p : τ1 → · · · → τn → Success. In order to deal with different
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constraint domains, CP can be seen as a disjoint sum of several CPi. For the sake

of simplicity, in the following we will assume that the CPi are pairwise disjoint. As

usual, constraints (type Constraint) are first order formulae containing the atomic

constraints and closed (at least) under conjunction and existential quantification.

As we previously said, we assume an opaque type which represent constraint

stores CS, and we define the Extended Constraint Stores (ECS) type as the disjoint

sum of:

ECS = CS + evalExpr,Pos + fail

As every constraint store CS for domain constraint D 8 is dealt as a black box, we

require the solvers to provide the following operations:

• ǫD : CS (empty constraint store).

• tellD : (CS × Constraint) → Set(ECS): This function is meant to tell a con-

straint. It returns the list of modified constraints stores if successful or:

· evale,p, if the term e at position p needs to be further evaluated in order to post

the constraint. Note that the position refers to the position the term was in the

constraint predicate, so the term can be evaluated, substituted in the CP and

we can call it again.

· fail, if the constraint cannot be satisfied.

Notice that tellD return type is not a new constraint store, but a set of con-

straints. This is needed in order to allow solvers to return a set of disjoint constraint

stores. Keep in mind that this allow solvers – such as the Herbrand disequality one

– to return a set of answers, some of them can be successful and other could demand

more evaluation:

tellH ǫ c(a,b)=/=c(x,f(m)) = [Success, evalf(m),2]

with x a variable, then a choice is a=/=x or to evaluate more f(m)(evalf(m),2), which

as we’ll see, they get transformed in two paths of computation.

As we have said above, we are requiring constraint solvers to be able to detect

those constrained positions where more evaluation is needed. This idea is borrowed

from the trivalued framework of [11], where a strictness test for constraints is in-

troduced. This test consists in computing the existential closure of a constraint on

all its free variables but one which is replaced by ⊥. In order to implement this

test, the solvers must interpret any symbol not in their signature as if it were ⊥.
This allows us to fed the solvers any Curry term, regardless of how normalized it is.

We’ll denote any term not in the solver’s signature as t , meaning that the solver

cannot “break-in” and see what’s inside.

In practice, implementing this reflective feature in a real solver is not very hard,

as most practical domains (arithmetic, finite domains, etc) are essentially strict,

i.e. unknowns in the input produce unknowns in the output. More specifically:

• Solvers must interpret any symbol not in their signature as ⊥.

• Solvers must be able to accept all their parameters as ⊥.

8 D will be substituted for a concrete constraint domain when we are speaking of a concrete one
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tell ǫ e = {c1, . . . , cn}

Eval[[e]] ↓ {c1; id []Success, . . . , cn; id []Success}
e = p(e1, . . . , en)

tell ǫ e = fail

Eval[[e]] ↓ ∅
e = p(e1, . . . , en)

tell ǫ e = evals,p Eval[[s]] ↓ D Eval[[replace(e, p,D)]] ↓ D′

Eval[[e]] ↓ D′
e = p(e1, . . . , en)

Fig. 3: Constraint predicates operational rules

• Solvers must return both the arguments position and the unrecognized expression

as evale,p. The solver should only request one argument to be evaluated.

Most of the above requirements are done in the name of efficiency. For instance,

all the above requirements could be substituted for probing with ⊥ each one of the

constraint predicate arguments, and we’d get the same result.

3.3 Selecting the right domain

So far, we have defined the extended constraint stores and their operations, but for

this scheme to support multiple solvers, we need to define c ∈ [ECS], the sequence

of ECS stores indexed by constraint domain.

This way, we get one element in the sequence for each solver in the system. To

refer an specific constraint store, we’ll use the standard sequence notation c[D], so

for example, to address the constraint store belonging to H we’ll use c[H].

So then we can introduce the function tell : (CS×Constraint)→ [ECS], which

selects the right tellD function:

tell c e =











evale,p if tellD c[D] e = evale,p

fail if tellD c[D] e = fail

c[D] := cD if tellD c[D] e = cD

where e = opD(e1, . . . , en)

This means that the set of constraint predicates should be disjoint. We can

overcome this problem as shown in section 6.

3.4 Operational rules for constraint solver integration

The integration of constraint solving in this framework is achieved by means of new

operational rules (figure 3) dealing with constraint predicates.

The two first rules respectively deal with the case of a satisfiable constraint or

a failing one. The interesting one is the third, which is needed when the constraint

predicate needs its arguments to be more evaluated than in their current form.

The main novelty about the above rules is the possibility to use lazy-aware

constraint solvers, such as the ones presented in section 3.5 and in section 4.2.
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Rules for equality constraints

{x 6= y} /∈ c

put(c, x=:=y) = c ∪ {x = y}
if x, y variables.

{x 6= t} /∈ c

put(c, x=:=t) = c ∪ {x = t}
if x variable.

d1 6= d2

put(c, d1(t1, . . . , tn)=:=d2(u1, . . . , um)) = fail
if d1, d2 ∈ DC

d1 = d2 c1 = put(c, t1=:=u1) . . . cn = put(c, tn=:=un)

put(c, d1(t1, . . . , tn)=:=d2(u1, . . . , un)) = hclean(∪i=0..nci)
if d1, d2 ∈ DC

Fig. 4: Herbrand solver rules I

Rules for disequality constraints

{x = y} /∈ c

put(c, x=/=y) = c ∪ {x 6= y}
if x, y variables.

{x = t} /∈ c

put(c, x=/=t) = c ∪ {x=/=t}
if x variable.

d1 6= d2

put(c, d1(t1, . . . , tn)=/=d2(u1, . . . , um)) = c
if d1, d2 ∈ DC

d1 = d2 c1 = put(c, t1=/=u1) . . . cn = put(c, tn=/=un)

put(c, d1(t1, . . . , tn)=/=d2(u1, . . . , un)) = {c1, . . . , cn}
if d1, d2 ∈ DC

Fig. 5: Herbrand solver rules II

3.5 A Herbrand domain solver

Once settled our core semantics, we will use a constraint solver over H, with con-

straint predicates =, 6= to illustrate the usefulness of our semantics as well as to

help Curry to regain its previously built in constraint capabilities.

The idea of representingH as constraint system is already present in [9], although

this approach needs the full specification of the constraint system in a white-box

fashion.

We could use whatever solver for H we feel like, but for completeness of the

paper we’ll specify one – in a style rather different from Curry semantics – and

show an example of the full system in action.

Let us consider the Herbrand solver state to be composed of a set of equality

and disequality constraints c = {c1, . . . , cn}.

Then, the predicate put – which is just a name for tellH – takes as arguments a

constraint store c and the constraint to evaluate.

Some auxiliary functions are needed, namely:

• hclean cs: Returns failure if the constraint store cs is inconsistent.

The reader should have noticed that this specification is not completely equiva-

lent to the built in constraint solving in Curry, as Curry implements the optimization

of applying a substitution as a side effect of the =:= constraint operator.
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New rules for laziness

x = t

put(c, x op y) = evalx,1

y = t

put(c, x op y) = evaly,2

Fig. 6: t handling rules

Also, the second =:= rule in figure 4 doesn’t do occurs check. This can be easily

added using hclean, but it would mean complete evaluation of t.

For the sake of simplicity we haven’t yet included the support in the semantics

for solvers returning substitutions, however it should be easy, as we should just

modify the tell type to return a substitution. Then the rules dealing with tell,

should just apply the solver’s proposed substitution to the answer expression.

This constraint solver is also missing the analysis for finite types, as presented

in [4]. This is a benefit of these semantics, that we can just enhance the constraint

solving side without having to care too much about Curry itself.

Another good effect is that the constraint solver is way clearer than the one

which has to take Curry into account.

3.6 An example

As an example of the new hybrid system, consider the program:

[] ++ x = x

(x:xs) ++ y = x : (xs ++ y)

>x ++ y =/= y

Then the program develops as:

(i) Eval[[x++y=/=y]]⇒ (as x++y is not in solver’s signature, it’s read as t ).

(ii) tell(ǫ, x++y 6= y) = evalx++y,1 ⇒ (tell is invoked as =/= is in CP )

(iii) Eval[[x++y]] = {ǫ; [x 7→ []][]y} ∪ {ǫ; [x 7→ (x1 : x2)][]x1 : (x2++y)} ⇒
∗

(iv) First case:

(a) tell(ǫ, y 6= y) = fail⇒ ∅

(v) Second case:

(a) put(ǫ, x1 : (x2++y) 6= y) = ⊤ ⇒
(b) {{y 6= x1 : (x2++y)}; [x 7→ (x1 : x2)][]Success}

The most important point is the step between point 3 and 4, where clean gets

applied and both the inconsistent elements of the disjunctive expression get elimi-

nated and the substitutions get applied to the constraints store.

4 General constraint solvers integration

We have shown that the above scheme is suitable for splittingH to its own constraint

solver. What about applying it to general constraint solvers?
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Below we list some example solvers and how to integrate them in this scheme.

4.1 Arithmetic solvers

All arithmetic solvers (FD, CLPR) are completely strict in their arguments, so

we only need to modify tellFD – for instance – to return eval in every case their

argument is not in HNF.

We already have implemented support for CLPR and FD in Sloth, using the

underlying solvers available in Ciao.

As the solvers are completely strict, but they don’t directly support tri-valued

semantics, we had to write a wrapper for each solver 9 :

tell_fd(Constraint , Res) :-

Constraint ..= [Op, Arg1 , Arg2],

(

bot(Arg1) →
Res = bot(1, Arg1)

;

bot(Arg2) →
Res = bot(2, Arg2)

;

call(Constraint) →
Res = Success

;

fail

).

Note that the Prolog solvers carry around the constraint store c as a global variable.

This doesn’t preclude the obvious optimization of reducing the arguments to

HNF previously to any call to the solvers.

4.2 String equality solver

A better example is the constraint solver for string equality, in the style of Prolog

III [1].

Such a constraint solver carries a signature of text strings plus string concate-

nation (•) and the equal =S constraint operator.

This way, the Curry program:

f = "a"

m = loop

g = f • m =S "ba"

can be solved, whereas in a non lazy language the program would loop.

This is due to the fact that previously, telling the constraint would force both f

and m to be evaluated to NF, but in this case, we call the solver with both arguments

9 actually, it is the same as both are strict.
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evaluated, and the solver requests the evaluation of f, and this is enough to solve

the constraint.

5 Bridges between solvers in Curry

Cooperation among constraint solvers has been a topic which has been treated

on several previous works (see, for example [6]). These works are based, at least

partially, on sharing variables among solvers (that is, a given variable is known by

more than one solver).

This is perfectly possible on some logic languages where a type system does not

exist. It is possible, for example, to write constraints such as:

X>2.5, X in [2,2.5,3,7,9.8]

In the example above it is clear that the type for X is numeric but it is not as

clear whether it is Int or Float since the first expression seems to hint that X has type

Float while the second one states that X belongs to an enumerated type (usually,

an integer). Additionally, the list of allowed values for the variable contains both

integer and floating point values.

As said before, this can happen in untyped languages, however, this is not the

case when we switch to typed functional logic languages. In such functional-logic

languages, every term has a specific type, so variables definitively belong to either

Int of Float, but no to both.

To remedy this, a new operator called bridge has been proposed in [2]. Bridges

are a new kind of constraints adopting the shape x#=y, where x and y are different

free variables of different types.

A bridge like x#=y states that from that point on, variables x and y will always

have equivalent values from their respective domains. Think, for example of x as

an integer variable and y as a floating point variable. Then, the values 1 for x

and 1.0 for y are equivalent. However, we should note that domain equivalence is

very specific to the solvers. For more details about bridges, we suggest to read the

related bibliography.

A example of bridge use in Curry would be:

x > 2.5 & x #= fx & fx in [2,2.5,3,7,9.8] where x, fx ←֓
free

5.1 How to incorporate bridges

Although we haven’t fully developed a semantics for solver cooperation in this frame-

work, our first analysis shows that there is no need to modify the presented seman-

tics at all! This result is surprising, but it comes as a result of encapsulation of the

constraint programming side in the semantics.

This way, solver cooperation can be achieved within this semantics just by defin-

ing #= as a new constraint predicate with its associated constraint store, where

bridges are stored in a similar way to other proposals.

Before going on, we should note that due to the typing discipline present in
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Curry, it must exist a different bridge operator for every supported scheme cooper-

ation. How can the system infer what bridge to apply is described in section 6.4.

Let’s call the tell operation for bridges link, then link can be just defined as:

link c a#=b = c ∪ {bridge(a, b)}

5.2 Hooking bridge propagation

Unfortunately, the link definition above is not enough, as bridges must propagate

the constraints to be effective.

This means bridges must be able to access other constraint stores, and modify

them. The way we achieve this is by redefining the given tell definition (in section 4),

so the constraint propagation takes place.

Let’s define a new tell′, to be used when the system supports cooperation, so

for a bridge #=D,E , meaning that it links variables of the domain D with E, and be

B the domain of the bridge constraint solver, then the new tell would be:

tell′ c e =











evale,p if tellD c[D] e = evale,p

fail if tellD c[D] e = fail

check(e,D, c) otherwise

where e = opD(e1, . . . , en) and

check(e,D, c) = tellD(c, e) if doesn’t exist a bridge(a, b) ∈ c[B] for all variables a in c[D]

check(e,D, c) = hp(e, c[D], c[E]) for all bridge(a, b) ∈ c[B] and a ∈ c[D], b ∈ c[E]

5.3 The cooperation mechanism

The last bit needed is to define the hp operator. For this we need a way to:

• Find the projection of the new domain for x over y. That is, find what constraints

over y are equivalent to the conditions just imposed on x. Let us call propagate the

function that receives the origin constraint store, the destination one, the newly

told constraint and returns the relevant projection (i.e. propagate(Sx, Sy, e)) will

be calculated so as to find a new constraint CSx→Sy
).

• The constraint CSx→Sy
must be fed into the destination solver Sy: tell(CSx→Sy

).

Then hp gets defined as

hp(e, cD, cE) =

{

c[D] = tellD c[D] propagate(D,E, e, cD)

c[E] = tellE c[E] propagate(E,D, e, cE)

Propagation has to be done currently in both ways.

12
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6 Modifications to Curry syntax

In the previous sections we have discussed the operational semantics, without dig-

ging into the details of the actual modifications to the language itself.

In fact, for this proposal to be usable at source level, we need to greatly improve

some of other language features.

Our preliminary proposal is just to add type classes [13] to Curry and let them

resolve the likely ambiguity in constraint predicates.

6.1 Using type classes

The basic operator we want to support is the constrained equality =:= operator:

class Constrainable a where

=:= :: a → a → a

But, what about algebraic data types? We have suddenly lost the possibility of

doing

data A = A

> x =:= A

as the compiler cannot find an instance of Constrainable for A.

There are two possible remedies for this:

• Require a deriving declaration for every ADT we want to be constrainable:

data A = A

deriving(Show ,Constrainable)

• Let the compiler automatically derive such an instance for every data declaration.

This has the effect 10 of tagging every function where =:= is used with the

Constrainable type constraint:

f x y z = x =:= y & y =:= z

> :t f

> f has type Constrainable a ⇒ a → a → a → Success

6.2 Constraint flattening

Then, using Success as our basic tool for constraint programming feels a little bit

unnatural when dealing with functions. Thus the objective of constraint flattening

is to allow constraints predicates to be represented as pure functions, by hiding the

step of creating a new fresh variable from the user.

Think about the constraint predicate :+: :: a →a → a → Success, which is

the usual sum constraint operator present in CLPR.

Then, as we have guaranteed that every constraint domain will at least support

=:= we can implement a more natural plus operator that allows us to sum a variable

10We think it is a nice side effect, but we recognize that this “tagging” can be seen as very cumbersome by
some people
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number of reals, and to get the resulting constraint operator.

(+) :: Constrainable a ⇒ a → a → a

a + b = (:+:) a b c &> c where c free

This way, we can write the expression:

> let a,b free in a + b - 3 + a =:= 3

> Success {2a + b = 6}

and the flattening does its job.

6.3 More type classes

Of course, once we have settled the basic class for constrainable data types, we can

extend other standard type classes to include support for constraints.

For instance the Num type class could look like:

class Constrainable a ⇒ Num a where

(+) :: a → a → a

...

We did informally implement this kind of behavior with run-time type detecting,

but of course, we believe using type classes for this is a way better approach.

6.4 Representing bridges

This type classes scheme could allow more sophisticated constraints operations, such

as representing bridges for constraint solving cooperation:

class (Constrainable a, Constrainable b) ⇒ Bridge a b ←֓
where

=# :: a → b → Success

This however is a little bit far fetched, as requires multiparametric type classes[12].

7 Conclusions and future work

We have defined an operational semantics for Curry that allows to incorporate new

constraint solvers to a constraint neutral core. This semantics makes explicit the

genericity that was suggested by a previous semantics for Curry with disequality

constraints over the Herbrand universe.

In order to allow for this modularity we require some functionality to be provided

by the constraint solvers, namely the ability to detect and communicate demand

information to the core semantics. This simple extension permits a fully lazy be-

haviour for constraint expressions and a uniform interface when adding new solvers

to the core.

We have shown that the semantics is expressive enough to incorporate the con-

straint extensions currently present in one implementation of Curry (Sloth), namely:

equality and disequality constraints over Herbrand terms, linear constraints over ra-

tionals, finite domain constraints over naturals and propositional constraints.

14
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In our opinion this is at least a good indication on the practicality of this ap-

proach but, of course, a correctness and completeness proof of the semantics is

needed. This will be the immediate step following this presentation.

The paper contains also some ideas on the realization of solver cooperation in our

framework. These are far more speculative, and it is required to test its practicality

by means of representative examples, and to investigate more on the role that type

classes can play in this integration.
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