
First-order unification using
variable-free relational algebraI

Emilio Jesús Gallego Ariasa, James Liptonb, Julio Mariñoa, Pablo Nogueiraa

aUniversidad Politécnica de Madrid
bWesleyan University

Abstract

We present a framework for the representation and resolution of first-order uni-
fication problems and their abstract syntax in a variable-free relational formal-
ism which is an executable variant of the Tarski-Givant relation algebra and of
Freyd’s allegories restricted to the fragment necessary to compile and run lo-
gic programs. We develop a decision procedure for validity of relational terms,
which corresponds to solving the original unification problem. The decision pro-
cedure is carried out by a conditional relational-term rewriting system. There
are advantages over classical unification approaches. First, cumbersome and
underspecified meta-logical procedures (name clashes, substitution, etc.) and
their properties (invariance under substitution of ground terms, equality’s con-
gruence with respect to term forming, etc.) are captured algebraically within
the framework. Second, other unification problems can be accommodated, for
example, existential quantification in the logic can be interpreted as a new op-
eration whose effect is to formalize the costly and error prone handling of fresh
names (renaming apart).

Key words: Unification, Relation Calculus, Rewriting, Abstract Syntax

1. Introduction

Tarski and Givant [41] observe that binary relations equipped with so-called
quasi-projection operators faithfully capture all of classical first-order logic.
Freyd and Scedrov [19] show that so-called tabular allegories satisfying cer-
tain conditions faithfully capture all of higher-order intuitionistic logic. Both of
these formalisms effectively eliminate logical variables in different ways.

The elimination of first-order variables in logic via a mathematical transla-
tion is of considerable interest, and a significant number of mathematical form-
alisms have been developed to achieve this aim over the past century. In com-
puter science, and especially in the case of declarative programming languages,

IWork supported by CAM grants 3060/2006 (European Social Fund) and S-0505/TIC/0407
(PROMESAS) as well as MEC grant TIN2006-15660-C02-02 (DESAFIOS).

Preprint submitted to JACIL 17th April 2012

it provides a completely fresh approach to compilation, not unlike the trans-
lation of lambda calculus into combinators [42] or the program transformation
performed by Warren’s Abstract Machine [1].

From the standpoint of logic programming, we are not only interested in the
algebraic semantics the mentioned formalisms provide, but also in the altern-
ative approach to program transformation and execution they might suggest.
A restricted variant of these formalisms was proposed in [6, 29], where logic
programming problems (certain kinds of constraints in a fragment of first-order
logic) are mapped (compilation) into variable-free relational representations (re-
lational terms) of an appropriate relational theory, with resolution (computa-
tion) taking place via relational-term rewriting. This variant formalism restricts
the foundational ones of Tarski, etc, in order to carve out an executable frag-
ment.

The relational representation provides an abstract syntax (i.e., an axiomatic
treatment of free and bound variables, quantifiers, abstraction, etc) for logic
programs and a formal treatment of logic variables and unification, where meta-
logical procedures (name clashes, substitution, etc) are now captured within an
object-level algebraic theory.

However, unification is incorporated meta-logically as a black box via inter-
section of relational terms, with execution details left unspecified. It is only
shown that unification is sound with respect to the chosen representation.

In this paper we adapt the framework and develop the missing piece, an
algorithm for deciding equality constraint problems in the Herbrand domain,
being this equivalent to the classical first-order unification problem. The al-
gorithm proceeds by rewriting relational-term representations. We also present
the semantics for our relational-term calculus and provide the proof of our ver-
sion of the main theorem (equipollence).

Although first-order unification is a well-studied and solved problem, an al-
gebraic approach has several advantages. First, cumbersome and underspecified
meta-logical procedures (name clashes, substitution, etc.) and their properties
(invariance under substitution of ground terms, equality’s congruence with re-
spect to term forming, etc.) are captured algebraically within the framework.
Second, other constraint problems can be accommodated, for example, existen-
tial quantification in the logic can be interpreted as a new operation formalizing
renaming apart.

In the first part of the paper, we overview and adapt the foundational mater-
ial, in particular [6, 29]. We start in Section 2 with an overview of the relation-
ship between logic, distributive relational algebras, and unification problems.
The translation of first-order logic into a variable-free relational calculus is de-
tailed in Section 3. Our semantics and proof are provided there. Section 4 over-
views the current relational framework in which logic programs are executed.
We focus on the encoding of terms within this framework, which serves as an
essential data type for our algorithm.

In the second part of the paper, we present the unification algorithm. Sec-
tion 5 defines solved forms for our relational representation. Section 6 presents
the algorithm itself. A detailed example can be found in Section 7.

69

In the final part of the paper we examine related and future work, and wind
up with our conclusions.

2. From logic to rewriting: algebraic logic programming

One of the main results in Set Theory Without Variables [41], due to Tarski
and Givant (with an improved proof by Maddux), is the so-called equipollence
theorem which states that every first-order sentence ϕ has a semantically equi-
valent equational counterpart Xϕ = 1, with Xϕ a relation expression and 1
the universal relation in the variable-free theory QRA of relation algebras with
quasi-projections. Tarski and Givant also prove a stronger proof-theoretic ver-
sion of this result, and present a bijective recursive transformation of sentences
and their first-order proofs to their associated relation expressions and equa-
tional derivations.

We use a slightly modified version in order to translate a formula with free
variables to the relation of all the instances of such a formula that make it
true. Assume J_K is some set-theoretic interpretation for relations between
finite sequences 〈a1, . . . , an〉, with ai ∈ HΣ elements of the Herbrand domain
of a first-order signature Σ. The equipollence theorem is:
Theorem 2.1 (Equipollence). Let (ϕ)r be the relational translation for the
formula ϕ. For an open formula ϕ with free variables among x1, . . . , xn:

(〈a1, . . . , an〉, 〈a1, . . . , an〉) ∈ J(ϕ)rK ⇐⇒ HΣ |= ϕ[a1/x1, . . . , an/xn]

In words, a term-sequence 〈a1, . . . , an〉 belongs to J(ϕ)rK iff substituting
a1, . . . , an for all its free variables x1, . . . , xn makes the formula valid. Intu-
itively, ∧ will correspond to ∩, ∨ will correspond to ∪, ∃ is represented by a
quasi-projection and ¬ is the complement.

This important equivalence allows us to formalize logic programs as rela-
tional expressions. We then convert the algebraic theory of distributive relation
algebras into a rewriting system which performs SLD-resolution. (We anticipate
that the equipollence theorem presented in Section 3 is not directly usable in
practice for executing logic programs. The reader has to wait until Section 4
for more details.)

If we represent a unification problem as first order formula with equality ϕ,
unification then is equivalent to the decision problem (ϕ)r = 0, with 0 being
the empty relation and (·)r the translation to be defined in subsequent sections.

Concretely, assume terms t1, t2, with free variables ~y, and fresh x1, z 6∈ ~y.
We encode the unification problem t1 ≈ t2 using atomic formulas of the form
xi = t:

t1 ≈? t2 ⇐⇒ ∃x1.∃~y.(x1 = t1 ∧ x1 = t2)
Notice the generality and expressiveness of the encoding, thanks to the presence
of the existential quantifier. For example, Prolog-like unification with renaming
apart (assume νx.t means rename apart x in t) is encoded as:

νx.t1 ≈? t2 ⇐⇒ ∃x1.∃~y.((∃x.x1 = t1) ∧ x1 = t2)
⇐⇒ ∃x1.∃~y.∃z.(x1 = t1[z/x] ∧ x1 = t2)

70

The encoding can be made more powerful. Adding negation allows us to handle
disunification problems, as well as universal quantification.

The key point is that the result of (·)r is a ground relational expression, this
is where variable elimination takes place.

Summarizing:

t1 ≈? t2 ⇐⇒ ∃x1.∃~y.(x1 = t1 ∧ x1 = t2)
⇐⇒ (∃x1.∃~y.(x1 = t1 ∧ x1 = t2))r 6= 0

As the resulting relational expression is ground, and the relational theory is
equationally defined, rewriting seems appropriate to handle relational terms.
However, two requisites are proven difficult to implement. First, occurs checks,
which forces us to make our rewriting system conditional and to compute a
side-condition. Second, identifying functions. The rewriting system must match
multiple arrows as one.

3. Logic without variables

3.1. Signature, terms, and sequences
Assume a permutative convention on symbols, i.e., f, g are different and so

are i, j, etc. A first-order signature Σ = 〈CΣ,FΣ,PΣ〉 is given by CΣ, the set of
constant symbols, FΣ, the set of term formers or function symbols, and PΣ, the
set of predicate symbols. Function α : FΣ → N returns the arity of its function
symbol argument. The set of logic variables is X and xi ∈ X . We write TΣ(X)
for the set of open terms over Σ. The set of open sequences T +

Σ (X) over TΣ
is defined with the addition to the signature of a right-associative list-cons-like
operator.

We write 〈t1, . . . , tn〉~x, with abbreviation ~t~x, for an open sequence of t1, . . . , tn
terms where ~x is a variable standing for an arbitrary open sequence. Thus, the
open sequence 〈t1, t2〉~x denotes all term sequences beginning with t1, followed
by t2, and followed by an arbitrary term sequence.

3.2. Relational language
The relational language R is built from a countable set of relation variables

R,S, T, etc, all in Rvar (not to be confused with first-order logic-variables), a set
of relational constants RΣ built from Σ, and a fixed set of relational constants
and operators detailed below. Let us begin with RΣ. Each constant a ∈ CΣ
defines a constant (a, a) ∈ RΣ, each function symbol f ∈ FΣ defines a constant
Rf in RΣ, and each predicate r ∈ PΣ defines a constant r in RΣ. Formally:

RΣ = {r | r ∈ PΣ, } ∪ {Rf | f ∈ FΣ, } ∪ {(a, a) | a ∈ CΣ}

The full relational language R is given by the following grammar:

Ratom ::= Rvar | RΣ | id | di | 1 | 0 | hd | tl
R ::= Ratom | R◦ | R ∪ R | R ∩ R | RR | R \ R | fp Rvar . R

71

The constants 1,0, id, di respectively denote universal relation (whose standard
semantics is the set of all ordered pairs on a certain set), empty relation, identity
(diagonal) relation, and identity’s complement. Operators ∪ and ∩ represent
union and intersection whereas juxtaposition RR represents relation composi-
tion and “\” denotes difference or relative complement. For better readability
we write sometimes R;S for RS. R◦ is the converse of R, i.e., the relation
obtained by swapping domain and codomain. Set-theoretically, R’s domain is
{x|(x,_) ∈ R} and its codomain is {x|(_, x) ∈ R}.

The computer science applications in this paper do not require the full ex-
pressive power of R’s grammar; in particular, complementation, relation vari-
ables Rvar , and the fixed-point operator fp. Many logic programming languages
(e.g. FOHC,HOHC, HOHH, [35]) are based on a fragment of intuitionistic logic
for which it suffices, in a relational translation, to have available the comple-
ment di of the identity (or diagonal) constant id [6]. Full complementation is
briefly discussed and used here for completeness; in particular, to state below
the equipollence theorem in first-order classical logic, which inspired the relation
applications in the cited papers. The other operators are included for compat-
ibility with earlier definitions of R where they are used to translate arbitrary
Horn Clause programs to closed-form relation expressions using the fixed-point
binding operator fp and bound relation variables.

3.3. Projections
Tarski showed how to axiomatize the notion of products and projections

of the first and second coordinate in a relational variable-free manner. The
relations hd and tl are equationally axiomatized as follows:

hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd = (tl)◦tl = id (hd)◦tl = 1

The first condition formalizes the fact that pairs are uniquely determined
by their first and second coordinates, the second, that hd and tl are functional
relations (equivalently, their converses are injective), and the third, that any
two elements can occur as either the head or the tail of a pair.

Definition 3.1. Define the countable sequence {Pi | 1 ≤ i} of projection rela-
tions as follows:

P1 = hd P2 = tl;hd · · · Pn = tln−1;hd . . .

In the standard semantics to be discussed below, Pi is a relation between
a formal vector with at least i + 1 components and its i-th component. That
is to say, Pi’s set-theoretic interpretation consists of pairs (u, ui), where u is a
sequence.

It will also be convenient to introduce, for every function symbol f of arity n
in the signature Σ the derived labelled projections fn

i defined by Rf ;Pi. We will
only need these projections when the intended interpretation of f is injective,
as in the case of term models.

72

3.4. Equational formulas
We now give some definitions prior to sketching a simple proof of a semantic

form of the equipollence theorem. The equational atomic statements of LΣ are
of the form t1 = t2 which can be rewritten (after introducing a new variable x)
as an existentially quantified conjunction of two basic equations: ∃x(x = t1∧x =
t2). If we continue introducing variables and equations, we can write this as an
existential conjunction of elementary or flat equations of the form x = a, x = y
or x = f(y1, . . . , yn) where a is a constant and f a function symbol in Σ, and
x, y, yi are fresh variables. We assume all equational atomic formulas are of this
form. Similarly, all atomic formulas r(t1, . . . , tn) where r is a relation symbol
of arity n in the language L , can be written in the form r(xi1 , . . . , xin

) ∧ E,
where E is a conjunction of elementary equations. Fresh variables are being
introduced, but only to eliminate them subsequently.

3.5. Semantics
We briefly sketch a standard semantics for our relational term calculus. We

will give a more formal and also more specialized definition of model when
we restrict attention to unification over the term model below. Let Σ be a
signature and LΣ a first-order language containing, in addition to the symbols
of Σ, equality, and the predicate letters r1, . . . , rn, . . . of different arities. Let
A be a first-order structure for this language, with underlying set A. Let the
interpretations of the constant symbols c and function symbols f of Σ in this
algebra be denoted by cA, fA

Let A∗ be the set of all finite sequences in A, and A† = A ∪ A∗ ∪ A∗∗ ∪
· · · ∪ An∗ ∪ · · · all hereditarily finite sequences over A. Let RA be the set of
pairs of members of A†. We then make the power set of RA into a model of the
relation calculus by interpreting atomic relation terms in a certain canonical
way, and the operators in their standard set-theoretic interpretation. Notice
that we interpret hd and tl in this model as operations on sequences similar to
the head and tail operations on lists. The intention is to identify expressions
such as 〈a, 〈b, c〉〉 with 〈a, b, c〉. We use the notational convention of writing
vector variables ~x to denote sequences 〈x1, . . . , xm〉 for any m > 0.

Definition 3.2. Given a first-order model A, a relational A-interpretation is

73

a mapping J_KA of relational terms into RA satisfying

J(c, c)KA = {(cA, cA)}
JidKA = {(u, u) | u ∈ A†}
JdiKA = {(u, v) | u 6= v}
JhdKA = {(〈t1, t2, . . . , tm〉, t1) | ti ∈ A†,m ≥ 1}
JtlKA = {(〈t1, t2, . . . , tm〉, 〈t2, . . . , tm〉) | ti ∈ A†,m ≥ 1}
JR ∪ SKA = JRKA ∪ JSKA
JR ∩ SKA = JRKA ∩ JSKA
JR \ SKA = JRKA \ JSKA
JRSKA = {(x, y) | ∃v((x, v) ∈ JRKA ∧ (v, y) ∈ JSKA)}
J1KA = RA

J0KA = ∅
JRf KA = {(~x, ~x) | ~x = 〈t0, t1, . . . , tn〉 ∧ t0 = fA(t1, . . . , tn)}
JrKA = {(~x, ~x) | ~x = 〈t1, . . . , tn〉 ∧ rA(t1, . . . , tn)}

The semantics of the labelled projections is as follows:

Jfn
i KA = {(x, y) | ∃v1 . . . vn−1(x = fA(v1, . . . , vi−1, y, vi+1, . . . , vn−1))}

It is often assumed—for example, in logic programming—that the only relation
in Σ is equality. This is natural given that we deal with term-models over a
signature, where function symbols f are interpreted as “themselves”, that is,
as the injective function 〈t1, . . . , tn〉 7→ f(t1, . . . , tn). In this case relational
primitives for predicates are not needed.

3.6. Logic into relation calculus
We define a translation (_)r from formulas ψ in the language of LΣ (consisting

of the signature Σ, equality, and predicate symbols r1, r2, . . . of different arities),
to relation expressions as follows. Let n be a natural number greater than the
largest number of variables occurring in any sentence to be considered below.

Now we define

S1 = P1 S2 = P2 . . . Sn−1 = Pn−1 Sn = tln.

where the Pi are given in Definition 3.1. Observe that, in the standard inter-
pretation for 1 ≤ i ≤ n, we have (u, v) ∈ JSkK iff v is the kth component of u.
Now define

Qn
i =

⋂
j 6=i≤n

Sj(Sj)◦ idn =
⋂
j≤n

Sj(Sj)◦

Observe that (u, v) ∈ JidnK means u and v are vectors of length at least n and
have the same components uj for all j ∈ {1 . . . n}.

uJQiKv means all but the i-th component of u and v agree. Let x1, . . . , xs

be all the variables, free or bound, that may occur in ψ. Recall all equational

74

atomic formulas ψ may be taken elementary: either xi = a, xi = xj or xi0 =
f(xi1 , . . . , xin

). First we translate the atomic formulas as follows:

(xi = a)r = Si(a, a)Si
◦ ∩ idn

(xi = xj)r = SiSj
◦ ∩ idn

(xi0 = f(xi1 , . . . , xin
))r =

⋂
jSij

Sj
◦; Rf ;SjSij

◦ ∩ idn

(r(xi1 , . . . , xin
))r =

⋂
jSij

Sj
◦; r;SjSij

◦ ∩ idn

The nonatomic formulas are translated as follows:
(ϕ ∧ ψ)r = (ϕ)r ∩ (ψ)r (ϕ ∨ ψ)r = (ϕ)r ∪ (ψ)r

(∃xiϕ)r = Qi(ϕ)rQi ∩ idn (¬ϕ)r = idn \ (ϕ)r

Finally, in the case where the function symbol f will only be interpreted as an
injective function, either because we are restricting attention to a class of models
in which this is the case, as in the term model for a signature, or because it is
implied by the axioms of the theory being used, we can simplify the translation
of one of the atomic clauses above:

(xi0 = f(xi1 , . . . , xin
))r =

⋂n

j=1
Sio

; fn
j ;So

ij

Then we have the following result, one of many established by Tarski and Givant
[41] in a form more closely suited to our needs here. It was independently
established by Freyd in a categorical setting [19]. The statement of the theorem
and its proof are new, but draw on similar ideas independently proved by Freyd,
Maddux and Tarski.

Theorem 3.1 (Freyd, Maddux, Tarski). Let L be a first-order language, A
a model over L . Let ψ be a first-order formula over L , and let x1, . . . , xn

contain all the variables, free or bound, that may occur in ψ. Then, if ψ is a
closed formula A |= ψ ⇐⇒ J(ψ)rK = JidnK. If ψ is open, with free variables
xi1 , . . . , xim among x1, . . . , xn

J(ψ)rK = {(〈a1, . . . , an〉, 〈a1, . . . , an〉) | A |= ψ[a1/x1, . . . , am/xm]}

Note that A |= ψ[a1/x1, . . . , am/xm] is equivalent to A |= ψ[ai1/xi1 , . . . , aim
/xim

]
because only the xij

occur freely in ψ, In particular, the first conclusion of the
theorem is just a special case of the second, where none of the xij

are free in ψ.
The proof is a straightforward induction on the structure of formulas

Proof.
ψ ≡ (xi = a):
Let ~u be an n-tuple of terms in A, and suppose (~u, ~u) ∈ J(xi = a)rK = JSi(a, a)S◦i ∩ idnK.
This implies that ui = a, hence A |= (xi = a)[u1/x1, . . . , un/xn]. Conversely
ui = a forces (~u, ~u) ∈ J(xi = a)rK.

ψ ≡ (xi = xj):
Suppose (~u, ~u) ∈ J(xi = xj)rK = JSiS

◦
j ∩ idnK. Then we have ui = uj and

A |= (xi = xj)[~u/~x]. The converse is also immediate.

75

ψ ≡ xi0 = f(xi1 , . . . , xin
):

Suppose (~u, ~u) ∈ J(xi0 = f(xi1 , . . . , xin
))rK, that is to say, in⋂

j
Sij

Sj
◦; Rf ;SjSij

◦ ∩ idn.

This is clearly equivalent to ui1 = fA(ui2 , . . . , uim) and hence the conclusion of
the theorem for this case.

ψ ≡ r(xi1 , . . . , xin
): Suppose (~u, ~u) ∈ J(r(xi1 , . . . , xin

))rK i.e. (~u, ~u) lies in

⋂
j
JSij

Sj
◦; r;SjSij

◦K ∩ JidnK.

Now suppose ~v is a sequence such that ~uJSij
Sj
◦K~v. Then for each j between

1 and m vj = uij
, so 〈(ui1 , . . . , uim

, ui1 , . . . , uim
)〉 ∈ JrK, which implies that

A |= r(ui1 , . . . , uim). Conversely A |= r(a1, . . . , am) implies that for any ~u with
all uij = aj , ~u, ~u) ∈ J(r(xi1 , . . . , xin))rK.

ψ ≡ ϕ1 ∧ ϕ2:
Suppose (~u, ~u) ∈ J(ϕ1 ∧ ϕ2)rK. Then (~u, ~u) ∈ J(ϕ1)rK and (~u, ~u) ∈ J(ϕ2)rK.
By the induction hypothesis, A |= ϕ1[~u/~x] and A |= ϕ2[~u/~x] and hence A |=
(ϕ1 ∧ ϕ2)[~u/~x]

ψ ≡ ¬ϕ:
Suppose (~u, ~u) ∈ J(¬ϕ)rK. Then (~u, ~u) ∈ idn \ J(ϕ)rK which is equivalent to
saying that (~u, ~u) ∈ J(ϕ)rK is not the case. Using the induction hypothesis, this
is equivalent to A 6|= ϕ[~u/~x], and hence to A |= ¬ϕ[~u/~x].

ψ ≡ ∃xiϕ:
If (~u, ~u) ∈ J(∃xiϕ)rK we must have (~u, ~u) ∈ JQi(ϕ)rQiK. This means there is
an n-tuple of terms ~v with vj = uj for every j between 1 and n except i, and
(~v,~v) ∈ J(ϕ)rK. By the induction hypothesis, this means A |= ϕ[~v/~x]. But this
is equivalent to A |= ∃xiϕ[~u/~x]. The converse is left to the reader.

The proof can be specialized to the case of a language consisting only of a
signature Σ, with equality as the sole predicate symbol, with relation structure
RHΣ induced by the term model HΣ. The only case that changes is the one for
the atomic formula xi0 = f(xi1 , . . . , xim), since we use the modified translation

(xi0 = f(xi1 , . . . , xin))r =
⋂n

j=1
Sio ; fn

j ;S◦ij

But if (~u, ~u) is a member of⋂
j
JSi0 ; fn

j ;S◦ij
K ∩ JidnK,

76

then ui1 = f(ui2 , . . . , uin+1) and HΣ |= ϕ[~u/~x]. The converse is immediate.
In the next sections we will define and turn our attention to the relation

calculus RelΣ, which is a fragment of the one used in the equipollence theorem
but has no complementation and is more suitable for capturing Horn Clause
programming (Section 4 and [6, 29]) as well as unification with constraints,
our central concern. It should be noted that the absence of negation in RelΣ
is no handicap, vis-a-vis first-order formulas with negation over the Herbrand
Universe, because of the well-known results of Mal’cev [33, 32] that any such
formula is equivalent to a two-quantifier formula in which negation occurs only
immediately preceding equations between terms. This can be modelled in RelΣ
using di for disequality.

4. The relation calculus as a programming language

We now concentrate on evaluation of relation terms as a programming form-
alism. We provide computation or rewriting rules in order to have a notion
of evaluation, but we have to carefully choose an axiomatic formulation of the
relation calculus that will ensure good termination properties.

We prepare the reader by providing a brief survey of previous work [6, 29].
For the sake of brevity, full technical details are omitted and we simply illus-
trate the ideas using examples. However, we spell out in more detail the parts
concerning unification.

4.1. Combinatory logic programming
The questions that gave rise to the results in this paper were motivated by

work on variable-free logic programming in relation calculi [6, 29]. We briefly
summarize the results most relevant to the work carried out in the following
sections. Logic programming languages, at least in principle, are based on the
notion of computing directly with a logical description of a problem, that is to
say, with specifications. Computation is reduced to proof-search in such a way
as to ideally separate the programmer from some of the procedural aspects of
computing, to eliminate concerns about how results are obtained and replace
them with definitions that specify what is to be computed. One quickly finds,
however, that many procedural concerns must be taken into account, not only
in the choice of definitions, but in the metalogical management of proof search,
including, in particular, treatment of logical variables, avoiding name clashes,
etc. This meta-logical layer lives outside the specification semantics, although
recent research in abstract syntax has worked towards providing an axiomatic
foundation to this component (e.g., [7, 21]).

The Tarski-Givant theorems on formalizing mathematics without variables
sketched above suggested a way to translate logic programs to variable-free
terms in the relation calculus, essentially supplying a built-in abstract syntax.
The resulting formalism, tailored to handle the fragment of logic of interest (e.g.
Horn clauses) in logic programming, includes an evaluation mechanism, namely
rewriting, in lieu of proof search. A simple example illustrates the main idea.

77

Consider the Prolog program for the reflexive transitive closure of a simple
graph, and two queries.

conn(X,X).
conn(X,Y):-edge(X,Z),conn(Z,Y).

edge(a,b).
edge(b,c).
edge(a,l).
edge(l,c).

| ?- conn(a,c).
| ?- conn(X,c).

Translating the program. We introduce the binary relation symbols conn and
edge (and let the font difference suffice to distinguish between program predic-
ates and the new symbols), and translate the program into a pair of relation
equations. The conn identifier stands for a relation defined via an equation
and edge stands for an expression which explicitly describes a finite binary re-
lation on the Herbrand universe H of the program. For readability, we denote
composition of relations by semicolon.

edge = {(a, b), (b, c), (a, l), (l, c)}
conn = id ∪ edge; conn

where id denotes the identity relation.
The first query above is represented by {(a, c)} ∩ conn and the second by

(1; (c, c))∩conn where 1 is the universal relation defined above. Hence (1; (c, c))
represents the set of all pairs whose second component is c. A solution to the first
query would have be to be of the form {(a, c)}, confirming that (a, c) ∈ conn,,
or otherwise 0, the empty relation. A solution to the second query should be a
more explicit description, such as {(a, c), (b, c), (c, c), (l, c)}.

We illustrate how the computation of the second query can be carried out
using simple rewriting rules that capture basic relation identities.

A natural first strategy is to unfold the recursive definition of conn:

1; (c, c) ∩ conn = (1; (c, c) ∩ id) ∪ (1; (c, c) ∩ edge; conn)

The first term can be reduced to (c, c), and the second can be further unfolded.

1; (c, c) ∩ edge; conn = 1; (c, c) ∩ edge; (id ∪ edge; conn)
= 1; (c, c) ∩ (edge; id ∪ edge; edge; conn)
= 1; (c, c) ∩ (edge ∪ edge; edge; conn)
= (1; (c, c) ∩ edge) ∪ (1; (c, c) ∩ edge; edge; conn)
= (b, c) ∪ (l, c) ∪ (1; (c, c) ∩ edge; edge; conn)

Continuing this way, we will eventually obtain the term 1; (c, c) ∩ (edge; edge)
which is equal to {(a, c)}. The next unfolding gives us 1; (c, c)∩ (edge)(3); conn.
Notice edge is finite, for any n > 2, (edge)(n) = 0, thus we are done. The query
evaluates to (c, c)∪{(b, c), (l, c)}∪{(a, c)} which is simply {(c, c), (b, c), (l, c), (a, c)}.

78

R ∩R = R R ∩ S = S ∩R R ∩ (S ∩ T) = (R ∩ S) ∩ T
R ∪R = R R ∪ S = S ∪R R ∪ (S ∪ T) = (R ∪ S) ∪ T

R id = R R0 = 0 0 ⊆ R ⊆ 1
R ∪ (S ∩R) = R = (R ∪ S) ∩R

R(S ∪ T) = RS ∪RT (S ∪ T)R = SR ∪ T R
R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)

(R ∪ S)◦ = R◦ ∪ S◦ (R ∩ S)◦ = S◦ ∩R◦

R◦◦ = R (RS)◦ = S◦R◦

R(S ∩ T) ⊆ RS ∩RT RS ∩ T ⊆ (R ∩ T S◦)S
id ∪ di = 1 id ∩ di = 0 fpx.E(x) = E(fpx.E(x))

Figure 1: The equational theory DRA.

1(a, a)1 = 1 (a, a)R(a, a) = (a, a) ∩R (a, a) ⊆ id
hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd = (tl)◦tl = id (hd)◦tl = 1

idf
def=

⋂
1≤i≤n

fn
i (fn

i)◦ ⊆ id (fn
j)◦fn

i = 1 (i 6= j)
(fn

i)◦fn
i = id (fn

i)◦gm
j = 0

(f1)n1
i1

(f2)n2
i2

. . . (fk)nk
ik
∩ id = 0

hd◦fn
i = 0 = tl◦fn

i fn
i hd = 0 = fn

i tl hd ∩ id = 0 = tl ∩ id
id =

⋃
{(a, a) : a ∈ CΣ} ∪

⋃
{idf : f ∈ FΣ}

Figure 2: The equational theory RelΣ.

4.2. Relational theories
It is well known that the theory of binary relations is not finitely axiomat-

izable [31, 19], so we need to use a specific axiomatization. Tarki’s equipollence
result uses the theory of distributive relation algebras with quasi-projections,
QRA.

However, we use the sightly different setting of [6], where logic programs are
represented as relations in two relational theories, namely, Distributive Rela-
tional Algebras (DRA, Fig. 1) and an specialized RelΣ (Fig. 2) theory, which
depends on the signature Σ of the logic program.

The latter captures algebraically Clark’s Equality Theory [30], the domain
closure axiom (shown in the last line: every term is either a constant or an
application of some term former to terms), the occurs check (fifth line: no
proper subterm of a term may be equal to the whole term), and open sequences
of terms (second line: formalizes projection operations, sixth line: rules out the
use of open sequences in term forming operations).

The modular law RS ∩ T ⊆ (R ∩ TS◦)S (recall X ⊆ Y means X ∩ Y = X)
has left and right equational versions, T ∩ RS = R(R◦T ∩ S) and T ∩ RS =
R(R◦T ∩S)∩T , both derivable from DRA. The fixed point equation (fp) allows
us to represent recursive predicates.

The fundamental role of DRA+RelΣ will be clearer in subsequent sections,
where we will derive the unification algorithm just by orienting some of the
equations into a convergent rewrite system. This allows us to claim correctness
almost for free, provided we show the rewriting system is terminating.

79

4.3. Rewriting and the modular law
SLD resolution can be implemented by orienting the equations of the re-

lational theories. It turns out that a critical equation for logic-programming
execution is the modular law [19].

Let us consider the binary relations over the set of closed terms induced by
the signature a, b, s1, that is to to say, two constants and a unary successor func-
tion. Suppose we wish to compute membership of the ordered pair (s(s(a)), a)
in the transitive closure R∗ of the binary relation R representing the successor
relation, i.e., informally, whose semantics is {(u, v) | u = s(v)} where u, v are
metavariables ranging over ground terms. We assume that membership in R is
computed in one step by a black box, in the following way:

(s(a), a) ∩R 7→ (s(a), a) (a, b) ∩R 7→ 0

We also assume some other elementary operations with R and R◦, e.g. compos-
ition with singleton relations, can be carried out in one step. Note that any pair
(u, v) can be represented in our syntax as the term (u, u)1(v, v), or we can just
introduce them as defined terms if we wish.

Thus we want to compute the value of (s(s(a)), a)∩ (R∪R2∪· · ·∪Rn∪· · ·),
to obtain either the result 0 or (s(s(a)), a). If we proceed in the obvious way,
we obtain.

(s(s(a)), a) ∩R ∪ (s(s(a)), a) ∩R2 . . .

Proceeding from left to right, the computation will terminate if (s(s(a)), a) ∩
Rk = (s(s(a)), a) for some k. In fact, this will occur when k = 2. But what if
we pick a term, such as (a, b) which does not lie in R∗? If we proceed in the
same way we require a non-terminating computation to yield the output 0. For
example, after n steps we have the term:

0 ∪ · · · ∪ 0 ∪ (a, b) ∩Rn

To solve this problem we introduce a new rewrite rule corresponding to the
equational left-modular law:

T ∩RS 7→ R(RoT ∩ S) ∩ T.

We will also add the rule R∗ 7→ R ∪ RR∗, in order to work with a definition
of transitive closure, and avoid writing infinite expressions. We then unfold the
computation

(a, b) ∩R∗ 7→ (a, b) ∩ (R ∪RR∗)
7→ (a, b) ∩R ∪ (a, b) ∩ (RR∗)
7→ 0 ∪ R(Ro(a, b) ∩R∗) ∩ (a, b)
7→ 0 ∪ R(0 ∩R∗) ∩ (a, b)
7→ 0 ∪ 0
7→ 0

80

On the third line, Ro(a, b) reduces in one step to 0 since every member of Ro

is a pair of ground terms of the form (v, s(v)) and no term of the form s(v) is
identical to the constant a.

This example illustrates how the use of the modular law can improve ter-
mination properties when we consider relation terms as programs that can be
evaluated.

4.4. The unification problem
In [6, 29], logic program execution is achieved by means of a simple set of

rewrite rules based on the relational theories above. However, unification is in-
cluded in the rewriting rules as a black box. Terms t in the Herbrand universe
are represented via certain variable-free relation expressions K̇(t) (discussed in
detail below), and unification was shown to be soundly represented by intersec-
tions of such terms using, e.g. the rules in Table 1.

K̇(u) ∩ K̇(v) P7−→ K̇(θv′) (θ = mgu(u, v′), ‖ u ‖≤‖ v ‖)
K̇(v) ∩ K̇(u) P7−→ K̇(θv′) (θ = mgu(u, v′), ‖ u ‖≤‖ v ‖)
K̇(v) ∩ K̇(u) P7−→ 0 (u, v not unifiable)

v′ = v renamed apart.

Table 1: Meta-reductions

The details of how the mgu was to be computed were left to the implement-
ation.

In some regards, this black-box treatment is a natural choice, since this
is precisely where constraint systems are added to logic programming engines
in conventional constraint logic programming languages, such as CLP(X) [26].
However, the benefits of variable-elimination may be lost here if unification is
carried out using typical algorithms that operate directly on the variable names
in terms. Then variables must be restored just for the sake of this step.

The translation K from terms t ∈ TΣ(X) to terms in R is defined in a way
that every ground instance of t is in JK(t)K. We will also define the set of
relational terms in K’s image inductively and call them U-terms. The result of
applying the most general unifier of two terms t1, t2 ∈ TΣ(X) to any of them
is then represented by K(t1) ∩ K(t2). It is therefore of interest to define and
compute a normal form for such an expression which conveys all the desired
information.

In a relational setting we have no variables and no syntactic notion of sub-
stitution. Therefore, the natural output of a unification procedure is some sort
of normalized constraint with the right semantics. The next paragraphs will
develop this idea.

81

Definition 4.1. K : TΣ(X)→ R is defined by induction on TΣ(X) terms:

K(a) = (a, a)1
K(xi) = (Pi)◦

K(f(t1, . . . , tn)) =
⋂
i≤n

fn
i K(ti)

For example, K(f(x1, g(a, x2))) yields f2
1P
◦
1 ∩ f2

2 (g2
1(a, a)1 ∩ g2

2P
◦
2).

It should be noted that the symbols t1, . . . , tn in the expressionK(f(t1, . . . , tn)
in the preceding definition, aremetavariables denoting arbitrary terms in TΣ(X).
In particular, several of them may refer to the same variable xj or the same com-
pound term.

In general, the relations semantically denoted by the terms K(t) are non-
coreflexive, that is, domain and co-domain are not equal. Indeed, consider the
base case of the definition, K(a) = (a, a)1. The semantics of the resulting rela-
tion term is the set {(aA, ~u)|~u any sequence of terms}. Indeed, we could inform-
ally state that the domain any relation generated byK(t) is the set of t’s instanti-
ations whereas the co-domain is the set of instantiations of the variables of t. So,
for a ground term t, it follows that JK(t)K = {(tA, ~u)|~u any sequence of terms}.
The fact that in the ground case the co-domain is the set of all sequences of
terms reflects the invariability of t under substitution.

In order to simplify some computations, and especially in the context of the
logic programming simulations in [6, 29] , we need to make use of a variant of
this translation. So we define the K̇ translation of a term as the coreflexive
version of K extended over sequences:

Definition 4.2 (K̇).

K̇(〈t1, . . . , tn〉) = (P1t1 ∩ · · · ∩ Pntn)1 ∩ id

If we instantiate the (modified) equipollence theorem to this particular case
we get:

Lemma 4.1. For all terms t1, t2 in TΣ(X) with variables x1, . . . , xn and an
arbitrary open sequence ~u:

(t1σ, 〈a1, . . . , an〉~u) ∈ JK(t1) ∩K(t2)K iff H |= t1σ = t2σ

for all grounding substitutions σ = a1, . . . , an/x1, . . . , xn.

This result is proved in detail in [29]. In words, given an open term t all
pairs relating ground instances of t with grounding elements a1, . . . , an belong
to JK(t)K.

Definition 4.3 (U-terms). The set of U-terms (relational terms in K’s im-
age) is defined inductively:

• 0 ∈ U, (a, a)1 ∈ U for every (a, a) ∈ RΣ, and P ◦i ∈ U for every i ∈ N.

82

• If R ∈ U then fn
i R ∈ U for every fn

i ∈ RΣ.

• If R1, . . . , Rn ∈ U then R1 ∩ · · · ∩Rn ∈ U.

Definition 4.4 (Unification problem). The unification problem in this re-
lational setting is to reduce, given terms t1, t2 ∈ TΣ(X), K(t1) ∩K(t2) into an
equivalent U-term.

The unification procedure above effectively decides unifiability, since the
following holds:

JK(t1) ∩K(t2)K =
{

JK(t1σ)K where σ = mgu(t1, t2) if exists
∅ otherwise

(1)

5. Solved forms for U-terms

It is standard practice in decision problems to use a solved form which has a
trivial decision procedure. The decision problem is then reduced to developing
a method for producing solved forms [10]. At the core of our decision procedure
is the theory RelΣ, for it provides a strong enough axiomatization of the original
underlying algebra of finite trees.

Given the term T = R ∩ S, we informally say that R is constrained by S in
T and vice versa. We also say that R is obtained from R ∩ S by dropping the
constraint S.

Definition 5.1 (P-constraint completeness). A termR is P-constraint com-
plete or Ξ(R) iff for all subterms t1 and t2 of R of the form:

t1 = P ◦i ∩R1 ∩ · · · ∩Rm

t2 = P ◦j ∩ S1 ∩ · · · ∩ Sn

if i = j then the equality t1 = t2 holds modulo ∩-commutativity.

This formally captures the notion that every P ◦i appearing in a term must have
the same set of constraints. Some examples of P-constraint-complete terms
are: P ◦1 ∩ P ◦2 , f2

1 (P ◦1 ∩ R) ∩ g2
1(R ∩ P ◦1) and f2

1 (P ◦1 ∩ R) ∩ g2
1(S ∩ P ◦2). Some

non-P-constraint-complete terms are: P ◦1 ∩f1
1P
◦
1 and f2

1 (P ◦1 ∩R)∩g2
1(S∩P ◦1).

Definition 5.2 (Indexed P-constraint completeness). A termR is P-constraint
complete on i or Ξi(R) iff for all subterms t1, t2 of R of the form:

t1 = P ◦j ∩R1 ∩ · · · ∩Rm

t2 = P ◦k ∩ S1 ∩ · · · ∩ Sn

if i = j = k then the equality t1 = t2 holds modulo ∩-commutativity.

83

Definition 5.3 (Solved form). U-terms in solved form are inductively defined
for all a, i, j, f, g as:

R for R ∈ {(a, a)1, P ◦i ,0}
R ∩ S for R,S ∈ {(a, a)1, P ◦i }

(a, a)1 ∩ f j
i R

fn
i R if R in solved form.
P ◦i ∩ fn

j R if R in solved form.
fm

i R ∩ gn
j S if f 6= g.

fn
i R ∩ fn

j S if R,S in solved form and Ξ(R ∩ S).
R1 ∩ · · · ∩ Rn if every pair Ri ∩Rj , i 6= j in solved form.

If a term t is in solved form we say solved(t). Let US = {t ∈ U | solved(t)}
and UN = {t ∈ U | ¬solved(t)}. By definition, US and UN partition U. The
inductive definition of unsolved forms is thus obtained from the logical negation
of the solved form definition:

Definition 5.4 (Unsolved form). U-terms in unsolved form are those terms
not in solved form. Inductively, for all i, j, f :

fn
i R if R not in solved form.
P ◦i ∩ fn

j R if R not in solved form.
fn

i R ∩ fn
i S

fn
i R ∩ fn

j S if ¬Ξ(R ∩ S) or any of R,S not in solved form.
R1 ∩ · · · ∩ Rn if Ri ∩Rj not in solved form for some i, j, i 6= j.

The decision procedure for solved forms is an exhaustive check for incompatible
intersections.

Lemma 5.1 (Validity of solved forms). For any term t ∈ US, we can always
decide whether t = 0 or, what is the same, whether JtK = ∅.

Proof. By cases on t:

• R and R∩S for R,S ∈ {(a, a)1, P ◦i }: Follows directly by term semantics.

• (a, a)1 ∩ f j
i R: Always 0, because the relation domains are disjoint.

• fn
i R: We check R for validity.

• P ◦i ∩ fn
j R: We check R for validity.

• fm
i R ∩ gn

j S: Always 0, because relation domains are disjoint (f 6= g).

• fn
i R∩ fn

j S: We check R and S for validity. This check is enough because
no term fn

i R ∩ fn
i S is in solved form. Consequently, the domain of the

resulting relations is known. Given that Ξ(R ∩ S) holds, the codomain is
also known, as every projection P ◦i into the codomain shares the same set
of constraints, so validity of the codomain is effectively reduced to validity
of constraints.

84

• R1 ∩ · · · ∩ Rn: Every pair Ri ∩ Rj with i 6= j is in solved form, thus the
term’s validity depends on the pairs’ validity.

6. The algorithm

This section defines an algorithm for computing normal forms of U-terms.
The core of the algorithm consists of two term rewriting systems whose effect can
be explained by analogy with the classic non-deterministic algorithm (ND) [34].
The first rewriting system (system →L defined in Sec. 6.2) performs what we
call left-factoring, analogous to generation of new equations from a common
root term in ND, which is now algebraically understood as the distribution of
composition over intersection. The following diagram illustrates (E stands for a
multiset of equations):

{f(t1, . . . , tn) = f(u1, . . . , un), E} ⇒ {t1 = u1, . . . , tn = un, E}
fn

i R ∩ fn
i S →L fn

i (R ∩ S)

The other step in ND, equation elimination, is now algebraically understood as
constraint propagation (system →R defined Sec. 6.4):

{x = t, E} ⇒ {E [t/x]} when x 6∈ t
F (Pi ∩R) ∩G(Pi ∩ S) →R F (Pi ∩R ∩ S) ∩G(Pi ∩ S ∩R)

System →R is conditional on what we call functorial compatibility, a novel way
of performing occurs checks which was motivated by RelΣ’s axiom fn

i ∩ id = 0.
The two rewriting systems are carefully composed with the help of a constraint-
propagation one (system →S defined in Section 6.3) to guarantee termination.

6.1. Rewriting preliminaries
The representation of U-terms in our rewriting systems is given by the fol-

lowing term-forming operations: c : CΣ → U, t : (FΣ × N × N) → U, P : N →
U, � : (U1 × · · · × Un) → U, and ∩ : (U1 × · · · × Un) → U, with n ≥ 2
and n-ary � and ∩. In addition to the above ground representation, we define
patterns of U-terms in a standard way using a set of variables. Let i, j, k etc,
range over N. Let a, b, c etc, range over CΣ. Let f, g, h etc, range over FΣ. Let
R,S, T etc, range over U-terms. We write (a, a)1 for c(a), write f j

i for t(f, i, j),
write P ◦i for P(i), write R1 . . . Rn for �(R1, . . . , Rn), and write R1 ∩ · · · ∩ Rn

for ∩(R1, . . . , Rn).
Rewrite rules are of the form ρ : l → r with ρ the rule’s name, l and

r patterns, and l not a variable. Conditional rewrite rules are of the form
ρ : l → r ⇐ C belonging to type III CTRS [27] (see Def. 6.3). We write
→! for the normalization relation derived from a terminating and confluent
(convergent) relation →. We write ◦ for composition of rewriting relations. We
use ≡ for syntactic identity (modulo AC).

85

We use A and AC rewriting for � and ∩. More precisely, we define the
equational theories for relational terms A� = {R(ST) = (RS)T} and AC∩ =
{R∩ (S∩T) = (T ∩S)∩T, R∩S = S∩R}. The AC rewriting used is described
in [13, p577–581]: associative term formers are flattened and rewrite rules are
extended with dummy variables to take into account the arity of term-forming
operations. Matching efficiency can be improved by using ordered rewriting.

A rewrite rule ρ : l→ r matches a term t iff lσ = t modulo A� and AC∩. A
sequence of integers p is called a position. f(t1, . . . , tn)|〈i,l〉 ≡ ti|l, given 1 ≤ i ≤
n and t|〈〉 = t. We allow subterm matching: if there exists a position p such that
lσ = t|p (modulo previous AC), then t reduces to t{t|p 7→ rσ}. Importantly,
we also allow matching over functorial variables which represent the largest
composition of fn

i terms.1 We use F,G,H etc, for functorial variables. The
expression length(F) delivers the length of functorial variable F . For example,
the term r2

1s
2
2((a, a)1 ∩ (b, b)1 ∩ t11P ◦1) matches F (R ∩ GS) with σ = {F 7→

r2
1s

2
2, R 7→ (a, a)1 ∩ (b, b)1, G 7→ t11, S 7→ P ◦1 }. Matching over functorial

variables is a sort of specialized list-matching. Note that such a variable always
matches the largest sequence possible.

6.2. Left-factoring rewriting system
Definition 6.1. The rewriting system L consists of the set of rewrite rules
(where i ranges over all indices and f over all function symbols):

fn
i R ∩ fn

i S →L fn
i (R ∩ S)

Lemma 6.1. L is sound.

Proof. Soundness is a consequence of the following equation:

RS ∩RT = R(S ∩ T) (2)

which holds in DRA when R is functional (which is the case for every fn
i):

R(S ∩ T) ⊇[by id ⊇ R◦R] R(S ∩R◦RT) ⊇[by modular law] RS ∩RT

Conversely, RS ∩RT ⊇ R(S ∩ T) by DRA.

Lemma 6.2. L is terminating and confluent.

Proof. To prove termination it suffices to give a lexicographic path ordering on
terms [12]. The ordering is ∩ � �. The system has no critical pairs, so it is
locally confluent, local confluence plus termination implies confluence [28].

1We use “functorial” in connection with function symbols (term formers), not with functors
in category theory.

86

6.3. Split-rewriting system
Definition 6.2. The rewriting system S consists of the rewrite rules:

F (R ∩G(P ◦i ∩ S))→S FR ∩ FG(P ◦i ∩ S)

Lemma 6.3. S is sound, terminating and confluent.

Proof. Soundness and closure properties are immediate from (2). Termination
is proven giving the lexicographic path ordering � � ∩ and confluence follows
from the fact that →Si

is terminating and locally confluent.

We will also use a parametrized version of S, written Si where i is fixed.

6.4. Constraint-propagation rewriting system
The purpose of this system is to propagate constraints over P ◦i terms. Con-

straint propagation has two main technical difficulties. First, addressing oc-
curs check to avoid infinite rewriting. Second, propagating constraints before
checking for term clashes. Both difficulties can be addressed by introducing a
decidable notion of functorial compatibility:

Definition 6.3. The convergent rewriting relation →∆ is defined as:

(fn
i)◦fn

i →∆ id (fn
i)◦gm

j →∆ 0 (fn
i)◦fn

j →∆ 1 idfn
i →∆ fn

i

(fn
i)◦1→∆ 1 1fn

i →∆ 1 (fn
i)◦0→∆ 0 0fn

i →∆ 0

The above convergent rewriting relation gives rise to their associated function:

Definition 6.4 (Functorial delta). Given functorials F and G, we define
∆(F,G) as follows:

∆(F,G) = S, F ◦G→!
∆ S if length(G) ≥ length(F)

∆(F,G) = S, G◦F →!
∆ S if length(G) < length(F)

Lemma 6.4.

∆(F,G) =

0 if JF ∩GK = ∅
id if F ≡ G.
S if G ≡ FS
S if F ≡ GS
1 otherwise.

Proof. By induction on functorial terms.

Remark 6.1. We may understand functorials as pointers to a position in a
term. From this standpoint, ∆ handles “pointer interference”. That is, whether
the functorials “point” to the same, to different but compatible, or to incom-
patible positions in a term. The delicate case is when one functorial points to a
sub-position of another.

87

Definition 6.5 (Syntactic difference). The syntactic difference Θ(R1∩· · ·∩
Rm, S1 ∩ · · · ∩ Sn) between two arbitrary-length intersection of terms is defined
as the term

⋂
i∈D Si such that (∀j ∈ {1..m}.Rj 6≡ Si) ⇐⇒ i ∈ D. Abusing

notation, we use {} for the empty intersection.

Lemma 6.5. R ∩Θ(R,S) ≡ S ∩Θ(S,R)

Proof. By induction on the length of R.

Recall that ≡ is syntactic identity modulo AC (Section 6.1). Should we use
the idempotency axiom A ∩ A ≡ A to check equality modulo ACI, we would
get an extended version of Lemma 6.5:

R ∩ S ≡ R ∩Θ(R,S) ≡ S ∩Θ(S,R) ≡ S ∩R

Corollary 6.1. For any term R, Θ(R,R) = {}.

Definition 6.6. The rewriting system R consists of the rewrite rules:

R0 : P ◦i ∩ F (P ◦i ∩ S)→R 0
R1 : F (P ◦i ∩R) ∩G(P ◦i ∩ S)→R 0 ⇐ ∆(F,G) = 0 ∨∆(F,G) = fn

i . . . g
m
j

R2 : F (P ◦i ∩R) ∩G(P ◦i ∩ S)→R F (P ◦i ∩R ∩Θ(R,S)) ∩G(P ◦i ∩ S ∩Θ(S,R))
⇐ (Θ(R,S) 6= {} ∨Θ(S,R) 6= {}) ∧ (∆(F,G) = 1 ∨∆(F,G) = id)

Notice Θ helps us deal conveniently with the equivalence of terms R ∩ S and
S ∩ R. We will also use a parametrized version of R, written Ri, where i is
fixed.

Lemma 6.6. R is sound.

Proof. R0 is sound beacuse every term matching the left hand side can be
factored into a term of the form id ∩ fn

i . . . g
m
j using RP ◦i ∩ SP ◦i = (R ∩ S)P ◦i

which is a version of Eq. (3) below. R1 is sound for two reasons:

1. If ∆(F,G) = 0 then F and G are incompatible and the left hand side
rewrites to 0 by left-factoring.

2. If ∆(F,G) = fn
i . . . g

m
j then there is a common prefix F ′ of F and G such

that F ∩G = F ′(id ∩ fn
i . . . g

m
j) and the right-hand-side rewrites to 0 by

RelΣ’s occurs-check axiom.

That R2 is sound follows from the equation:

F (P ◦i ∩R) ∩GP ◦i = F (P ◦i ∩R) ∩G(P ◦i ∩R) (3)

Recall that a relation is injective when RR◦ ⊆ id. Recall Lemma 6.1 which
states that RT ∩ST = (R∩S)T for T injective. Using these facts we prove the
⊆ direction:

F (P ◦i ∩R) ∩GP ◦i =[left+right factoring] (F ∩G)P ◦i ∩ FR ⊆[modular law]
(F ∩G)((F ◦ ∩G◦)FR ∩ P ◦i) ⊆[by (F◦ ∩G◦)F ⊆ F◦F = id] (F ∩G)(R ∩ P ◦i)
=[injectivity of (R ∩ P◦i)] F (R ∩ P ◦i) ∩G(R ∩ P ◦i)

88

The ⊇ direction is easier:

F (P ◦i ∩R) ∩GP ◦i ⊇[monotonicity of ∩] F (P ◦i ∩R) ∩G(P ◦i ∩R)

The following example illustrates why the compatibility check is needed to
ensure termination. Take the term P ◦1 ∩f1

1 (P ◦1 ∩R). If we propagate restrictions
by orienting (3) we get an infinite rewrite: P ◦1 ∩f1

1 (P ◦1 ∩R)→ P ◦1 ∩f1
1 (R∩P ◦1 ∩

f1
1 (P ◦1 ∩R))→ P ◦1 ∩ f1

1 (R ∩ P ◦1 ∩ f1
1 (P ◦1 ∩R ∩ f1

1 (P ◦1 ∩R))) . . .

Definition 6.7. Let �C be the order relation:

F (P ◦i ∩R) ∩G(P ◦i ∩ S) �C F (P ◦i ∩R ∩Θ(R,S)) ∩G(P ◦i ∩ S ∩Θ(S,R))

where Θ(R,S) 6= {} and Θ(S,R) 6= {}.

Informally, think of �C being defined over the measure “number of different
elements of R and S”.

We prove �C is well-founded using Lemma 6.5.

Lemma 6.7. �C is well-founded.

Proof. �C has bounded depth, with no chain of length longer than two. Suppose
�C had a chain of length three:

F (P ◦i ∩R) ∩G(P ◦i ∩ S) �C

F (P ◦i ∩R ∩Θ(R,S)) ∩G(P ◦i ∩ S ∩Θ(S,R)) �C

F (P ◦i ∩R ∩Θ(R,S) ∩Θ(R ∩Θ(R,S), S ∩Θ(S,R))) ∩
G(P ◦i ∩ S ∩Θ(S,R) ∩Θ(S ∩Θ(S,R), R ∩Θ(R,S)))

and note that in order for the chain to exist Θ(R ∩ Θ(R,S), S ∩ Θ(S,R)) 6=
{}. But using Lemma 6.5, R ∩ Θ(R,S) ≡ S ∩ Θ(S,R), so by Corollary 6.1,
Θ(R∩Θ(R,S), S ∩Θ(S,R)) = {}, contradicting the existence of the chain.

Lemma 6.8. R terminates.

Proof. Rules R0 and R1 rewrite to 0. For rule R2 we define a well-founded
order that contains the relation induced by R2. Notice that the finiteness of the
terms involved in the rewriting ensures that the transformation for handling the
n-ary term former ∩ doesn’t affect termination.

Lemma 6.9. R is confluent (modulo commutativity).

Proof. We give the same lexicographic path ordering as Lemma 6.2 and R has
no overlapping rules.

89

6.5. The algorithm
Unfortunately, a naïve application of the previous rewriting rules does not

necessarily reach a solved form. Take for example the term r2
1(P ◦1 ∩ s1

1(P ◦2 ∩
(a, a)1))∩r2

2(P ◦2 ∩s1
1(P ◦1 ∩(b, b)1)). If we apply the rewriting strategy→!

S ◦ →!
R

◦ →!
L we do not reach a solved form because →!

S destroys constraints over P ◦1 ,
impeding the constraint propagation step to work properly. One solution is to
complete the constraints for each P ◦i one at a time.

Lemma 6.10. Given a rewriting t →!
Si
t′, every P ◦i in t′ occurs at top level

relative to functorials, i.e., t′ has the form:

P ◦i ∩ F (P ◦i ∩R) ∩ · · · ∩G(P ◦i ∩ S) ∩ . . .

Proof. If the P ◦i term occurs deeper in the term, t′ has the form:

F (R ∩G(S ∩ · · ·H(P ◦i ∩ T))) ∩ . . .

which is not a normal form for →!
Si
.

Definition 6.8 (Individual constraint propagation). The rewrite relation
→Ui

parametrized on i is defined as:

→!
L ◦ →!

Si
◦ →!

Ri
◦ →!

L

Lemma 6.11. Ξi(t′) holds for every term t and reduction t→Ui
t′.

Proof. Assume a term t exists such that t →Ui
t′ and ¬Ξi(t′). There are sub-

terms of t′ of the form P ◦i ∩R and P ◦i ∩ S, with Θ(R,S) 6= {} or Θ(S,R) 6= {}.
Let t→!

L u, then no subterm of the form FR∩FS exists in u. Let u→!
Si
v, then

every P ◦i in v is of the form described in Lemma 6.10. Let v →!
Ri

w, then Ξi(w)
because w is a normal form of →Ri and P ◦i ∩R and P ◦i ∩ S with Θ(R,S) 6= {}
and Θ(S,R) 6= {} cannot occur at the top-level, and every P ◦i is at the top level.
Let finally w →!

L t
′. For →!

L to break P-constraint completeness, w must have
a term of the form FP ◦i ∩FR such that after →!

L, R becomes a new constraint
on P ◦i . However this cannot happen, for u had no such terms and v had only
terms of the form F (P ◦i ∩R)∩FG(P ◦i ∩R), which are rewritten to 0 by R1.

Lemma 6.12. Given t such that Ξi(t) holds then t→!
Si
t′ and Ξi(t′).

Proof. Follows from →Si
rules because if Ξ(t) then no term of the form F (P ◦i ∩

GR) with P ◦i in R can occur in t. Such occurrence is the necessary condition
for →!

Si
to destroy P-constraint completeness.

Lemma 6.13. Given t such that Ξi(t) holds then t→!
Ri

t.

Proof. Follows from the definition of→Ri
. Note that if R0 or R1 are applicable

for a term t, this easily implies ¬Ξ(t).

Lemma 6.14. →Ui reaches a fixed point, in other words, given a term t then
t→Ui t

′ →Ui t
′′ and t′ = t′′.

90

dep(P ◦j) = ∅
dep(R ∩ S) = dep(R) ∪ dep(S)
dep(fn

i R) = dep′(R)

dep′(P ◦j) = {j}
dep′(R ∩ S) = dep′(R) ∪ dep′(S)
dep′(fn

i R) = dep′(R)

Figure 3: Definition of dep : U→ P(N)

Proof. Ξi(t′) holds by Lemma 6.11. In the second →Ui
step, t′ →!

L t
′ holds. By

Lemma 6.12, t′ →!
Si
u and Ξi(u). By Lemma 6.13, we have u →!

Ri
u. Finally,

we need to prove t′ →!
Si
u →!

L t
′. This is proven by the fact that →!

L undoes
everything →!

Si
does on already factorized terms, which is the case of t′. Given

rewriting rules F (R∩G(P ◦i ∩S))→Si FR∩FG(P ◦i ∩S) and FT ∩FU →L F (T ∩
U), their composition happens with substitution {T 7→ R, U 7→ G(P ◦i ∩ S)},
resulting in the rewriting rule F (R∩G(P ◦i ∩S))→L◦Si

F (R∩G(P ◦i ∩S)) which
is the identity.
Definition 6.9 (P-dependency). Given a term P ◦i ∩ R, we say i P-depends
on j if j ∈ dep(R) where dep : U→ P(N) is defined in Fig. 3. We can build the
P-dependency for a term t taking all its subterms in the form P ◦i ∩R.

Lemma 6.15 (Constraint destruction). Given Ξj(t), t→Ui
t′ can make ¬Ξj(t′)

iff j P-depends on i and i 6= j.

Proof. The only way →Ui can add a new constraint to a P ◦j by constraint
propagation is if the term is in the form P ◦j ∩ FR and P ◦i occurs in R which is
precisely the definition of P-dependency.

Lemma 6.16 (Occurs check). If i P-depends on i in a term t then t→Ui
0.

Proof. Such P-dependency means P ◦i ∩ FR and P ◦i occurs in R which gets
rewritten to 0 by →!

Ri
.

Definition 6.10 (Solved form algorithm). Given a term t ∈ U, containing
P ◦i terms with i ∈ {1 . . . n} and n ≥ 1, we define the rewriting relation →U↓n

as
→U1 ◦ · · · ◦ →Un , that is:

→!
L ◦ →!

S1
◦ →!

R1
◦ →!

L ◦ →!
S2
◦ →!

R2
◦ →!

L ◦ · · · ◦ →!
Sn
◦ →!

Rn
◦ →!

L

For n = 0, there are no P ◦i in t and we define →U↓0 as →!
L.

Lemma 6.17. There is a finite k such that t→k
U↓n

t′ and Ξ(t′).

Proof. The case n = 0 follows from Lemma 6.2 with k = 1. The case n = 1
follows from Lemma 6.14 with k = 1. In the case n > 1, for a step u →Ui

u′

then Ξi(u′) by Lemma 6.11. However, by Lemma 6.15 such a step can make
¬Ξj(u′) hold iff j P-depends on i. Suppose the P-dependency graph of t is
acyclic. Then there is a set of terminal edges E such that forall l ∈ E, Ξl holds
after →Ul

and no other step →Ui
can make Ξl false, for they depend on no j.

Once the term is Ξl for every l ∈ E, E can be removed from the graph. The

91

process can be repeated with the new set E′ of terminal edges a finite number
of times, for the graph is acyclic and the number of edges is finite. Finally if
the P-dependency graph of the original term is cyclic, then by Lemma 6.16 the
term would get rewritten to 0 in the→Ui

iteration corresponding to any i on the
cycle. Thus when the process ends, Ξl(t′) for all l ∈ {1 . . . n} which is equivalent
to Ξ(t′).

Lemma 6.18. →U↓n
reaches a fixed point.

Proof. The proof is similar to the one in Lemma 6.14, but using Lemma 6.17,
for once Ξ(t) holds, →U↓n

application does not modify t.

Lemma 6.19. The fixed point for →U↓n
is in solved form.

Proof. We check by induction that no unsolved term can be a fixed point:
• fn

i R is unsolved when R is unsolved, this means one of the cases apply
for R.

• P ◦i ∩ fn
j R, if P ◦i /∈ R and R not in solved form: If R is in unsolved form

then one of the cases below applies. Otherwise, if P ◦i is a subterm of R
when →!

Ri
fires, it rewrites to 0.

• fn
i R ∩ fn

i S: Terms of this form match the left side of →L.

• fn
i R ∩ fn

j S, we have two cases:

– Ξ(R∩S) doesn’t hold: Lemma 6.18 implies that→Un reaches a fixed
point for t precisely when Ξ(t) holds, so ¬Ξ(R∩S) is a contradiction.

– Any of R,S are in unsolved form: for the term in unsolved form one
of the cases of the definition of unsolved applies.

• R1 ∩ · · · ∩ Rn, if some pair Ri ∩ Rj , i 6= j is in unsolved form: If the pair
Ri, Rj is in unsolved form one of the cases above apply.

Definition 6.11 (Relational unification). We define the relation between
U-terms with maximum index n, denoted t→{UNIF,n} t

′, as follows: If t→!
U↓n

s

and s is not valid then t′ = 0; otherwise, t′ = s.

Theorem 6.1. Terms t1, t2 with n different variables are not unifiable iffK(t1)∩
K(t2)→{UNIF,n} 0.

Proof. By Lemma 6.19 we know that →!
U↓n

brings any U-term to solved form.
As we have a complete decision procedure for solved terms by Lemma 5.1, we
can decide if K(t1) ∩ K(t2) is 0, which means by Eq. 1 that t1, t2 are not
unifiable.

Definition 6.12 (Relational unifiers). We say a term t in solved form has
a unifier R for i if P ◦i ∩R is a subterm of t.

For example, suppose we have the term P ◦1 ∩ (a, a)1∩P ◦2 . This means in TΣ(X)
that x1 = x2 = a.

92

7. Example

We will use the example given in [34]:

t1 = f(g(h(a, x5), x2), x1, h(a, x4), x4)
t2 = f(x1, g(x2, x3), x2, b)

First, we use K-translation to translate the term into a suitable relational
form:

K(t1) = f4
1 (g2

1(h2
1(a, a) ∩ h2

2P
◦
5) ∩ g2

2P
◦
2) ∩ f4

2P
◦
1 ∩ f4

3 (h2
1(a, a) ∩ h2

2P
◦
4) ∩ f4

4P
◦
4

K(t2) = f4
1P
◦
1 ∩ f4

2 (g2
1P
◦
2 ∩ g2

2P
◦
3) ∩ f4

3P
◦
2 ∩ f4

4 (b, b)1

So K(t1) ∩K(t2) is:

f4
1 (g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

2P
◦
2) ∩ f4

1P
◦
1 ∩

f4
2P
◦
1 ∩ f4

2 (g2
1P
◦
2 ∩ g2

2P
◦
3) ∩

f4
3 (h2

1(a, a)1 ∩ h2
2P
◦
4) ∩ f4

3P
◦
2 ∩

f4
4P
◦
4 ∩ f4

4 (b, b)1

Now we apply our rewriting strategy. For the sake of brevity, we will rewrite
variables in the optimal order, which is easily calculable after factoring. We first
factor the term:

f4
1 (g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

2P
◦
2 ∩ P ◦1) ∩

f4
2 (P ◦1 ∩ g2

1P
◦
2 ∩ g2

2P
◦
3) ∩

f4
3 (h2

1(a, a)1 ∩ h2
2P
◦
4 ∩ P ◦2) ∩

f4
4 (P ◦4 ∩ (b, b)1)

One of the orders induced by Γ is 1, 3, 2, 4, 5. We will start with variable P ◦5 .
The first step is to split on 5. We apply →S5 :

f4
1 (g2

1(h2
1(a, a)1) ∩ g2

2P
◦
2 ∩ P ◦1) ∩ f4

1 g
2
1h

2
2P
◦
5 ∩

f4
2 (P ◦1 ∩ g2

1P
◦
2 ∩ g2

2P
◦
3) ∩

f4
3 (h2

1(a, a)1 ∩ h2
2P
◦
4 ∩ P ◦2) ∩

f4
4 (P ◦4 ∩ (b, b)1)

No constraint can be propagated, so we come back and split on 4:

f4
1 (g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

2P
◦
2 ∩ P ◦1) ∩

f4
2 (P ◦1 ∩ g2

1P
◦
2 ∩ g2

2P
◦
3) ∩

f4
3 (h2

1(a, a)1 ∩ P ◦2) ∩ f4
3h

2
2P
◦
4 ∩

f4
4 (P ◦4 ∩ (b, b)1)

At this point some propagation takes place:

f4
3h

2
2P
◦
4 ∩ f4

4 (P ◦4 ∩ (b, b)1) →R
f4

3h
2
2(P ◦4 ∩ (b, b)1) ∩ f4

4 (P ◦4 ∩ (b, b)1)

93

The full term is now (after factoring again):

f4
1 (g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

2P
◦
2 ∩ P ◦1) ∩

f4
2 (P ◦1 ∩ g2

1P
◦
2 ∩ g2

2P
◦
3) ∩

f4
3 (h2

1(a, a)1 ∩ P ◦2 ∩ h2
2(P ◦4 ∩ (b, b)1)) ∩

f4
4 (P ◦4 ∩ (b, b)1)

We factor for 2:

f4
1 g

2
2P
◦
2 ∩

f4
2 g

2
1P
◦
2 ∩

f4
3 (P ◦2 ∩ h2

1(a, a)1 ∩ h2
2(P ◦4 ∩ (b, b)1)) · · ·

and we get propagated the constraint h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1) to the other
terms yielding a result:

f4
1 (g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

2(P ◦2 ∩ h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1)) ∩ P ◦1) ∩
f4

2 (P ◦1 ∩ g2
1(P ◦2 ∩ h2

1(a, a)1 ∩ h2
2(P ◦4 ∩ (b, b)1)) ∩ g2

2P
◦
3) ∩

f4
3 (h2

1(a, a)1 ∩ P ◦2 ∩ h2
2(P ◦4 ∩ (b, b)1)) ∩

f4
4 (P ◦4 ∩ (b, b)1)

For P ◦3 there is only one occurrence, so we go to propagate on P ◦1 .

f4
1 (P ◦1 ∩ g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

2(P ◦2 ∩ h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1))) ∩
f4

2 (P ◦1 ∩ g2
1(P ◦2 ∩ h2

1(a, a)1 ∩ h2
2(P ◦4 ∩ (b, b)1)) ∩ g2

2P
◦
3) ∩

which results in

f4
1 (P ◦1 ∩ g2

1(h2
1(a, a)1 ∩ h2

2P
◦
5) ∩ g2

1(P ◦2 ∩ h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1)) ∩
g2

2(P ◦2 ∩ h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1) ∩ g2
2P
◦
3)

after factoring becomes:

f4
1 (P ◦1∩ g2

1(h2
1(a, a)1 ∩ P ◦2 h2

2(P ◦4 ∩ P ◦5 ∩ (b, b)1)) ∩
g2

2(P ◦2 ∩ P ◦3 ∩ h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1))

The final term:

f4
1 (P ◦1 ∩ g2

1(h2
1(a, a)1 ∩ P ◦2 h2

2(P ◦4 ∩ P ◦5 ∩ (b, b)1)) ∩
g2

2(P ◦2 ∩ P ◦3 ∩ h2
1(a, a)1 ∩ h2

2(P ◦4 ∩ (b, b)1)) ∩
f4

2 (P ◦1 ∩ g2
1(h2

1(a, a)1 ∩ P ◦2 h2
2(P ◦4 ∩ P ◦5 ∩ (b, b)1)) ∩

g2
2(P ◦2 ∩ P ◦3 ∩ h2

1(a, a)1 ∩ h2
2(P ◦4 ∩ (b, b)1)) ∩

f4
3 (h2

1(a, a)1 ∩ P ◦2 ∩ h2
2(P ◦4 ∩ (b, b)1)) ∩

f4
4 (P ◦4 ∩ (b, b)1)

We checked the term is valid: we couldn’t find an invalidating constraint.
Now, we erase the P ◦i terms to help see better what actually happened:

f4
1 (g2

1(h2
1(a, a)1 ∩ h2

2(b, b)1) ∩ g2
2(h2

1(a, a)1 ∩ h2
2(b, b)1)) ∩

f4
2 (g2

1(h2
1(a, a)1 ∩ h2

2(b, b)1) ∩ g2
2(h2

1(a, a)1 ∩ h2
2(b, b)1)) ∩

f4
3 (h2

1(a, a)1 ∩ h2
2(b, b)1) ∩

f4
4 (b, b)1

94

Enhanced visualization:
f1(g1(h1a ∩ h2b) ∩ g2(h1a ∩ h2b)) ∩
f2(g1(h1a ∩ h2b) ∩ g2(h1a ∩ h2b)) ∩
f3(h1a ∩ h2b) ∩
f4b

If we worry about space we can borrow categorical notation to stretch the text:

f〈g〈h〈a,b〉, h〈a,b〉〉, g〈h〈a,b〉, h〈a,b〉〉, h〈a,b〉,b〉

or indeed with δ : 1→ 2, δ(f) = 〈f, f〉:

f〈gh〈a,b〉δ2, h〈a,b〉,b〉

which can be translated back to

f(g(h(a, b), h(a, b)), g(h(a, b), h(a, b)), h(a, b), b)

8. Related work

Unification. Unification was first proposed in [38] and axiomatized in [32, 33].
Classical algorithms for first-order unification are surveyed in [3], such as [34, 37]
which define fast and well-understood algorithms targeted to implementors us-
ing imperative languages. Other interesting approaches to unification include
categorical views [22, 40], unification for lambda terms [25, 15] and a remark-
able one [14], which studies unification in the typed combinatorial paradigm [11].
Nominal unification [43] is an alternative approach to meta-theory formalization
that uses nominal logic. C-expressions [5, 4] also provide a combinatorial uni-
fication algorithm, based on applicative terms instead of relations. Unification
using explicit substitutions is handled in the higher-order case in [16].

In practical terms, our work is not different from these approaches because
the result of the algorithm is a unifier.

However, our work is very different in its theoretical foundations and im-
plications. In a sense, all the combinatorial approaches are based on applicat-
ive structures, where a term f(x) is represented by the function f such that
f(x) = f(x), so variables are implicit. The relational approach allows us to go
a step further by explicity handling variables at the object level by means of
projections. In fact, the relational term Pi can be effectively identified with the
ith variable. Because of this, some primitives that are difficult to define in other
frameworks, such as the term-destructor function f i : TΣ → (TΣ1 × · · · × TΣi),
are easy to define in ours.

The formalism chosen in this paper is based on binary relation algebras [41]
and allegories [19], both of which capture predicates via relations that extend
any given base of functions. Due to the presence of quasiprojections (Tarski) or
tabulations (Freyd) we are able to represent predicates and terms of arbitrary
arity. The addition of rewrite rules in our paper is completely new, and makes
this axiomatization a full-blown programming language, with a variable-free
notion of reduction.

95

Comparison with cylindric algebras. Tarski and Givant [41] discuss in depth
the benefits of variable elimination via binary relation algebras, including their
relation to cylindric algebras. (It is interesting to note that Nemeti deems both
approaches complementary in his review of Tarski and Givant’s book [36]). In
our context, binary relation algebras provide a mathematically rigorous notion
of compilation in which target code retains the declarative content of the source
code and is extensible to constraints and many other logic programming formal-
isms. The use of binary relations, as compared to other relational formalisms in
general and cylindric algebras in particular, greatly simplifies the rewrite rules.
First, there is no need for indexed joins, i.e., relations obtained by “composing”
two n-ary relations with respect to a particular component. Second, functions
can be interpreted “as themselves”, i.e., as single-valued relations.

Variable elimination and abstract syntax. Other efforts to eliminate variables
in logic programming include the n-ary relation based combinatory work of [24]
and [4] where a new polynomial algebra is developed for the purpose of elim-
inating variables. These results can be viewed as a special case of the research
in abstract syntax aimed at axiomatizing the treatment of renaming, freshness,
instantiation, and quantification as a mathematical theory in its own right. We
refer the reader to [20, 21, 8] and to [9], the latter an excellent and detailed
description of the field, its aims and its history. Finally, category theory itself
can be viewed as a device to eliminate variables from mathematics. Categor-
ical tools have been increasingly employed to formalize abstract syntax (see
[18, 21, 19, 17, 2]).

Tabular allegories. Freyd shows in [19] that there is a natural canonical exten-
sion of a category to a relations-enriched category (an allegory) in which the
original arrows are recoverable as functional relations. Our work shares a spe-
cial relationship with Freyd’s tabular allegories. An allegory is a category whose
HomSets are enriched with semi-lattice structure[19]. An allegory is tabular
iff every relation R : A → B has a tabulation C, f : C → A, g : C → B such
that R = f◦g and (x; f = y; f) ∧ (x; g = y; g)⇒ x = y (; denotes diagrammatic
composition).

This informally means that we have an object C such that it uniquely de-
termines all the pairs of elements belonging to the relation. As an example,
fix the set A = {1, 2, 3} and B = {t, f}, then the relation R : B → B =
{(t, u), (t, v), (v, t)} is tabulated by f(1) = t, f(2) = t, f(3) = v, g(1) = u, g(2) =
v, g(3) = t.

In our encoding, the left tabulation corresponds to the term structure and
the right tabulation captures equations among variables. Instantiation of a
variable is a change of the domain of the tabulations. As an example imagine
the relational term K(m(x1, x2, x3)) ∩K(m(x1, x1, a)). Then the domain C of
the tabulations is isomorphic to the Herbrand domain and the tabulations f, g

96

would be defined (assume C is HΣ):

f(x) = m(x, x, a)
g(x) = 〈x, x, a〉

In this setting, we can interpret our algorithm as a check for disjoint images of
the tabulations.

9. Conclusions and future work

We have presented an algorithm for first-order unification using rewriting
in variable-free relational algebra. The simple systems →L and →R suffice
to decide unification for occurs-check-free pairs of terms. Function ∆ and the
split-rewriting system are introduced to deal with occurs check at the expense
of losing simplicity. We can regain simplicity by using a more powerful notion of
rewriting and matching, obtaining as a result an efficient algorithm largely in the
spirit of [34]. Furthermore, a dual right-factoring version of the algorithm exists
where constraints are accumulated over fn

i terms and factorization happens for
P ◦i terms, using FP ◦i ∩GP ◦i = (F ∩G)P ◦i . We plan to relate this kind of duality
with other duality/symmetry notions such as deep inference [23].

Substitution. In the relational world we have no variables and no substitution
notion. This raises an interesting paradox: the heart of unification is the com-
putation of a substitution acting on variables. How can we unify in such a
setting? The answer is that substitution gets replaced by constraint propaga-
tion and occurs check translates to functorial compatibility in such a way that
pure (conditional) rewriting is enough!

Abstract syntax and algebraic approach. Another advantage of performing uni-
fication in the relational setting is that variable elimination is one way of formal-
izing abstract syntax, effectively giving syntax, syntactic operations (renaming,
substitution, etc.), and syntactic machinery (contexts, multi-equations, etc.) a
rigorous axiomatization by coding them out of existence into a particular form-
alism and making them as declarative as the object language. Even properties
are captured algebraically, as mentioned in the introduction. For example, in-
variance under substitution of ground terms is reflected in our framework by
K(t)◦K(t) = 1 (the equation is true iff t is ground) and equality’s congruence
with respect to term forming (f(t1, . . . , tn) = f(u1, . . . , un) iff t1 = u1∧· · ·∧tn =
un) is captured in DRA as FS ∩ FR = F (S ∩R), provided F is a mapping.

Extending the framework. Our framework can be seamlessly extended in order
to formalize and decide other notions of unification. For instance, a common
unification pattern found in logic programming is unification among renamed
apart terms. Consider a restriction operator ν such that νx1.t = x1 is equivalent

97

to tσ = x1, where σ is a renaming apart of x1, and νx1.t = x1 is equivalent to
t = x1 iff x1 does not occur in t.

This variable-restriction concept can be faithfully represented in our frame-
work using the partial projection relation Qi, which relates an open sequence
with the ones where the ith element may be any term. (In [29] Qi is un-
derstood as an existential quantifier.) Our framework is modified as follows.
First, extend K with case K(νxi.t) = K(t)Qi. In words, the ith position of
K(νxi.t)’s codomain is free, whereas for K(t) it contains the set of possible
groundings for xi. The new definition of K extends U, so a new decision pro-
cedure is needed. It is defined in modular fashion by adding a new rewriting
subsystem for Qi elimination. Some rules of this system are PjQi → Pj and
(fn

i Pj ∩R)Qi → fn
i PjQi ∩RQi.

Performing unification modulo additional theories is possible in our frame-
work and we think it should not be difficult to derive the corresponding al-
gorithm. As supporting evidence, see [29] on how to represent disunification
problems with relations.

Categorical interpretation. Defining the full set of rules for the system in the
preceding paragraph will result in a too complex rewriting system. We believe
such a complexity is not inherent to our approach, but to the formalism used,
in this case rewriting.

We could modify our rewriting procedure — adding more structure aware-
ness to it — in order to avoid most of the cumbersome rewritings, like the
splitting/factoring, where terms are split to be joined again. However we be-
lieve the algorithm’s true nature will be revealed in a categorical interpretation.

A deeper algebraic study of the algorithm reveals some interesting properties.
For instance, a “functorial” variable directly maps to an arrow in a category. In
fact, normal forms are just a representation of the tabulation for the intersection
of two relations.

Another example of a categorical construction is the “functorial compatibil-
ity” test, F ◦G, which is just a tabulation for the compatibility relation.

Establishing a categorical semantics where the current algorithm can be
compared with existing pullback construction algorithms is one of our goals.
We hope categorical methods will help to generalize the algorithm.

Acknowledgements. We thank the anonymous referees for their insightful com-
ments.

References

[1] Hassan Ait-Kaci. Warren’s Abstract Machine. A Tutorial Reconstruction.
The MIT Press, Cambridge, Massachusetts. London, England, 1991.

[2] Gianluca Amato, James Lipton, and Robert McGrail. On the algebraic
structure of declarative programming languages. Theoretical Computer Sci-
ence, 2009. Accepted for publication.

98

[3] Franz Baader and Wayne Snyder. Unification theory. In Robinson and
Voronkov [39], pages 445–532.

[4] Marco Bellia and M. Eugenia Occhiuto. C-expressions: A variable-free cal-
culus for equational logic programming. Theor. Comput. Sci., 107(2):209–
252, 1993.

[5] Marco Bellia and M. Eugenia Occhiuto. Lazy linear combinatorial unifica-
tion. Journal of Symbolic Computation, 27(2):185–206, 1999.

[6] Paul Broome and James Lipton. Combinatory logic programming: comput-
ing in relation calculi. In ILPS ’94: Proceedings of the 1994 International
Symposium on Logic programming, pages 269–285, Cambridge, MA, USA,
1994. MIT Press.

[7] James Cheney. Toward a general theory of names: binding and scope. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized reasoning
about languages with variable binding, pages 33–40, New York, NY, USA,
2005. ACM.

[8] James Cheney and Christian Urban. alpha-prolog: A logic programming
language with names, binding and a-equivalence. In Bart Demoen and
Vladimir Lifschitz, editors, ICLP, volume 3132 of Lecture Notes in Com-
puter Science, pages 269–283. Springer, 2004.

[9] James Robert Cheney. Nominal Logic Programming. PhD thesis, Cornell
University, Ithaca, NY, USA, 2004. Advisor – Morrisett, Greg.

[10] Hubert Comon. Disunification: A survey. In Computational Logic - Essays
in Honor of Alan Robinson, pages 322–359, 1991.

[11] Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North
Holland, 1958. Second edition, 1968.

[12] Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Com-
put. Sci., 17:279–301, 1982.

[13] Nachum Dershowitz and David A. Plaisted. Rewriting. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reason-
ing, pages 535–610. Elsevier and MIT Press, 2001.

[14] Daniel J. Dougherty. Higher-order unification via combinators. Theoretical
Computer Science, 114(2):273–298, 1993.

[15] Gilles Dowek. Higher-order unification and matching. In Robinson and
Voronkov [39], pages 1009–1062.

[16] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order unific-
ation via explicit substitutions. Inf. Comput., 157(1-2):183–235, 2000.

99

[17] Stacy E. Finkelstein, Peter J. Freyd, and James Lipton. A new framework
for declarative programming. Theor. Comput. Sci., 300(1-3):91–160, 2003.

[18] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and
variable binding. Logic in Computer Science, Symposium on, 0:193, 1999.

[19] P. J. Freyd and A. Scedrov. Categories, Allegories. North Holland Pub-
lishing Company, 1991.

[20] Murdoch J. Gabbay, Samuel Rota Buló, and Andrea Marin. Denotations
for functions in which variables are first-class denotational citizens — or,
variables are data. Submitted to TLCA’2007, 2007.

[21] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax involving binders. In 14th Annual Symposium on Logic in Computer
Science, pages 214–224, Washington, DC, USA, 1999. IEEE Computer So-
ciety Press.

[22] Joseph Goguen. What is unification? A categorical view of substitution,
equation and solution. In Maurice Nivat and Hassan Aït-Kaci, editors,
Resolution of Equations in Algebraic Structures, Volume 1: Algebraic Tech-
niques, pages 217–261. Academic, 1989.

[23] Alessio Guglielmi. A system of interaction and structure.
ACM Transactions on Computational Logic, 8(1):1–64, 2007.
http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.

[24] Andreas Hamfelt and Jørgen Fischer Nilsson. Inductive synthesis of logic
programs by composition of combinatory program schemes. In P. Flener,
editor, LOPSTR’98, 8th. International Workshop on Logic-Based Program
Synthesis and Transformation, volume 1559 of Lecture Notes in Computer
Science, pages 143–158. Springer, 1998.

[25] Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor.
Comput. Sci., 1(1):27–57, 1975.

[26] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A
survey. Journal of Logic Programming, 19/20:503–581, 1994.

[27] J. W. Klop. Term rewriting systems. In Abramsky, Gabbay, and Maibaum,
editors, Handbook of Logic in Computer Science, volume 2. Clarendon
Press, 1992.

[28] D. E. Knuth and P. B. Bendix. Simple word problems in universal algeb-
ras. In J. Siekmann and G. Wrightson, editors, Automation of Reasoning
2: Classical Papers on Computational Logic 1967-1970, pages 342–376.
Springer, Berlin, Heidelberg, 1983.

100

[29] Jim Lipton and Emily Chapman. Some notes on logic programming with a
relational machine. In Ali Jaoua, Peter Kempf, and Gunther Schmidt, ed-
itors, Using Relational Methods in Computer Science, Technical Report Nr.
1998-03, pages 1–34. Fakultät für Informatik, Universität der Bundeswehr
München, July 1998.

[30] J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York,
Inc., New York, NY, USA, 1984.

[31] R.C. Lyndon. The representation of relational algebras. Ann. of Math.,
Ser 2(51):707–729, 1950.

[32] Michael J. Maher. Complete axiomatizations of the algebras of finite, ra-
tional and infinite trees. In Proceedings, Third Annual Symposium on Logic
in Computer Science, 5-8 July 1988, Edinburgh, Scotland, UK, pages 348–
357. IEEE Computer Society, 1988.

[33] A. I. Mal’cev. On the elementary theories of locally free universal algebras.
Soviet Math, pages 768–771, 1961.

[34] Alberto Martelli and Ugo Montanari. An efficient unification algorithm.
ACM Trans. Program. Lang. Syst., 4(2):258–282, 1982.

[35] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-
form proofs as a foundation for logic programming. Annals of Pure and
Applied Logic, 51(1-2):125–157, 1991.

[36] István Németi. Review of [41] (untitled). The Journal of Symbolic Logic,
Vol 55. No. 1, pp 350–352, March 1990.

[37] Mike Paterson and Mark N. Wegman. Linear unification. J. Comput. Syst.
Sci., 16(2):158–167, 1978.

[38] John Alan Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[39] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[40] D. E. Rydeheard and R. M. Burstall. A categorical unification algorithm.
In Proceedings of a tutorial and workshop on Category theory and computer
programming, pages 493–505, New York, NY, USA, 1986. Springer-Verlag
New York, Inc.

[41] Alfred Tarski and Steven Givant. A Formalization of Set Theory Without
Variables, volume 41 of Colloquium Publications. American Mathematical
Society, Providence, Rhode Island, 1987.

[42] D. A. Turner. A new implementation technique for applicative languages.
Software – Practice and Experience, 9:31 – 49, 1979.

101

[43] Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. Nominal unific-
ation. In Matthias Baaz and Johann A. Makowsky, editors, CSL, volume
2803 of Lecture Notes in Computer Science, pages 513–527. Springer, 2003.

102

