Anytime Behaviour of Mixed CSP Solving

Neil Yorke-Smith and Christophe Guettier

IC—Parc, Imperial College London, SW7 2AZ, U.K.
{nys, cgue}@cparc.ic.ac. uk

Abstract An algorithm with the anytime property has an approximateitm
always available; and the longer the algorithm runs, théebée solution be-
comes. Anytime solving is important in domains such as geaws, where time
for reasoning is limited and a viable (if suboptimal) couo$@ction must be al-
ways available. In this paper we study the anytime behawabseplving a mixed
CSP, an extension of classical CSP that accounts for urailaitie parameters,
using a benchmark problem from aerospace sub-system tafe@ropose two
enhancements to the existing decomposition algorithmristezs for selecting
the next uncertain environment to decompose, and solvimgEmentally larger
subproblems. We evaluate these enhancements empirgtailyjng that a heuris-
tic on uncertainty analogous to ‘first fail' gives the bestfpamance. We also
show that incremental subproblem solving provides effecinytime behaviour,
and can be combined with the decomposition heuristics.

1 Introduction

The increasing desire for autonomy in aerospace systerok, asiUninhabited Air-
craft Vehicles (UAVs), will lead to increasing complexity planning, scheduling, and
control problems [14]. Constraint programming technighage proved effective for
addressing such problems in the aerospace domain (e.gLl%])3,The real-world re-
quirements of such problems mean that preferences, uirtgr@nd dynamic change
must be handled. For this, the classical constraint satisfaproblem (CSP) is inade-
quate. One extension to handle uncertainty is the mixed @8Refvork, introduced by
Fargier et. al. [4, 5] for decision making with incompleteokviedge.

Our motivation comes from a problem in planning the contfcerospace equip-
ment. In order to enhance autonomous behaviour, the platupeal must take account
of environmental uncertainty the aerospace system mayuateo A constraint-based
formulation as a mixed CSP is given in [20], where unconatiképarametersare used
to model the uncertain evolution of physical quantitiegtsas temperature.

An algorithm with theanytimeproperty has an approximate solution always avail-
able; and the longer the algorithm runs, the better the isolltecomes [1]. If the al-
gorithm is allowed to run to completion, a final solution ida@bed. For the aerospace
domain, with its deadlines on response time, anytime behiais highly desirable [14].

This paper presents an experimental study of anytime spbfimixed CSPs. Specif-
ically, we study the performance of the existing decompmsiklgorithm of [5] on our
aerospace control planning problem as a case study. Weilskesgo enhancements to
the use of the algorithm designed to improve its anytimegoarénce, and empirically

assess their value. The two enhancements are decompdstimistics for exploring
the parameter space of uncertain environments, and inotairsolving of the plan-
ning problem for successive horizons. The results showelneuristic on uncertainty
analogous to ‘first fail' gives the best performance. Thesoahow that incremental
subproblem solving provides effective anytime behaviang can be combined with
the decomposition heuristics.

We begin by summarising the mixed CSP framework and the dposition algo-
rithm (Section 2), and then briefly summarise our motivafmmanytime solving and
outline our case study problem (Section 3). We present tbeatgorithmic extensions
(Section 4) and empirically assess them (Section 5); angeus$ion of the results
concludes the paper (Section 6).

2 Mixed CSP and the Decomposition Algorithm

2.1 Mixed CSP

Fargier et. al. [4, 5] introduced thmixed CSHramework, an extension to the classi-
cal CSP for decision making with incomplete knowledde.a mixed CSP, variables
are of two types: decision and non-decision variables. Thetfipe are controllable by
the agent: their values may be chosen. The second type, kagparametersare un-
controllable: their values are assigned by extrogeneaisr&a These factors are often
referred to as ‘Nature’, meaning the environment, anotbeng and so on.

Formally, a mixed CSP extends a classical finite domain QBPD , C>:

Definition 1 (Mixed CSP [5]). Amixed CSHs a 6-tupler = (A,L,V,D, X, c) where:

— AN={Aq,...,Ap} is a set of parameters

— L=Lyx---xLp, where L is the domain ol

-V ={x1,...,%} is a set of decision variables

— D=Dj x---xDp, where D is the domain of x

— X is a set ofdata constraintsvolving only parameters

— ¢ is a set of constraints, each involving at least one decisatable

We say a complete assignment of the parameterséalésation (or world), and
a complete assignment of the decision variables de@sion(or potential solution).
We say a realisation igossibleif the classical CSRA,L, K) is consistent, i.e. has at
least one solution (otherwise the realisatiomigpossiblg. For every realisation, the
classical CSF{’V,Q),C) formed as the projection af under realisation\ < r is the
realised(or candidate) problem induced byrom 2. We say a realisation goodif the
corresponding realised CSP is consistent (otherhasi. \We say a decisiod coversa
realisatiorr if d is a solution to the realised CSP inducedrby

The outcome sought from a mixed CSP model istaust solutionintuitively, one
solution that satisfies all constraints under as many rgadiss as simultaneously pos-
sible. However, the nature of this outcome depends on whewlklge about the state

1 The earlier work [4] associates a probability distributisith each parameter; we follow the
later work in which a (discrete) uniform distribution is asged.

of the world will be acquired. If the realisation is obsenmsfore the decision must
be made, we are in the casefafl observability(FO). If the realisation is observed
only after the decision must be made, we are in the case observabilityNO). The
intermediate cases are not considered in [4, 5].

In the case of full observability, the outcome sought isoaditional decisior(or
policy). This is a map between realisations and decisioas ghecifies, for a set of
realisationsR, a decisiond for eachr € R such thatd coversr. We then say that the
conditional decisiortovers R Such a conditional decision aptimalif it covers every
good realisation ofr; it is completeif further it covers all possible realisations. It is
shown in [5] that deciding consistency of a binary mixed CSEo>, complete.

2.2 Decomposition Algorithm
We say an algorithm has amytime property1] if:

1. An answer is available at any point in the execution of igergthm
2. The quality of the answer improves with an increase in gtiec time

Theperformance profil®f an algorithm is a curve that denotes the expected output
quality Q(t) with execution time [2]. The concept of an anytime algorithm, one that
has an anytime property, was developed for time-criticahping and schedulinjThe
original formulation imposed three additional requirettsen

1. Ability to be preempted
2. Continuity of the functior(t) from time to quality
3. Diminishing marginal improvement of quality with time

An algorithm to find an optimal conditional decision for a ®ikCSP under full ob-
servability is presented in [4, 5]. We call this thecomposition algorithrand denote it
deconp. Because of the complexity of finding such a decision — bothatational
effort, and size of the outcome (in the worst case, one detfsir every possible real-
isation) —deconp is designed as an anytime algorithm. Intuitively, it inceartally
builds a list of decisions that eventually cover all goodisadions. We omit discussion
of some for us unnecessary subtleties about the algorithmdletails, see [5].

Central to the method are sets of disjoint realisationgdalhvironmentsand their
judicious decomposition, which is achieved with a methdtédasub-domain subprob-
lem extraction[6]. Formally, anenvironmenis a Cartesian produdt x ...l,, where
li C Li. For example, ifL.; = L = {a,b,c,d}, then an environment isb,d} x {c,d}.

2 In temporal CSP, (FO) corresponds to weak controllabilitg8PUs and (NO) to strong con-
trollability; dynamic controllability [12] is not consided for mixed CSPs.

3 In the literature, two types of anytime algorithms have hafined. Arinterruptiblealgorithm
is defined as above. dontractalgorithm must be given in advance an upper limit on runtime;
it will terminate within this limit with a partial solutionWWe consider interruptible algorithms
because in the aerospace domain we do not necessarily hagtimate of available runtime
before execution begins. Moreover, an interruptible atgor can be converted to a contract
algorithm with a constant factor overhead.

Algorithm 1 Decomposition for an optimal conditional decision

1: B+ 0 {bad realisation$
2:D«+0 {decision—environment paifs
3 E«+Lix---xLp {environments still to be covergd
4: repeat

5 Choose an environmeafrom E

6: let £ beconstraints that enforoe

7: letPbethe CSAAU¥ ,LUD,x UCUE)
8 if P is consistenthen

9: let sbea solution ofP
10: let v be s projected onto the domain variables
11: R < coversv) {realisations covered by}v

12: Add the paifv,R) to D
13: E + Ugce decomposg,R)

14: else {all realisations in e impossible
15: AddetoB
16: until E=0 {all possible realisations covergd

17: return (B,D)

The result is an anytime algorithm that incrementally cotapsuccessively closer ap-
proximations to an optimal decision. The number of realset covered by the deci-
sion grows monotonically, and if allowed to finish withoutdrruption, the algorithm
returns an optimal conditional decision. However, the atgm is approximate in that
the conditional decision obtained is not guaranteed to h@ménal cardinality.

Pseudocode fateconp is given as Algorithm 1. In line 5 we pick an environment
not yet covered. It is possible if at least one of its reailiset is possible. If so, we
find a decision that covers one of its realisations (line 8)ppute the other realisations
covered by the decision (line 11), and remove them from the@mment (line 13). On
the other hand, if the environment is bad (i.e. all its reaigns are bad), we mark all
its realisations so in line 15.

The consistency test in line 8 should be performed by insttimg the parameters
A first? In fact, the consistency test and subsequent search forodutéos to the CSP
in line 9 can be combined, sinceRfhas a solution then it is by definition consistent.

The functioncovergd) in line 11 calculates the realisations covered by a decision
Operationallycovergd) can be specialised for the constraints of the problem. ltigar
ular, it is simplified when each constraint contains at most parameter. In this case,
the set of realisationR covered byd is a Cartesian product of subsets of the param-
eter domaind.. Hence we can buil@R by considering each parameter independently;
moreoverRis an environment with no further computation.

The functiondecompos@, R) in line 13 implements sub-domain subproblem ex-
traction to decomposg by R, returning a set of distinct environments [6]; the details
are unnecessary for this paper. Decomposing an environetanan environmenR

4 This is because we must know whether the GBH., x) is consistent. If so, environment
e contains at least one possible realisation; otherwise waad@roceed withe. This is a
necessary condition for the correctness proof of the glyor([5].

- 0. Reseting
E«()LAcumunn)<—(Reset]

2. Orbit Control
1. Attitude and|Orbit Control 4. Safe

[Stable)T,(Steady]
. e
tude costrol

(a) AOCS executive (b) Thruster (c) Star tracker

Figure 1. Discrete automata representing the behaviour of threeespat sub-systems

means producing a set of distinct environme®itkat together cover all realisations in
enot covered byR.

Using results about environments from [6], in [5] AlgoritHnis proved sound and
complete: it eventually terminates, and if allowed to terate, it returns a conditional
decision that covers all good realisations. Moreovergpped at any poinD) contains
decisions for (zero or more) good realisations Brwbntains only bad realisations.

3 Problem Domain

From the introduction, recall that our motivation for stutlymixed CSPs comes from
the aerospace planning problem described in [20]. The proid called th&ub-system
Control Planning ProblenfSCPP); a detailed description is found in [20, 19].

As noted earlier, planned future autonomy in the aerospao®aah brings strong
anytime requirements. Autonomous systems are charasddrjslimited computational
power and limited online response time. Moreover, due tdingant events that may
unexpectedly occur, a safe course of action is required tmbediately available.

In this paper we focus on the anytime solving of the constraimdel of the SCPP.
This model, derived from a high-level specification of a peobinstance as a finite state
automaton, is a mixed CSP. Importantly, although the cairgs may be complicated,
each constraint involves at most one parameter. The pagasnatise from uncertain
environment conditions, such as temperature variatioeagh state of the automaton.

The model includes linear summation constraints (arisioghfpath conservation
constraints), implication constraints, channelling ¢oaiats; and constraints describing
evolution of physical quantities according to the envir@mtal uncertainty, such as:

Oi+1 = Ej x (0 + Ti4)) (2)

where©; andT; are discrete variable&; are Boolean, and\; are parameters. The
details of the model are not central to this paper; they mapbed in [19].

The outcome sought for the SCPP is a conditional plan thagrsahe anticipated
environmental uncertainfyThis corresponds to the conditional decision of a full ob-
servability mixed CSP. For a given aerospace sub-systernmstance of the SCPP is

5 Environmental uncertainty should be distinguished froetéthnical definition of aanviron-
mentabove as a set of realisations.

quality

time

Figure 2. Performance profile curves of idealised anytime behaviour

parametrised by the planning horizéhe N. Additionally, there is an minimum perfor-
mance requirement on feasible solutions. This requirec@nésponds to a percentage
of the maximum possible performance (which can be computetba); it is imposed
as an additional hard constraint in the model.

Figures 1(b)-1(c) show three discrete state automata I(fstration only). The
automata represent the behaviour of three different, sepitative but simplified space-
craft sub-systems. These represent, respectively, atuddgtand Orbit Control System
(AOCYS), a thruster Thruster), and a directional sensofr@cker). We build a mixed
CSP model of each automaton. The performance of solving tmesed CSPs will be
the benchmark for our empirical study.

4 Enhancing the Anytime Behaviour ofdeconp

Summarising, we have recalled the algorithm we dalt onp for a full observability

mixed CSP (Algorithm 1), and described a model of our moitpproblem as such
a mixed CSP. We now introduce two orthogonal extensiondeafonp designed to
improve its anytime performance for the requirementsragign aerospace domain.

To see what we mean by improve anytime behaviour, considgrétformance pro-
files shown in Figure 2. The horizontal axis depicts tinagd the vertical axis solution
quality Q(t). The straight line 4 represents the anytime behaviour ofgorighm that
monotonically increases solution quality at a constaet fiie curves 1-3 depict better
anytime behaviour than 4, with 1 the best, because solutiatity rises more sharply
earlier in the solving. In contrast, curve 5 depicts a pogtiare behaviour. Thus mov-
ing from 4 to 2, for instance, is an improvement in anytimeawdbur. Note this is true
even though both algorithms return the same solution quatithe end of the solv-
ing period shown. As a secondary aim, we would like, if pdssito have an earlier
termination time in addition to improved anytime behaviour

4.1 Environment Selection Heuristic

Recall thatdeconp is an anytime algorithm in terms of the number of realisation
covered by the conditional decision it computes. If alloviedun to termination, it
produces an optimal conditional decision; if stopped egrthe conditional decision
covers a subset of the good realisations.

In [5] it is noted that heuristics may be used in line 5 of Aligglam 1, although
none are proposed. The algorithm terminates when thE seempty. Every iteration
through the main loop removes one environmefrom E. Judicious choice o may
speed the termination or improve the anytime behaviourptr.b

We propose five heuristics for environment selection:

— random: pick the next environment at random. This is our defaultristia, used
as a baseline to evaluate the others.

— most uncertainty: pick the environment with the most uncertainty. That iga$e
e to maximise[celLil-

— least uncertainty: pick the environment with the least uncertainty. That lpase
eto minimise[,celLil-

— most restricting: pick the environmentthat most constraints the variatdesiains.
That is, for eacle, impose the constraints in line 6 of Algorithm 1, and compute
[1i|Di|. Choosee to minimise this quantity.

— least restricting: pick the environment that least constraints the variabl@sains.
That is, impose the constraints computefT];|Di|, and choose the maximisirey

These heuristics are analogous to variable selectiongimgrin finite domain CSP
solving. Pursuing this link, we also considered a heuritipick the most or least
constraining environment. Thatis, the environmentwhesaéised CSPs are the most or
least constrained (precisely, maximise or minimise the sbiaconstrainedness metric,
summed over all the realised CSPs corresponding to realisain the environment).
However, preliminary experiments indicated that such aik&chas poor performance.
This seems to be caused by only a weak correlation betweetistrainedness of the
realised CSPs that an environment leads to, and the difficfilsolving the whole
mixed CSP. Thus we did not consider such a heuristic further.

4.2 Incremental Horizon

The SCP problem is naturally parametrised by the planningdio, H. For a given
horizon, runningdeconp to completion provides the sought optimal conditional plan
for horizonH. Interrupting the algorithm at any point provides a pariain.

A second means of ensuring anytime behaviour is to itedgtiplan for longer
horizonsh=1,...,H. We permit the algorithm to be interrupted at the completibn
any horizonh. The resulting complete condition plan for horizoprovides the initial
steps of a complete plan for horizéth. We also permideconp to be interrupted
before completing a horizon. The plan for horiZothen consists of the decisions for
the covered realisations, together with, for the uncoveeadisations, the decisions
from horizonh — 1.

Algorithm 2 Anytime computation by incremental plan horizon
1: S« 0
2: for h=1toH do
3: let § beoutput ofdeconp on horizonh automaton
4: if deconp ran to completiorthen
5: S+ &
6: else
7
8
9

{keep existing decisions for uncovered realisations
for eachrealisation covered b§, do

updateSby S,

10: return S

More specifically, the time intervd0...h], h < H defines a subproblem which is a
subpart of the original SCP problem instance. The subpnoigenbtained by ignoring
decision variables and parameters in the intefliat 1,H], and relaxing associated
constraints. Théncremental horizommethod starts frorh = 1, and increments each
time the subproblem is successfully solved. If interrupted method thus provides a
plan up to time evertt— 1. Hence, the solution quality is measured by the (cumudativ
total) time to complete construction of the plan for horizon 1.

Algorithm 2 summarises the method. As stated, conceptitallyerates by solving
incrementally larger subproblems. The advantage is that,given computation time,
the plan produced may cover more of the good, possible atialiss, compared to the
plan produced bgleconp for horizonH in the same time.

Indeed, suppose a plan for horizidris desired and computation time is limitedfto
(which we do not assume is known to the algorithm). Runningpfithm 1 for timeT
might give a conditional plan that covers 70% of realisagi@ay. The conditional plan
it yields is not optimal. Instead, running Algorithm 2 foretlsame time might give a
plan that covers only 40% of realisations with a horizémecision, but all realisations
are covered with some decision: say that for horizbin- 1) decision. Thus we have
an optimal conditional plan and, as we begin its executiacan undertake further
computation to extend the horizdit — 1) decisions to horizomd decisions.

The incremental horizon method is orthogonal to the enwirent selection heuris-
tics. Any heuristic may be used in the invocatiordefc onp in line 3 of Algorithm 2.
In the experimental results that follow, we thus will evakighe behaviour of the in-
cremental horizon method both with the defamalhdomheuristic, and with the others
proposed above.

5 Experimental Results

In this section we report an empirical assessment oflédeonp algorithm on the SCP
problem. The aim of the experiments was to evaluate: (1)tipact of the environment
selection heuristics on anytime behaviour; and (2) thecgffeness of incremental hori-
zon for producing anytime behaviour.

The results reported were obtained on a 2GHz linux PC with d&Bemory, using
ECL'PS version 5.7 [3]; timings are in seconds. The SCPP instanees thie three au-

Table 1. Characteristics of the benchmark problem instances

uncertainty per horizon

automaton states per horizénB C timeout
AOCS 5 245 200s

Thruster 8 7 14 23 2000s
Tracker 7 69 16 18000s

tomata given in Figure 3. Table 1 summarises their charatitay. For each automaton,
we considered three degrees of uncertainty: moderateageemd large, denoted-

C respectively. We also considered performance requiresrimitveen 20-80% (recall
Section 3). This gives two parameters for each problemiiecstaNe imposed a timeout
on any single run of Algorithm 1, depending on the complegrityhe automaton; the
values are also given in Table 1.

5.1 Environment Selection Heuristic

We first consider the five environment selection heuristiescdbed in Section 4.1.
We measure quality by the number of good and possible réalisacovered by the
conditional decision, plus the number of bad realisatioasked as bad, after a given
computation time. That is, the quality@;(t) = |D| + |B|, whereD andB are as in the
notation of Algorithm 1.

Figures 3(a)-5(b) show the quality (realisations covevedjus solving time (ms).
The vertical axis is shown on a log scale, i.e. @dt). Figure 3(a) shows the typical
result for theAOCS instance: the best heuristiclsast uncertaintyfollowed bymost
restricting these are both better thaandom The worst heuristic igeast restricting
most uncertaintys slightly better.

Figures 3(b)—4(b) demonstrate the performance of the $t&sifor Thruster is
more varied. For most instances of uncertainty, perforraaaied horizonleast uncer-
tainty is the best heuristic an@dndomis second or third. However, for some instances,
least uncertaintygloes not have maxim&(t) for all t. First look at Figures 4(a)—4(b).
These graphs are for instances just before and just afeagdiifility (which here occurs
beyond horizon 6). In the formdeast uncertaintys best at all times. In the latter, how-
ever, itis inferior to some other heuristics (in particutarandorm until about 2500ms,
after which it strongly dominatemost restrictingexhibits poor behaviour.

Next look at the rare result shown in Figure 3(b). In thisically constrained prob-
lem, randomis best at first, until overtaken by firstost uncertaintyhenleast restrict-
ing. Further,least uncertaintyexhibits poor anytime performance. While exceptional,
this instance indicates that no one heuristic always dot@nas in classical CSPs, the
choice of heuristic is itself heuristic.

The results foffracker confirm those foAOCS. Figures 5(a)-5(b) sholeast un-
certaintyas the best heuristic. Note how it not only has a better pexdorce profile, but
also achieves a much earlier termination time than the dtheristics.

Thruster - B-40-5

‘most uncertainty -
least restricting
== iGSt testicting

AOCS - C-80-8

© ©
= <

(suonesifea) pasanod ajqissod pue poob) Arenb

(@) AOCS C 80% horizon 8

1000

time (msec)

Thruster - B-60-6

random —+—

least uncertainty
most uncertainty -
kst H¥éstriEtig

most restricting

L
15000 20000

L
10000

time (msec)

©
g © -

(suonesifeas paianod sjqissod pue pooB) Aurenb

(b) Thruster B 60% horizon 6

Figure 3. Anytime behaviour of environment selection heuristics (1)

random —+—

least uncertainty ------
most uncertainty

least restricting

most restricting —-#--

20000

15000

10000
time (msec)

(suonesipeas pasanod ajqissod pue poob) Alenb

(a) Thruster C 40% horizon 5

Figure 4. Anytime behaviour of environment selection heuristics (Il

10

Thruster - B-40-7

(b) Thruster B 40%

(suonesieal pasanod ajqissod pue poob) Aurenb

horizon 7

time (msec)

20000
20000

8

most restricting -~

random —+—

least uncertainty —--x---

least restricting
most restricting -,

most uncertainty -~
least restricting

15000
least
TGS

.
15000

Tracker - B-0-5
T
*
=
10000
time (msec)
Tracker - B-20-6
.
10000
time (msec)

{suonesipea) paianod ajqissod pue poob) Aurenb (suonesifeas paianod sjqissod pue pooB) Aurenb

(a) Tracker B 0% horizon 5 (b) Tracker B 20% horizon 6

Figure 5. Anytime behaviour of environment selection heuristic (11

5.2 Incremental Horizon

We now consider the method described in Section 4.2. Herenaeasure quality by
the horizon attained after a given computation time. Thatis problem is solved in-
crementally for horizons 1, 2, ..., and the tintesecorded. The cumulative time for
horizonhis computed at, = ¥;_1 _pti, and the quality i (t) = max{ht, <t}.

Figures 6(a)-8(b) show the quality (horizon attained) wesolving time (ms). The
shape of the curves indicate that Algorithm 2 provides atzd#e anytime behaviour.
However, performance strongly depends on the environnabedtson heuristic. Since
incremental horizon is built odeconp, this might be expected.

Across the three automata, the performance ofdineomheuristic is broadly sec-
ond or third of the five heuristics considered. P@CS (Figures 6(a)—6(b)), the best
heuristic isleast uncertaintyfollowed by most restricting these are both better than
random The worst heuristic ieast restricting most uncertaintys slightly better. The
performance ofost restrictingdeclines beyond horizon 6; beyond this pomatadom
has better performance.

For Thruster and Tracker (Figures 7(a)-8(b)), the results are similar. The best
heuristic isleast uncertaintyand overallrandomis next best. For th@racker in-
stanceA 20% (Figure 8(a)), beyond horizon 4, the remaining threeiktics struggle;
most uncertaintys the best of them. Fd8 40% (Figure 8(b))randomandleast re-
stricting dominate about equally. The results fbinruster (Figures 7(a)—7(b)), while
similar, show strongly that poor heuristics for environiselection give very poor

11

A

(1) uoziioy reuswaidul Jo InoiAeyaq awnAuy * 2 ainbi4

%02 g Jasniy (e)

%02 D J81sniy L (q)

quality (horizon)

quality (horizon)

Thruster - B-20

> T T

random —+—
least uncertainty -
most inty -

most restricting &
least restricting --#--

0 50000 100000 150000 200000

time (msec)

Thruster - C-20

random —+—
least uncertainty
mostanCertinty =
most restricting —&
least restricting —-m--

0 50000 100000 150000 200000

time (msec)

(1) uozuoy reluawaloul Jo JnoiAeyaq awnAuy "9 ainbi4

%02 O SO0V ()

%08 O SO0V (9)

quality (horizon)

quality (horizon)

AOCS -C-20

T

random —+—
least uncertainty -
most uncertainty -

most restricting 8- |

least restricting -

500 1000
time (msec)

AOCS - C-80

1500

2000

most uncertainty -
most restricting
least restricting

500 1000
time (msec)

1500

2000

‘most restricting
least restricf

S most uncertainty -~

Star Tracker - A-20

(uozuoy) Auenb

(a) Tracker A 20%

40000 45000 50000

35000

10000 15000 20000 25000 30000
time (msec)

5000

o

Star Tracker - B-40

8

most restricting
least restricting —-m--

~ © 0 < o ~

(uozyioy) Aypenb

(b) Tracker B 40%

40000 45000 50000

35000

20000 25000 30000
time (msec)

15000

10000

5000

Figure 8. Anytime behaviour of incremental horizon (I11)

performance. This appears to be due to the large number abeanvents that must
be maintained by Algorithm 1; the algorithm suffers from ekl@f memory, and the
timeout is reached for Algorithm 2 while it is still consideg a low horizorh.

5.3 Discussion

Of the environment selection heuristidsast uncertaintyhas the best overall perfor-
mance, in terms of both metrics of quality. For the direct osdeconp (i.e. Q1(t)),
there are instances where other heuristics are bettenria ststances, there is a ‘cross-
over’ point (e.g. Figure 4(b)) prior to which another heticisominates, and after which
least uncertaintydominates. For the incremental horizon useletonp (i.e. Qz(t)),
least uncertaintylominates in almost all instances; we observe no crossbaaviour.
We can make the analogy betwdeast uncertaintyand thefirst fail (smallest do-
main first) variable selection heuristic for classical Brdbmain CSP. First fail is known
as an often effective choice of variable selection hewri&j 11]. However, just as it
is not the best heuristic for every CSP, Isast uncertaintyis not the best for every
mixed CSP: Figure 3(b) shows a critically-constrained f@otbwhere the best heuristic
is initially randomthenmost uncertainty
Secondly, overaltandomis consistently neither the best nor worst heuristic, as ex-
pected. On balance, its performance across the instandexerss Algorithms 1 and 2
is second behinkkast uncertaintyln particular, heuristics based on the size of variable

13

domains (nostandleast restricting vary in effectiveness between problem instances.
For examplemost restrictings acceptable in Figure 3(a) but very poor in Figure 4(a).

Thirdly, the results suggest that incremental horizonfeatifve in providing any-
time behaviour, particularly for lesser horizons. Whenghbproblems becomes hard
(e.g. fromh = 4 for Thruster), the rate of increase of solution quality declines. This
is more marked when the performance requirement is higleehaps a result of the
problem then being over-constrained.

Since the SCPP is easy to solve for modest horizons, a pesgiproach might be:
begin with Algorithm 2 and theandomheuristic (which has no overhead to compute),
and later switch to Algorithm 1 with thieast uncertaintyheuristic (the most effective
overall). Further experimental work is needed to investighis hybrid possibility.

6 Conclusion and Future Work

Anytime behaviour is an important requirement for the agace domain. Motivated
by a planning problem for aerospace equipment control, ghfger studied the any-
time solving of full observability mixed CSPs. We proposed enhancements to the
existing decomposition algorithm: heuristics for selegtthe next environment to de-
compose, and solving of incrementally larger subproblems.

The heuristics we considered are applicable to solving amgdnCSP by the de-
composition algorithm. Overall, the heuristeast uncertaintywhich is analogous to
first fail for finite domain CSPs, gives the best performance.

The incremental horizon method we considered is speaialmehe SCP problem.
However, the broader idea of problem decomposition intceimental subproblems, as
a means of anytime solving, applies to any mixed CSP for waishitable sequence of
subproblems can be identified.

Anytime algorithms for classical CSPs have been built bysaering the CSP as a
partial CSP, and using branch-and-bound or local seardhfa7 finding robust ‘super’
solutions, anytime algorithms have also been built witmbhaand-bound [8]. Anytime
solving is related to incremental solving of CSPs (e.g. 1] the latter, however, the
focus is to efficiently propagate the changes implied wheargkble’s domain changes.

In future work, we want to complete the investigation of mmental horizon by
evaluating how often it produces plans for horizéiased on partial plans for a lower
horizon, as described in Section 4.2. We would also like aduate the methods con-
sidered here on other SCPP instances (in particular, thtelhstrument instance de-
scribed in [19]) and, importantly, on mixed CSPs arisingrfrother problems.

The ‘cross-over’ between different heuristics over timggest that meta-reasoning
on the solving algorithm may yield the best anytime behavilmpractice. For instance,
the hybrid approach suggested above. More generally,ghsoning can take into con-
sideration [7, 9]: the current state of the solution (suclvlaat percentage of realisations
it presently covers); the expected computation time remgjnif an estimate is avail-
able; the cost of computing the different heuristics; arel dpportunity of switching
between algorithms during solving, as noted earlier.

Driven by our motivational problem, in this paper we have sidared only the
full observability case; an interesting direction wouldtbeconsider anytime solving

14

in the no observability case. Here, the outcome sought inglesrobust solution that
covers as many realisations as possible. As such, therén&seniot only to anytime
methods for robust solutions to CSPs [8], but also to solwiriged CSPs with proba-
bility distributions over the parameters [4], which are astance of the stochastic CSP
framework [18]. For instance, the scenario sampling mettiodstochastic CSPs give
the opportunity for an anytime algorithm [10].

References

(1]
(2]
(3]
[4]
[5]
(6]
[7]
(8]
9]
(10]
(11]
(12]
(13]
(14]

(15]

(16]
(17]

(18]
(19]

(20]

M. Boddy and T. L. Dean. Deliberation scheduling for gierh solving in time-constrained
environmentsAtrtificial Intelligence 67(2):245-285, 1994.

M. S. Boddy and T. L. Dean. Solving time-dependent plagnproblems. InProc. of
IJCAI'89, pages 979984, Detroit, MI, Aug. 1989.

A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Sheamd M. G. Wallace. ECLiPSe:
An Introduction. Technical Report IC-Parc-03-1, IC-Pamperial College London, 2003.
H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiexcdnstraint satisfaction framework
for decision under uncertainty. FProc. of UAI'95 pages 167-174, Aug. 1995.

H. Fargier, J. Lang, and T. Schiex. Mixed constraintsfatition: A framework for decision
problems under incomplete knowledge.Rroc. of AAAI-96 pages 175-180, Aug. 1996.
E. C. Freuder and P. D. Hubbe. Extracting constrainsfattion subproblems. IRroc. of
IJCAI'95, pages 548-557, Montréal, Canada, 1995.

E. A. Hansen and S. Zilberstein. Monitoring the progresanytime problem-solving. In
Proc. of AAAI-96volume 2, pages 1229-1234, Portland, OR, Aug. 1996.

E. Hebrard, B. Hnich, and T. Walsh. Super solutions ingtaaint programming. liProc.
of CP-AI-OR’04 pages 157-172, Nice, France, 2004.

G. Le Lann. Time-utility scheduling and provably correditical computer-based systems.
In Proc. of WPDRTS'04Santa Fe, NM, Apr. 2004.

S. Manandhar, A. Tarim, and T. Walsh. Scenario-basachsistic constraint programming.
In Proc. of IJCAI'03 pages 257-262, Acapulco, Mexico, Aug. 2003.

K. Marriott and P. J. Stuckeyrogramming with Constraints: An IntroductioMIT Press,
Cambridge, MA, 1998.

P. Morris, N. Muscettola, and T. Vidal. Dynamic contddlplans with temporal uncertainty.
In Proc. of IJCAI'0], pages 494-502, 2001.

N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Reeiagent: To boldly go where
no Al system has gone beforArtificial Intelligence 103(1-2):5-48, 1998.

G. Verfaillie. What kind of planning and scheduling tedor the future autonomous space-
craft? InProc. of the ESA Workshop on On-Board Autonphigordwijk, Oct. 2001.

G. Verfaillie and M. Lemaitre. Selecting and schedglobservations for agile satellites:
Some lessons from the constraint reasoning community pdiview. In Proc. of CP’02
pages 670-684, Sept. 2002.

G. Verfaillie and T. Schiex. Solution reuse in dynamanstraint satisfaction problems. In
Proc. of AAAI-94 pages 307-312, Seattle, WA, 1994.

R. J. Wallace and E. C. Freuder. Anytime algorithms fonstraint satisfaction and sat
problems.SIGART Bulletin7(2), 1996.

T. Walsh. Stochastic constraint programmingPhoc. of ECAI-02Lyon, July 2002.

N. Yorke-Smith.Reliable Constraint Reasoning with Uncertain DaRhD thesis, IC-Parc,
Imperial College London, Submitted Apr. 2004.

N. Yorke-Smith and C. Guettier. Towards automatic istiqplanning for the discrete com-
manding of aerospace equipment. Rroc. of 18th IEEE Intl. Symposium on Intelligent
Control (ISIC’03) pages 328-333, Houston, TX, Oct. 2003.

15

