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0.1 Summary

High Performance Computing (HPC) aims at providing reasonably fast computing solutions
to both scientific and real life technical problems. Many efforts have indeed been made on
the way to powerful supercomputers, both generic and customized configurations. However,
whatever their current and future breathtaking capabilities, supercomputers work by brute
force and deterministic steps, while human mind works by few strokes of brilliance. Thus,
in order to take a significant advantage of hardware advances, we need powerful methods to
solve problems together with highly skillful programming efforts and relevant frameworks.

The advent of multicore architectures is noteworthy in the HPC history, because it
has brought the underlying concept of multiprocessing into common consideration and has
changed the landscape of standard computing. At a larger scale, there is a keen desire to
build or host frontline supercomputers. The yearly Top500 ranking nicely illustrates and
orchestrates this supercomputers saga. For many years, computers have been falling in price
while gaining processing power often strengthened by specialized accelerator units. We clearly
see that what commonly springs up in mind when it comes to HPC is computer capability.
However, this availability of increasingly fast computers has changed the rule of scientific
discovery and has motivated the consideration of challenging applications. Thus, we are rou-
tinely at the door of large-scale problems, and most of time, the speed of calculation by itself
is no longer sufficient. Indeed, the real concern of HPC users is the time-to-output. Thus,
we need to study each important aspect in the critical path between inputs and outputs, and
keep striving to reach the expected level of performance. This is the main concern of the
viewpoints and the achievements reported in this book.

The document is organized into five chapters articulated around our main contributions.
The first chapter depicts the landscape of supercomputers, comments the need for tremendous
processing speed, and analyze the main trends in supercomputing. The second chapter deals
with solving large-scale combinatorial problems through a mixture of continuous and discrete
optimization methods, we describe the main generic approaches and present an important
framework on which we have been working so far. The third chapter is devoted to the
topic accelerated computing, we discuss the motivations and the issues, and we describe
three case studies from our contributions. In chapter four, we address the topic of energy
minimization in a formal way and present our method based on a mathematical programming
approach. Chapter five debates on hybrid supercomputing, we discuss technical issues with
hierarchical shared memories and illustrate hybrid coding through a large-scale linear algebra
implementation on a supercomputer.
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0.2 Preface

The current dissertation aims at providing a consistent and chronological view of my re-
search background and corresponding achievements, starting with a panoramic view of the
supercomputers landscape and surrounding activities.

At the earlier stage of my higher education, I was trained in pure mathematics and more
generally in fundamental sciences. Starting in that way has certainly influenced my taste for
formal approaches, and forged my ability to understand and move deeper into mathemati-
cally oriented topics. Then, I get introduced into computer sciences, focusing on algorithm,
complexity, scientific programming, and parallel computing. The outcome of this step towards
advanced scientific research is a PhD in computer science that I got in march 2001. The title
of my PhD dissertation was “Contributions to Parallel Computing”, where I presented my re-
sults in parallel linear algebra, systolic computation, and methodology for parallel scheduling.
I was actively involved in three distinct teams working in numerical computation, discrete
mathematics, and integrated parallel architectures respectively. This was a great chance to
strengthen my scientific culture and to have a broad range of technical contributions. This
was also the occasion to see how different aspects of computer science could be connected
in order to achieve more efficient solutions or more robust methodology. This is mainly the
hallmark of my scientific route.

After my PhD, I moved to the university of Geneva (Switzerland) for a postdoctoral posi-
tion. The research topics of the host laboratory (logilab, headed by Pr Jean-Philippe Vial
and Pr. Alain Haurie), included mathematical programming, non-differentiable optimization,
and operation research. It was expected of me to study the linear algebra kernel of the cutting
planes method and help implementing them as efficient as possible at the level of high perfor-
mance computing state-of-the-art. Another (but indirect) expectation was to benefit from my
background in combinatorial optimization to improve the heuristics that will be used to solve
subproblems. This was really a very exciting and fruitful adventure. Indeed, from a personal
point of view, the area of continuous optimization, by itself and though its connection with
combinatorial optimization, was a nice complementary skill that would allow me to have a
more mature capability to tackle large-scale combinatorial problems. In addition, I attended
several national and international scientific meetings, where I could meet notorious scientists
in the field of optimization and operation research. The main outcome of this postdoctoral
step was the design of a flexible oracle based solver that is used to solve non-differentiable
optimization problems. For combinatorial optimization problems, the solver can be used
to solve the linear relaxation at each nodes of the branch-and-bound or one of its variants
(branch-and-cut, branch-and-price, · · · ). Other contributions include the application of the
method to solve number of operation research problems, and matrix computation improve-
ments related to the kernel of the solver. The second chapter of the document is devoted to
this part of my background and potential perspectives.

Next to my stay at the logilab (around 3 years), I was hired at Centre Universitaire
Informatique of the university of Geneva, precisely at laboratory of theoretical computer sci-
ence (TCS-Lab, headed by Pr. Rolim Jose). The laboratory was involved in cutting-edge
research in the foundations of computation and in parallel distributed computing. My main
contributions during my stay the TCS-Lab were on a formal study of the energy minimization
problem (modeling and power-aware scheduling). I was able to use my recent skill in mathe-
matical programming to develop a mixed integer programming model for power consumption
of computer programs. This contribution is presented in chapter 4, where we discuss about
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the topic of power-aware computing. We again used the mathematical programming approach
to solve the dual-power management in sensors networks. We clearly see how rewarding was
my investment in the field of mathematical programming. We also developed efficient dis-
tributed algorithms for sensors networks and studied the localization problem. My activities
at the TCS-Lab, through international projects, gave me the opportunity to cooperate with
number of reputed laboratories and talented scientists. In addition, I could attend several
international scientific events as a speaker. Moreover, I was able to initiate funded scientific
projects in the field of power aware computing.

After my two years at the TCS-Lab, I joined the European Laboratory of Molecular
Biology at Grenoble (France), in the team of Raymond Ravelli and Florent Cipriani, where
I was concerned with mathematical modeling and computational engineering to study the
effect of radiation damage in X-ray synchrotron crystallography. The goal was to provide an
analytical model for the radiation damage and then find a way to refine collected data by
means of computer processing. This was an opportunity for me to work together with people
from other disciplines related to structural genomics, and get familiar with experimental
research and distributed high-throughput computing.

Next, I moved to the Institute of Fundamental Electronics at University of Paris-Sud Orsay
(France), working with Lionel Lacassagne on automatic code optimization and deployment on
various parallel architectures. Our aim was to understand, trough an intensive benchmark,
the key point in the performance of parallel multi-level memory machines. Based on a uni-
fied model of major applications classes, and a model of the target architecture, we studied
systematic ways to structure the parallel program in order to reach optimal performances.
This was a kind of comeback into heart of parallel computing. Indeed, two years later, still
within the university of Orsay, I joined the Laboratoire Accélérateur Linéaire (LAL), whose
the main activity is on cutting edge research in particles physics, nuclear physics, and as-
trophysics. At the LAL, in collaboration with pluridisciplinary team, we were involved with
HPC investigations related to LQCD (Lattice Quantum ChromoDynamics) simulations at the
highest scale. Chapter 3 reports my contributions in the fields of accelerated computing, which
is an approach I suggested for local LQCD calculations and also for heavy image processing
applications. Our efforts on large-scale LQCD simulations (with Gilbert Grosdidier, Chris-
tine Eisenbeis, Olivier Pène, Denis Barthou,· · · ), involved a broad range of complementary
HPC topics (parallel algorithm, SIMD, ill-conditioned matrix computation, supercomputing,
high-throughput computing, failure, accelerators).

I currently hold a research position at the Centre de Recherche Informatique (CRI, headed
by François Irigoin) of the Ecoles des Mines de Paris (France) since 2011. My main research
topics include High Performance Computing, Operation Research, Matrix Computation, Com-
binatorial Algorithm and Complexity, Scientific and Technical Programming, Automatic Code
Transformations. In addition to my pure research activities, I use to initiate and drive vari-
ous scientific projects and national/international collaborations. I teach CS courses, mainly
at a higher level, in different kinds of institution including industries. In addition, I use to
supervise PhD students and be part of PhD boards. I am active member of well established
scientific corporations and reviewer of number of international journals and conferences.

Thought this document, I hope to provide the substantial part of my past research achieve-
ments, and my personal opinion about the trends in scientific research, and what I found to
be potentially interesting research axes.
My Personal web page is located at www.omegacomputer.com/staff/tadonki
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cluded good colleagues Cesar Beltran, Oliver Péton, Oliver du Merle, and Frédéric Babonneau
to name a few, led me to modern optimization techniques, thus giving me the right skill to
efficiently tackle large-scale combinatorial problems. Thanks to Alain Haurie (University of
Geneva/Ordecsys) for the opportunity he gave me to work with him on the same laboratory,
in a project including Laurent Drouet, Alain Dubois and Daniel Zachary. My stay at the
university of Geneva was extended by an enthusiastic collaboration with Jose Rolim (Com-
puter Science Center), I really appreciate all he did to facilitate my work and my professional
initiatives.

Thanks to Eugene Ressler (Westpoint) and Patrice Quinton (ENS Cachan) for their sup-
port concerning my application.

Thanks to all my colleagues, collaborators and friends so far. I have appreciated to see
most of you being sincerely delighted by this event.

A special and affective acknowledgment to my whole family. Indeed, I never feel alone
with such a close attention, let’s share this achievement together.



0.4. SPECIAL DEDICATION 5

0.4 Special dedication

In memory of Jean-Tadonki (1939-2001)



6



Contents

0.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.3 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.4 Special dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 The landscape of supercomputers 11

1.1 The landscape of high performance computing . . . . . . . . . . . . . . . . . 12

1.2 Basic quantitative background . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Calculating the overall peak performance . . . . . . . . . . . . . . . . 16

1.2.2 Evaluating interprocessor communication . . . . . . . . . . . . . . . . 17

1.2.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Selected architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 TITAN - CRAY XK7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 IBM SEQUOIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Fujitsu K-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 IBM SuperMUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.5 Tianhe-1A - NUDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.6 The IBM-CELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.7 Graphic Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 About the interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Trends and future of supercomputers . . . . . . . . . . . . . . . . . . . . . . 28

2 Large-scale optimization 35

2.1 Foundations and background . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Parallel optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Oracle based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Proximal-ACCPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1 Proximal analytic center . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.2 Infeasible Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7.1 Multicommodity flow problems . . . . . . . . . . . . . . . . . . . . . . 52

2.7.2 Lagrangian relaxations of the p-median problem . . . . . . . . . . . . 54

7



8 CONTENTS

2.7.3 Coupling economic and environmental models . . . . . . . . . . . . . . 58

2.7.4 Linear pattern separation . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7.5 Cardinality bounded portfolio selection . . . . . . . . . . . . . . . . . 63

2.8 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Accelerated computing 77

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 The CELL Broadband Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Generic DMA Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.2 DMA rules and description of the need . . . . . . . . . . . . . . . . . . 81

3.3.3 Description of our solution . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.4 From the PPE to the SPE . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.5 From the SPE to the PPE . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.6 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 The Harris corner detection algorithm . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.3 The Harris-Stephen algorithm . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 The algebraic path problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.3 The algebraic path problem . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.4 Description of our algorithm . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.5 Performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Lattice Quantum Chromodynamics library . . . . . . . . . . . . . . . . . . . . 94

3.6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6.3 Background and preliminaries . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.4 Generic acceleration scheme . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6.5 How to use the library . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6.6 Performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Power aware computing 111

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Overview of the energy concern and optimization . . . . . . . . . . . . . . . . 112

4.3 An analytical model for energy minimization . . . . . . . . . . . . . . . . . . 113

4.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.2 A model of energy evaluation . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.4 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



CONTENTS 9

5 Hybrid supercomputing 123
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Overview of hybrid supercomputing . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Special focus on memory hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2 Multi-level Memory Model . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Large scale Kronecker product on supercomputers . . . . . . . . . . . . . . . 126
5.4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Original parallel algorithm . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.4 Communication complexity . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.5 Heuristic for an efficient topology . . . . . . . . . . . . . . . . . . . . . 129
5.4.6 SMP implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Conclusion 135

Personnal bibliography 137
6.1 Regular papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 International conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3 National conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Book or Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Posters and communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.6 Research reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



10 CONTENTS



Chapter 1

The landscape of supercomputers

11



12 CHAPTER 1. THE LANDSCAPE OF SUPERCOMPUTERS

1.1 The landscape of high performance computing

High Performance Computing has been on the spotlight over the last decade, driven by users
clamor for more powerful systems and more exciting applications [30, 7, 26, 18]. Significant
technical changes have occurred, and noteworthy improvements have been done at various
levels, thus pushing the limit of both standard computers and supercomputers. This phe-
nomenon has even changed the rules of scientific discovery. Indeed, large-scale computation
is now commonly considered in order to assess if a theory is consistent with experimental re-
sults, to question a large collection of data, or to understand a given mechanism through high
precision simulations [20, 12, 11, 37, 13]. At the processor level, the sequential von Neumann
execution model has governed the computing landscape for more than half century. Thus,
the answer for more efficient processing was either a more powerful single-thread processor or
an aggregation of cooperative machines. Hardware designers have really strived to increase
processor capabilities at different levels including clock speed (also referred to as frequency),
memory size and bandwidth, mass storage capacity, and power consumption. Regarding
parallel computers, they were mainly built by aggregating many standard processors with a
specific interconnect, thus expensive and very heavy to maintain. Thereby, and also due to
the need of a particular skill, parallel computing, which was so far the unique choice for high
performance computing, had a very limited effective consideration, although intensive efforts
at the fundamental level. Back to the processor level, chip designers have always strived to
stay ahead of Moore’s Law, which prescribes that processor transistor count doubles every two
years [10]. This was still possible by adding transistors and logic to the standard CPU and
increasing clock frequencies, until it becomes exceedingly impractical because of the power
wall associated to the increase of processor frequency. Therefore, leading vendors considered
multicore processor strategies, thus opening the door to the multicore era.

Figure 1.1: Microprocessor Transistor Counts 1970-2010 & Moore’s Law

From that inflexion point in the evolution of computer systems, things are changing dra-
matically, including the emergence of new hardware devices. With the advent of multicore
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processors, manufacturers have taken that opportunity to keep providing increasingly powerful
processors even to ordinary users, provided that they really transition to parallel computing.
Thereby, the notion of parallelism is extending to a wider audience, and will soon or later be-
come a key item in computer science and engineering curricula. Multicore processors are being
actively investigated and manufactured by major computer-processors vendors. At present,
most contain between 2 to 16 cores, and a few contain as many as 64 to 80 cores (so-called
many-core). For the programmer, in addition to requirement of designing multi-threaded
codes, now has to face a more complex memory system. Indeed, the memory available on
multicore processors has several levels, different packaging and management policies. Figure
1.2 displays and example with the Nehalem architecture.

Figure 1.2: Nehalem memory hierarchy

Memory complexity remains a serious challenge both from the hardware and the software
standpoints. Indeed, the part due to memory accesses and management in the sustained
performance with common applications is quite significant, especially with stencil computa-
tion (image processing, simulations based on Cartesian space modeling, discrete iterations,
to name a few). In addition to optimizing memory traffic, the programmer now needs to care
about cache memories sharing, with a direct consequence on the performance scalability.

In addition to the absolute performance and scalability issues with conventional (multi-
core) processors, power consumption has quickly become another critical point. The concern
is still to compute quite quickly, so as to save energy by reducing the overall running time.
The idea that has come in mind to tackle this is the use of accelerators. An accelerator is
a specialized unit dedicated to a specific kind of tasks that will be executed with an un-
beatable performance. The Graphic Processing Unit (GPU) is one of such devices (see [9]
for a survey on the GPU history). As its name implies, the GPU was originally developed
for accelerating graphics processing. The demand for increasingly realistic visual content in
video games and other applications compelled GPU designers to endow their chips with the
ability to apply complex physical equations to the task of producing convincing renderings of
real-world phenomena. Eventually, game programmers and GPU manufacturers realized that
such achievements for “game physics” could also apply to other fields [38]. The emergence of
graphics processing unit (GPUs) as more of a general-purpose computational processor has
improved the performance of certain types of computations [32, 29]. Some applications have
shown performance improvements ranging from 2x (twice as fast) to over 100x (100 times
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faster) [39]. From these numbers, it is pretty obvious why GPUs are so exciting, even if
programming them is not intuitive.

Interconnecting a large number of powerful multicore processors (probably accelerated)
with a high speed network is leading to impressive supercomputers. The current horizon is
the ”exascale” [28], which is expected by 2018. Supercomputers are doing ground-breaking
work that might not be possible without them, and this has changed the rules of science and
industry. With computing possibilities running up against the far edge of current technology,
researchers are looking for new ways to shrink processors, combine their power, and gather
enough energy to make them all work efficiently. Computational capabilities are nowadays an
essential part in cutting-edge scientific and engineering experiments. The capability to analyze
and predict from huge amount data has incredibly improved with the use of supercomputers.
Neuroscientists can evaluate a large number of parameters in parallel to find good models
for brain activity; automobile manufacturers can perform more realistic crash simulation to
improve safety; astronomers can analyze different regions of the sky in parallel to search for
supernovae; nuclear and particle physics are moving beyond common belief with large-scale
simulations; search engines can launch parallel search across large-scale clusters of machines
and instantly aggregates the results, thus reducing the latency of each request while improving
relevance and accuracy; cryptography and computer systems security will benefit from the
computation of gigantic prime numbers; researchers in artificial intelligence are trying to use
large supercomputers to replicate (or surpass) a high-functioning human’s ability to answer
questions; social networking services are increasing their pervasiveness through large-scale
graph processing, text processing or data mining.

While keep striving to provide breathtaking faster computers, designers need to contend
with power and energy constraints. For decades, computers got faster by increasing their
(aggregated) central processor unit. However, high processor frequency means lot of heat.
Indeed, The Fujitsu K Computer, for example, has been using US$10 million of electricity
per annum to operate. This question of energy is more crucial as computing are being
reported to the ”Cloud”, which is another innovative and affordable way to fulfill the need of
high-range computing facilities. Indeed, Cloud computing offers a great alternative on mass
storage, software and computing devices [44, 19, 3]. Federating available computing resources,
assuming a fast network, is certainly a valuable way to offer a more powerful computing system
to the community. Energy, both dissipated and consumed, is also a critical concern, which is
subject to active investigation from both the hardware and software standpoints.

From the programming point of view, harvesting hardware advances to rich the level of
cutting-edge research expectations is more challenging. Indeed, beside the ambient enthu-
siasm around the evolution of supercomputers, the way to peak performances is far from
straightforward. In addition to algorithmic efforts to express and quantify all levels of par-
allelism, specific hardware and system considerations have to be taken into account when
trying to provide an efficient, robust, and scalable implementation on (heterogeneous) multi-
core processors. This has brought an unprecedented level of complexity in program design.
Adapting a code for a given architecture or optimize it accordingly requires a complex set of
program transformations, each designed to satisfy one or more aspects (e.g. registers, cache,
instruction pipeline, data exchanges) of the target system. When the program is complex
enough, or when the target architecture is a combination of different processing units (hybrid
or accelerated computing), devising highly efficient programs becomes seriously hard. This
is the price anyone should be aware of, when it comes to current and future states of high
performance computing. The evolution of supercomputers performance is well depicted in
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the semi-annual top500 ranking. This has triggered an exciting competition among manufac-
turers and countries for the fastest supercomputer. Leadership in supercomputing is viewed
around the world as a symbol of national economic competitiveness and of technical and sci-
entific leadership. Alongside the ranking announcements, top500 reports provide a valuable
collection of quantitative information for global statistics and trend analysis. Figure 1.3, for
instance, provides a view on the performances evolution (aggregated and extremes) from the
beginning of the top500 ranking.

Figure 1.3: Performance evolution overview from the top500

The petaflops barrier was reached for the first time in June 2008 top500 by the IBM
Roadrunner, nearly ten years after the reach of the teraflops barrier in June 1997 by Intel
ASCI Red. The IBM press release used a few analogies to describe the power of Roadrunner,
such as “The combined computing power of 100,000 of today’s fastest laptop computers”;
and, “It would take the entire population of the earth, - about six billion - each of us working
a handheld calculator at the rate of one second per calculation, more than 46 years to do what
Roadrunner can do in one day.” By plain extrapolation, a sustained exascale performance is
expected from 2018. It is amazing to see that Titan - Cray XK7, the current world fastest
supercomputer, is 294,639 times faster than the top ranked machine of the 1993 top500
edition, the Thinking Machines CM-5/1024. Figure 1.4 is a snapshot of the November 2012
top500 listing, focused on the top ten machines.
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Figure 1.4: Top ten machines of the November 2012 top500

Titan-XK7 is a hybrid supercomputer, means made up by a combination of commodity
processors with coprocessors or graphics processing units (GPUs) to form a heterogeneous
high-performance computing system. Roadrunner was the world’s first hybrid supercomputer,
made up with 6,562 dual-core AMD Opteron chips as well as 12,240 Cell chips (on IBM Model
QS22 blade servers). Accelerated computing is prevailing over the use of conventional CPU-
based architectures, and is certainly the way to power aware supercomputing. Indeed, as
supercomputers are to move beyond the petascale and into the exascale, energy efficiency
is becoming a major concern. Note that power consumption, as a metric, was not even
mentioned in earlier top500 editions. Now, this aspect has come to the spotlight, and there is
a so-called Green500 project, which aims at providing a ranking of the most energy-efficient
supercomputers in the world.

In order to figure out what can be expected from a given supercomputer and appreciate
its potential, we provide some basic notions.

1.2 Basic quantitative background

1.2.1 Calculating the overall peak performance

The first thing that comes in mind with a supercomputer is its potential performance, also
known (and refers to) as theoretical peak performance. This is rough calculation of the over-
all computing power that the considered computer can offer. The items that are mainly
considered are

⋄ The total number of cores (regardless of the packaging)

⋄ The processor clock rate

⋄ The length of vector registers (assuming floating point calculations)

⋄ The possibility (or not) of a one cycle multiply-add (thus, 2 FP calculations per cycle)

Let consider the case of the IBM-Sequoia supercomputer that will be fully described later.
We have

⋄ Total number of cores = 1,572,864
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⋄ Processor-core clock rate = 1.6 Ghz

⋄ Each core has Quad FPU (4-wide double precision vector registers)

⋄ One cycle multiply-add feature available

This gives

1, 572, 864× (1.6× 106)× 4× 2 = 20.132659× 1015 ≈ 20.14PFlops (1.1)

We point out the fact that memory accesses and interprocessor communication are not
counted. The reader should kept it in mind, and be aware that this is where mainly comes
the gap between peak and sustained performances. However, the impact of data moves can
be attenuated by an overlap with computations, at the price of skillful programming efforts.

1.2.2 Evaluating interprocessor communication

A supercomputer is composed of a large number or computing nodes which need to exchange
data (inputs or intermediate results) in order to achieve the global assigned task. As said
above, this time cost for interprocessor communication is roughly seen as an additional time
over the pure computation time. For a single data communication, there a setup latency and
a transmission time, which gives an estimation of the form

Tc(L) = β + α× L (1.2)

As multiple transfers can occur at the same time, the inverse of the latency (i.e. 1/β)
is sometimes referred in the literature as the number of MPI communication that can be
launched within a second. The physical network topology and the current data traffic will
determine the effective cost [4, 25, 24]. There are more sophisticated cost models in the
literature, but they are rarely considered in practice, probably because they are too difficult
to handle and the added-value is marginal.

1.2.3 Energy

This a very important measure when it come to supercomputers [3, 4]. Indeed, processing
with a supercomputer implies an large aggregation of heavy CPU activities, thus a risk of
overheating. Based on the Ohm’s Law [1], we have that the dissipated power is approximately
proportional to the square of the CPU voltage and the CPU frequency, which gives

P = CV 2f, (1.3)

where C is capacitance, V is voltage, and f is frequency [43]. It is important to note that those
parameters can be changed dynamically at runtime [5], which offers an opportunity for an
energy-aware scheduling. The network and the memory activities also count, but the most
important focus is on the pure CPU side. A more detailed and formal analysis of this topic
is provided in Chapter 4.
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1.2.4 Failure

Failure is a natural fact that arises soon or later with any device. For (super)computers, the
main focus is on the CPU failure that is caused by heat dissipation. A nice survey open the
topic is presented in [2]. The typical way to contend with this issue is cooling. In any case, a
prediction of the time to failure is a common measure in the HPC community [41, 42]. The
most popular measure is the mean time between failures (MTBF). We also have the mean
time to failure (MTTF). MTBF and MTBF are sometimes used interchangeably, but they
are slightly different in the sense MTBF refers to a failure that can be (and will be) repaired,
while the MTTF refers to a fatal failure. MTTF also includes the case where the maintenance
policy is replacement or removal, even if the problem can be fixed.

MTBF can be estimated from a time interval by calculating the ratio of the total time
measured over the total number of failures observed. This assumes a uniform distribution of
failures, but a more sophisticated model could be considered if necessary and possible. For
example, if we run a supercomputer with 500 nodes for 600 hours and we find 15 failures,
then we have

MTBF =
(500× 600)

15
= 20, 000 hours. (1.4)

We now illustrate the state-of-the-art of supercomputers trough a commented description
of a selected subset of world-class computing systems, followed by a view on more specific
architectures. Our sampling focuses on top-ranked machines, different kinds of architecture
(CPU + interconnect), and the packaging (node configuration).

1.3 Selected architectures

1.3.1 TITAN - CRAY XK7

Titan - Cray XK7, a hybrid CPU/GPU supercomputer manufactured by the Cray Com-
pany, was ranked world’s fastest supercomputer in the November 2012 top500 ranking. The
Cray XK7TM, installed at the Department of Energy’s Oak Ridge National Laboratory
(ORNL / USA), has showed an outstanding 17.59 PFlop/s Linpack performance, that is
quadrillions of calculations per second, over a theoretical peak of 27.11 PFlop/s. The ma-
chine is made up with 299,008 cores AMD Opteron 6274 (16 cores per node), each core clocked
at 2.2 GHz. This aggregation of CPUs is combined with 18,688 NVIDIA Tesla K20 GPUs.
The total memory space available is 710 TB, and the total power consumption is around
8.2 megawatts, which yields a remarkable (rank 2) performance/power ratio of 2.14 MFlop-
s/watts. The network is a 3D torus topology based on the efficient Gemini interconnect,
which is capable of tens of millions of MPI messages per second with 1.5 microsecond latency
and a bandwidth of 20 GB/s for point-to-point transmissions.
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Figure 1.5: TITAN Supercomputer

Among the set of applications that can notably
benefit from the tremendous processing speed of
Titan, Oak Ridge National Laboratory reported
seismological simulations of the entire Earth (sug-
gested by researchers from Princeton University),
direct numerical simulation with complex chemistry
to understand turbulent combustion, discrete radi-
ation transport calculation, molecular studies, cli-
mate change adaptation and mitigation scenario, to
name a few. We think that the presence of GPUs
should somehow influence the range of potential ap-
plications that can be efficiently ported on such ma-
chine. A typically suitable application should allow
a coarse grain task partitioning with locally inter-
connected stream processing nodes.

Figure 1.6: GEMINI

1.3.2 IBM SEQUOIA

Sequoia is a world-class IBM BlueGene/Q computer, which was ranked second world’s fastest
supercomputer in the November 2012 top500 ranking, after being atop in the previous edition.
The Sequoia, hosted at the Department of Energy’s Lawrence Livermore National Laboratory
(LLNL / USA), has showed a distinguished 16.32 PFlop/s Linpack performance (16 thousand
trillion calculations per second) over a theoretical peak of 20.14 PFlop/s. The machine, at
this time (upgrades are awaited), is made up with 1,572,864 cores (16-cores CPUs), each core
clocked at 1.6 GHz, and a total memory of 1573 TB. Another attractive strength of Sequoia is
its power consumption, which is estimated at 7.9 megawatts, thus making it a good candidate
for high-performance computing and high-throughput computing as well. The network is a
5D torus bidirectional optical network with a bandwidth of 5 GB/s and a latency of 2.5
microseconds.
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Figure 1.7: Sequoia packaging

The Sequoia is planned to be eventually devoted almost exclusively to simulations aimed
at extending the lifespan of nuclear weapons. However, it flexible interconnect makes it
a good choice for (block) stencil computation like the Lattice Quantum ChromoDynamics
(LQCD) or Discrete Partial Differential Equation (DPDE). More classical applications are also
considered like semiconductor and silicone design, financial modeling, climate and weather
studies. The modest clock rate of each individual core suggests that the machine could be
considered for large scale memory bounded applications. Moreover, the noteworthy low power
consumption of the BlueGene/Q makes it clearly adapted for high-throughput computation,
with an affordable energy and maintenance cost.

1.3.3 Fujitsu K-COMPUTER

K-COMPUTER is a Fujitsu supercomputer, which was ranked third world’s fastest su-
percomputer in the November 2012 top500 ranking, after being atop in the 2011 edition.
The K-Computer, hosted at RIKEN Advanced Institute for Computational Science (AICS
/ Japan), has showed an impressive 10.5 PFlop/s Linpack performance (nearly 11 thousand
trillion calculations per second) over a theoretical peak of 11.2 PFlop/s. The heart of the K
computer consists of 88,128 SPARC64TM VIIIfx 8-cores CPUs, thus a total of 705,024 cores.
The overall global memory sums up to 1410 TB. The power consumption is around 12.7
megawatts, which yields a relatively high power per core compared to other machines of the
top ten. However, we think that this controversy power consumption is well compensated by
the close gap between sustained and peak performances. The K computer’s network, called
Tofu, uses an innovative structure called ”6-dimensional mesh/torus” topology with a total
throughput of about 5 GB/s and a microsecond latency for a point-to-point communication
between two neighbor nodes.
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Figure 1.8: K-Computer

K-Computer has been used on number of successful case studies.
First, the machine took the first-place rankings in the 2011 HPC
Challenge Awards, which considered various benchmarks aiming
at testing different hardware capabilities. In addition, astrophysi-
cal N-body simulations of one trillion particles were performed on
the full system of the K computer and awarded the 2012 ACMGor-
don Bell Prize. The 6-dimensional mesh/torus of the K-computer
provides an exceptional communication flexibility, which makes it
globally efficient on standard applications. As it uses to be with
supercomputers, the K-Computer is now open for shared use. Figure 1.9: TOFU

1.3.4 IBM SuperMUC

SuperMUC is an IBM supercomputer, which was ranked sixth world’s fastest supercomputer
in the November 2012 top500 ranking. SuperMUC, hosted at the Leibniz Supercomputing
Centre “Leibniz-Rechenzentrum” (LRZ / Germany), has delivered a remarkable 2.89 PFlop/s
Linpack performance (nearly 3 thousand trillion calculations per second) over a theoretical
peak of 3.18 PFlop/s. The close gap between the sustained and the peak performances is
clearly a good point for this supercomputer too. The machine is made of 18,432 8-cores Intel
Xeon Sandy Bridge-EP processors, thus a total of 147,456 cores clocked at 2.70 GHz each.
The overall memory space is 288 TB. Its global power consumption is estimated around 3.42
megawatts, nearly the same performance/power ratio as the K-computer (0.84 MFlops/watts).
However, SuperMUC uses a revolutionary form of warm water cooling developed by IBM,
called ”aquasar”, which consumes 40% less energy than a comparable air-cooled machine,
thus making the system energy efficient. The network is a non-blocking bi-directional tree
based on Infiniband FDR, with a point-to-point throughput of 5 GB/s and a latency of 160
nanoseconds.
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Figure 1.10: SuperMUC supercomputer

SuperMUC is intended to assist scientists in cutting-edge research in number of fields
like geophysics (including prediction of earthquakes), aerodynamics (reduction of aircraft
noise), biology (modeling blood flow through and artificial heart). The outstanding efficiency
of the machine makes it a good candidate for CPU intensive applications like large-scale
simulations in experimental and life sciences, structure calculations in material sciences, linear
algebra, to name a few. The high energy efficiency of the system (counting the benefit of the
“aquasar” cooling) fits the need of large-scale high throughput computing and offers a good
opportunity for a widespread shared use. Last, but the least, the affordable maintenance
budget of SuperMUC, due again to its energy efficiency, is a positive when it comes to a
context where cost saving is vital, like academic institutions.

1.3.5 Tianhe-1A - NUDT

Tianhe-1A, a hybrid CPU/GPU supercomputer developed at the National university of
Defense Technology (NUDT / China), was ranked eighth world’s fastest supercomputer in
November 2012 top500 ranking, and was the fastest in a 2010 edition. The current update of
Tianhe-1A, installed at the National SuperComputer Center in Tianjin (NSCC-TJ / China),
has showed a noticeable 2.56 PFlop/s Linpack performance (nearly 2.5 thousand trillion
calculations per second) over a theoretical peak of 4.7 PFlop/s. Tianhe-1A is a GPU-based
supercomputer, made up with 7168 computing nodes, each featuring two 6-cores Intel Xeon
X5670 2.93 GHz, and one NVIDIA M2050 GPU (14 cores), which makes a total of 186, 368
cores. The total memory space is 262 TB, and the power dissipation at full load is 4.04
megawatts. The interconnection topology is an optic-electronic hybrid fat-tree structure with
the bi-directional bandwidth of 20 GB/s, and a latency of 1.57 microseconds.
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Figure 1.11: Tianhe-1A supercomputer

Among the applications that can benefit from such Tianhe-1A, the National Supercom-
puter Centre in Tianjin has reported number of successful use cases. First, as China became
one of the most oil-importing countries, Tianhe-1A has been considered to provide techno-
logical support for the oil exploration so as to enhance the international competitiveness of
chinese companies. This was achieved using the GeoEast-lightning software to deal with the
two oil seismic exploration data.

Table 1 reports their experimentation from the
computation point of view. Other aspects include
3D reverse-time migration, Laplace-Fourier wave-
form inversion, and large-scale geological studies.

Biology is also concerned, with gene sequencing, prediction of protein structure, and high-
throughput virtual screening. The supercomputer is also used for intensive engineering sim-
ulation (automotive crash, metal forming, electrical design, rotating machinery, hydraulic
structures). We think that codes written to run on Tianhe should be optimized to execute at
the fastest to save energy.

1.3.6 The IBM-CELL

The CELL Boradband Engine [6, 27] is a multi-core chip that includes nine processing
elements. One core, the POWER Processing Element (PPE), is a 64-bit Power Architecture.
The remaining eight cores, the Synergistic Processing Elements (SPEs), are Single Instruction
Multiple Data (SIMD) engines (3.2GHz) with 128-bit vector registers and 256 KB of local
memory, referred to as local store (LS). Figure fig. 1 provides a synthetic view of the CELL
architecture [45].
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Figure 1.12: IBM CELL BE organization

Programming the CELL is mainly a mixture of single instruction multiple data paral-
lelism, instruction level parallelism and thread-level parallelism. The chip was primarily
intended for digital image/video processing, but was immediately considered for general pur-
pose scientific programming (see [40] for an exhaustive report on the potential of the CELL
BE for several key scientific computing kernels). A specific consideration for QR factorization
is presented in [23]. We have achieved valuable implementation of Lattice Quantum Chro-
moDynamics (LQCD) kernel [34], the Algebraic Path Problem [33], and the Harris Corner
Detection algorithm [35]. Nevertheless, exploiting the capabilities of the CELL in a standard
programming context is really challenging. The programmer has to deal with hardware and
software constraints like data alignment, local store size, double precision penalty, different
level of parallelism. Efficient implementation on the CELL is commonly a conjunction of a
good computation/DMA overlap and a heavy use of the SPU intrinsics. Although the poten-
tial of the CELL-BE, its hard programmability has clouded the horizon. Consequently, the
project was suspended, but a similar architecture is still available on PS3 consoles. Moreover,
it is possible that the basic ideas that were used to create the CELL-BE will be found on
some future generation accelerated architectures.

1.3.7 Graphic Processing Unit

Graphic processing unit (usually referred to as GPU) is a specialized microprocessor that
offloads and accelerates graphics rendering from the central processor [9]. It was primarily
a graphics chip, acting as a fixed-function graphics processor. Gradually, the chip became
increasingly programmable and computationally powerful, thereby leading to the GPU. Now,
GPU is used jointly with the CPU for general-purpose scientific and engineering applications.
The highly parallel structure of modern GPUs makes them very efficient than traditional
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CPUs for algorithms where processing of large blocks of data can be done in parallel, in
addition to classical stream processing applications. This has pushed computer scientist to
start thinking about an effective use of GPU to accelerate a wider range of applications, thus
leading to the advent of the so-called GPGP (General-Purpose computation on Graphics
Processing Units). In GPGPU, a GPU is viewed as a high-performance many-core processor
that can be used, under the management of a traditional CPU, to achieve a wide range of
computing tasks at a tremendous speed. At the earlier stage of GPGPU, the main concern
was how to efficiently exchange data between the CPU and the GPU. This CPU-to-GPU bot-
tleneck [8], often shirked in some very optimistic reports, has been one of the main hurdles
on the GPGPU ascent. Another critical point was the severe slowdown on double preci-
sion processing, which is essential in cutting-edge numerical studies. These two issues have
been seriously addressed in current generation GPUs, thus making them an effective general
purpose computing alternative. In certain applications requiring massive vector operations,
this can yield several orders of magnitude higher performance than a conventional CPU.

Figure 1.13 displays an example of process-
ing time improvement of a GPU over a tra-
ditional CPU. This example, taken from
the NDVIDIA website, reports a bench-
mark about solving Navier-Stokes equa-
tions on various grid sizes. Other reported
success stories are: a 12x speedup on
an orthorectification algorithm and a 41x
speedup on the pan sharpening process by
Digital Globe; a 3x (resp. 5x) speedup on
solving a linear system and a 8x speedup
on solving second-order wave equation in
MATLAB [47, 46]; a 8x speedup on basic
linear algebra subroutines (cuBLAS) [49];
to name a few. Figure 1.13: Sample GPU speedup
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Figure 1.14 provides a selection of potential performances from NVIDIA [48].

Figure 1.14: application The use of GPUs to faster the

The use of GPUs to faster the computation is really coming to the vogue, with the hope
of saving energy through shorten execution times. This has motivated the consideration of
hybrid CPU/GPU supercomputers and the use of GPU a key device in Cloud computing [17].
Another important point when it comes to parallelism among GPUs [15, 31] is data exchanges,
which still need to transit via the referent CPU. This problem is also addressed in current and
future generations of GPU, with the aim of having a direct cooperation between the GPUs.
Figure 1.15 illustrates one aspect of the concept via the so-called dynamic parallelism [33].

Figure 1.15: Dynamic parallelism with GPUs
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1.4 About the interconnect

We have so far focused on the global processing speed that supercomputers can offer to end-
users, with an emphasis on the local efficiency of the computing node and how much is there
on the machine. Indeed, a supercomputer is made up with several independent computing
nodes, but they need to cooperate and exchange data in order to execute a macroscopic task.
What we get from there is the so-called sustained performance, which is most of times far
from the theoretical peak. In addition to the gap between sustained and peak performances
on a node, there is an additional overhead coming from data exchanges between nodes, which
is the main concern of the interconnect efficiency. First note that this aspect is not counted
when estimating the peak performance, nor external I/O operations. However, depending
on the application, data communication can yield a significant impact on the overall per-
formance, thus breaking the scalability on large-scale supercomputers. The special case of
applications involving stencil computation is noteworthy. The Lattice Quantum ChromoDy-
namics (LQCD), the lattice discretized theory of the strong nuclear force, is a nice example
with a gigantic number of sites, each of them having 8 neighbors [10]. When two computing
nodes have to exchange data, it is well known that this is better done with a direct com-
munication whenever possible; otherwise a slower multi-hop transfer will take place. The
concern here is the mismatch between the virtual topology (from the scheduling) and the
physical one (from the target machine). The interconnect of a supercomputer should offer a
good flexibility for internode communication. The underlying topology should exhibit either
high local degrees or shorter internode distances. Figure 1.16 outlines a classical interconnect
available on supercomputers.

Figure 1.16: Typical supercomputer interconnect

Alongside network topology and bandwidth, communication latency is crucial. The state-
of-the-art is around a microsecond, which is acceptable for a point-to-point communication,
but less for a multi-hop transfer. Depending on the physical topology and traffic, interproces-
sor communication might suffer from network congestion, resulting in a significant increase
of the sustained latency. Overlapping computation and communication will certainly remain
a key ingredient for scalability.
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1.5 Trends and future of supercomputers

Processor manufacturers are constantly improving their products by tweaking CPU compo-
nents and implementing new hardware concepts. The aim is to keep providing increasingly
powerful computers for basic issues and large-scale supercomputers for cutting-edge research
and engineering. There is a kind of game between progress and need, where we iteratively
push the limits and try to go beyond. Harvesting computing cycles for science will certainly
change the landscape of experimental research and shorten the path to scientific discovery
and technical insights.

As we have so far explained, increasing the (aggregated) processor speed raises number
of technical challenges that need to be addressed carefully in order to make their benefit
clear to the community. Indeed, the gap between the peak performance and the sustained
performance is a genuine concern. This is like gross salary and net salary from the employee
viewpoint. Users expect supercomputers to be powerful enough for their applications, not in
absolute. Thus, getting close to the maximum performance will be a crucial request. From the
hardware point of view, this means number of improvement: memory latency at all hierarchy
levels should be reduced; opportunity should be given to the programmer to manage memory
features as desired; data exchanges between different memory levels should be improved by
adding additional buses; the penalty for accessing distant parts of a NUMA memory should be
revisited; the set of vector instructions should be soundly extended; network capability should
be improved (topology, bandwidth, and latency) in order to lower enough the communication
overhead. At the algorithmic level, the scheduling should be aware of the Amdhal law [21].

The question of heat dissipation and power consumption will sit on top of major concerns.
It is possible that, at some points, performance will be sacrificed because of the energy con-
straint. A typical node of a supercomputer will be made of a traditional multicore processor
with several moderate cores, coupled with high-speed accelerator units (mainly GPUs). The
idea behind relying on accelerators is that they will be fast enough to significantly reduce the
overall execution time, thereby reducing the corresponding heat dissipation. It is important
to understand this is a local reasoning, the case of high throughput computation remain-
ing problematic. Indeed, we cannot expect to always compute by spots. Certain kinds of
application like simulations, tracking, data assimilation, to name a few, require continuous
heavy calculations. The question will be how to keep the benefit of acceleration over a long
period of computing time without the punishment of an unacceptable power consumption or
hardware failure. Thus, research investigations on the energy efficiency of computing systems
will be of a particular interest, both from the hardware side and the programming stand-
point. Alongside these efforts, researches on efficient and affordable cooling systems will be
also crucial.

Another trend for future innovation, a part from increasing processors horsepower, is the
ability to leverage distant power with an increasingly diverse collection of devices. Cloud com-
puting offers a great alternative on mass storage, software and computing devices. Federating
available computing resources, assuming sufficiently fast network, is certainly a valuable way
to offer a more powerful computing system to the community. The main advantage is that the
maintenance cost is mutualized and the users pay only for what they have really consumed.
In addition, more related to the Software as a Service (SaaS) feature, users instantly benefit
from updates, new releases, and new software. There is also an opportunity to share data and
key parameters. This approach of federating available resources can be also seen as a way to
save power consumption, as it prevents wastage. The topic of cloud computing is coming to
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the vogue and will probably be adopted for major large scale scientific experiments, assum-
ing non sensitive data. The challenge for computer scientist is how to efficiently schedule a
given set of tasks on the available set of resources in order to serve the request at the user
convenience, while taking care of energy.

From the programming point of view, there are number of serious challenges that need to
be addressed or remain under deeper investigations. The heterogeneity of current and upcom-
ing supercomputers requires the use of hybrid codes, which is another level of programming
complexity. One might think of using (semi-)automatic code generators, thus concentrate on a
higher level abstraction. Programmers will, at certain point, rely on the output of those code
generation frameworks, which is not always easy to accept, and otherwise raises a number
of practical issues related to debugging, maintenance, adaptability, tuning, and refactoring.
Figure 1.17 displays an example of a complex code design framework [11].

Figure 1.17: Sample hybrid programming chain

As the number of cores is increasing, with various packaging models, scalability will be an
important issue for programmers. Some of the considerations that suited for single-threaded
code have to be revised when it comes to multi-threaded version. Data locality is one of them,
since the so-called false-sharing is also caused by an inappropriate locality. Mixing distributed
memory model and shared memory model should become a standard.
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2.1 Foundations and background

Operations research is the science of decision making. The goal is to derive suitable mathe-
matical models for practical problems and study effective methods to solve them as efficient as
possible. For this purpose, mathematical programming has emerged as a strong formalism for
major problems. Nowadays, due to the increasing size of the market and the pervasiveness
of network services, industrial productivity and customers services should scale up with a
whooping need and a higher quality requirement. In addition, the interaction between busi-
ness operators has reached a noticeable level of complexity. Consequently, for well established
companies, dealing with optimal decisions is critical to survive, and the key to achieve this
purpose is to exploit recent operation research advances. The objective is to give a quick and
accurate answer to practical instances of critical decision problems. The role of operation
research is also central in cutting-edge scientific investigations and technical achievements. A
nice example is the application of the traveling salesman problem (TSP) on logistics, genome
sequencing, X-Ray crystallography, and microchips manufacturing[5]. Many other examples
can be found in real-world applications[108]. A nice introduction of combinatorial optimiza-
tion and complexity can be found in [105, 39].

The noteworthy increase of supercomputers capability has boosted the enthusiasm for solv-
ing large-scale combinatorial problems. However, we still need powerful methods to tackle
those problems, and afterward provide efficient implementation on modern computing sys-
tems. We really need to seat far beyond brute force or had hoc (unless genius) approaches, as
increasingly bigger instances are under genuine consideration. Figure 2.1 displays an overview
of a typical workflow when it comes to solving optimization problems.

Figure 2.1: Typical operation research workflow

Most of common combinatorial problems can be written in the following form
minimize F (x)
subject to P (x)

x ∈ S,
(2.1)

where F is a polynomial, P (x) a predicate, and S the working set, generally {0, 1}n or Zn.
The predicate is generally referred to as feasibility constraint, while F is the known as the
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objective function. In the case of a pure feasibility problem, F could be assumed to be
constant. An important class of optimization problem involves a linear objective function
and linear constraints, thus the following generic formulation

minimize cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p,
(2.2)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm, and p ∈ {0, 1, · · · , n}. If p = 0 (resp. p = n), then we have
a so-called linear program (resp. integer linear program), otherwise we have a mixed integer
program. The corresponding acronyms are LP, ILP, and MIP respectively. In most cases,
integer variables are binary 0 − 1 variables. Such variables are generally used to indicate a
choice. Besides linear objective functions, quadratic ones are also common, with a quadratic
term proportional to xtQx. We now state some illustrative examples.

Example 1 The Knapsack Problem (KP)[79]. The Knapsack Problem is the problem of
choosing a subset of items such that the corresponding profit sum is maximized without having
the weight sum to exceed a given capacity limit. For each item type i, either we are allowed
to pick up at most 1 (binary knapsack)[35], or at most mi (bounded knapsack), or whatever
quantity (unbounded knapsack). The bounded case may be formulated as follows(2.3):

maximize

n∑
i=1

pixi

subject to
n∑

i=1

wixi ≤ c

xi ≤ mi i = 1, 2, · · · , n
x ∈ {0, 1}n×n

(2.3)

Example 2 The Traveling Salesman Problem (TSP)[5]. Given a valuated graph, the
Traveling Salesman Problem is to find a minimum cost cycle that crosses each node exactly
once (tour). Without lost of generality, we can assume positive cost for every arc and a zero
cost for every disconnected pair of vertices. We formulated the problem as selecting a set of
arcs (i.e. xij ∈ {0, 1}) so as to have a tour with a minimum cost(2.4). Understanding how
the way constraints are formulated implies a tour is left as an exercise for the reader.

minimize

n∑
i=1

n∑
j=1

cijxij

subject to
n∑

j=1

xij = 1 i = 1, · · · , n, i ̸= j

n∑
i=1

xij = 1 j = 1, · · · , n, i ̸= j

x ∈ {0, 1}n×n

(2.4)

The TSP has an a priori n! complexity. Solving any instance with n = 25 using the current
world fastest supercomputer (TITAN-CRAY XK7) might require 25 years of calculations.
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Example 3 The Airline Crew Pairing Problem (ACPP)[125]. The objective of the
ACPP is to find a minimum cost assignment of flight crews to a given flight schedule. The
problem can be formulated as a set partitioning problem(2.5).

minimize cTx
subject to Ax = 1

x ∈ {0, 1}n
(2.5)

In equation (2.5), each row of A represents a flight leg,
while each column represents a feasible pairing. Thus,
aij tells whether or not flight i belongs to pairing j.

In practice, the feasibility constraint is mostly the heart of the problem. This the case for
the TSP, where the feasibility itself is a difficult problem (the Hamiltonian cycle). However,
there are also notorious cases where the dimension of the search space S (i.e. n) is too large
to be handled explicitly when evaluating the objective function. This is the case of the ACPP,
where the number of valid pairings is too large to be included into the objective function in
one time. We clearly see that we can either focus on the constraints or on components of
the objective function. In both cases, the basic idea is to get rid of the part that makes the
problem difficult, and then reintroduce it progressively following a given strategy. Combined
with the well known branch-and-bound paradigm[26], these two approaches have led to well
studied variants named branch-and-cut[124] and branch-and-price[12] respectively.

Figure 2.2: Branch-and-bound overview

The key ingredient of this connection between discrete and continuous optimization is
linear programming (LP). Indeed, applying a linear relaxation on the exact formulation of
a combinatorial problem, which means assuming continuous variables in place of integer
variables, generally leads to an LP formulation from which lower bounds can be obtained
(upper bounds are obtained on feasible guests, mostly obtained through heuristics). LP is
also used to handle the set of constraints in a branch-and-cut, or to guide the choice of
new components (columns) of the objective function in the branch-and-price scheme. Figure
2.3 depicts the linear relaxation of an IP configuration, while Figure 2.4 provides a sample
snapshot of an LP driven branch-and-bound.
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Figure 2.3: Interger programming & LP Figure 2.4: Branch-and-bound & LP
Linear programming has been intensively studied and has reached a very mature state, even
from the computing standpoint. Nowadays, very large scale LP can now be routinely solved
using specialized software packages like CPLEX[133] or MOSEK[135].

Branch-and-bound and its variants can be applied to a mixed integer programming formu-
lation by means of basic techniques like Bender decomposition[17] or Lagrangian relaxation[87].
Figure 2.5 depicts the basic idea behind these two approaches.

Figure 2.5: Bender decomposition & Langrangian relaxation

The later is likely to yield non-differentiable optimization (NDO) problems. Several ap-
proaches for NDO are described in the literature[65], including an oracle-based approach[7],
which we will later describe in details as it illustrates our major contribution on that topic.
Figure 2.6 gives an overview of an oracle based mechanism.

Figure 2.6: Oracle based optimization workflow
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From the methodological point of view, optimization (both continuous and combinatorial)
has been so far subject to intensive and fruitful investigations. New optimization paradigms
or improved variants of classical techniques have reached an acceptable level of maturity, and
have proved successful on number of notorious practical problems. However, in some cases,
the expected level of performance can be achieved only through parallel implementation on
large-scale supercomputers, especially with intractable (but pertinent) combinatorial prob-
lems. The idea is to combine the advantages of mathematically powerful algorithms with the
capability of machines that have several processors. The existence of commercial multiproces-
sor computers has created substantial interest in exploring the use of parallel processing for
solving optimization problems even for basic issues. The challenge is to find a suitable way
to implement the aforementioned techniques (somehow irregular) on modern supercomputers
(mostly tailored for regular computations) with an acceptable efficiency. We now provide
technical details on how this can be tackled and what has been done.

2.2 Parallel optimization

First, computational complexity studies the intrinsic difficulty of optimization problems and
decides which of these problems are likely to be tractable. There is an important set of
common problems that can be solved in polynomial time. However, as some of them are re-
cursively solved to get the solution of more difficult problems, improvements are still expected
whenever it remains technically possible. A good example of this is the shortest paths problem,
which appears as a subproblem when solving the multicommody flow problem[9]. Basically,
we may distinguish continuous optimization and discrete optimization. However, many ap-
proaches in combinatorial optimization have developed a bridge between the discrete universe
and the continuous universe through geometric, analytic, and algebraic techniques such as
global optimization, semidefinite programming, and spectral theory. Mixed integer program-
ming formulations involve differentiable and/or non differentiable objective functions. Non
differentiable case generally comes from the use of Lagrangian relaxation, which brings part of
the constraints (usually the harder ones) into the objective function. Moreover, the pursuit of
efficient algorithms for common combinatorial problems has lead to useful connections among
problems and their solutions. As consequence, there is a set of reference optimization prob-
lems for which improved solutions are continuously tracked by researchers. For this purpose,
parallel computing applied to the previously mentioned optimization paradigms is clearly the
way to go.

Most of discrete optimization problems are NP- complete[61]; hence their time complexity
increases exponentially for all known algorithms. Consequently, parallel processing cannot
achieve polynomial complexity without using at least an exponential number of processors.
However, the average-time complexity of heuristics and suboptimal algorithms for a wide
range of problems are polynomial[82, 127]. Significant advances have been made in the use of
powerful heuristics and parallel processing to solve large scale discrete optimization problems.
Number of problem instances that were considered computationally intractable on sequential
machines are routinely solved on server-class symmetric multi-processors and workstation
clusters[71, 121]. There are mainly two research directions in parallel optimization: numerical
approaches and non numerical paradigms.

We get a direct impact of parallel computing in numerical optimization through the ad-
vances in parallel numerical algebra[29, 52, 49], with some of them being implemented into
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effective frameworks[3, 11, 2, 25, 122]. Encapsulating parallel linear algebra routines into
optimization codes [43, 114] is a nice way to provide their power to the users without an ad-
ditional effort. This is still a very critical and challenging topic since parallelizing the linear
algebra kernels of optimization algorithms is not an easy task. In fact, matrix factorization
updating process in quasi-Newton methods or active set strategies involves vector-vector op-
erations that are not easy to parallelize efficiently [41]. According to Schnabel[112], parallel
computing can be performed in numerical optimization through three levels:

⋄ parallelization of the function and/or the derivative evaluations;

⋄ parallelization of the linear algebra kernels;

⋄ modifications of the basic algorithms in order to increase the degree of parallelism.

For the first two levels, a number of solutions have been developed in the last two decades
[106, 107, 54, 69]. For most of the interior point (IP) methods for linear programming (LP),
quadratic programming (QP), and nonlinear programming, the kernel is the solution of a
special linear system [4, 19]. As the iterates approach the boundary of the feasible set or the
optimal solution, the system becomes more and more ill-conditioned. Suitable strategies have
been developed within a modified Cholesky factorization framework and successfully used in
specialized codes as CPLEX[133] and LOQO[134]. Thus, efficient parallel versions of these
strategies are very desirable, but challenging, especially for sparse systems. The paper of
Durazzi and Ruggiero [50] presents a parallel approximated IP method for QP, based on a
preconditioned Conjugated Gradient algorithm. D’Apuzzo and Marino [41] have proposed a
parallel Potential Reduction algorithm for the convex quadratic bound constrained problem.
A parallel decomposition approach is considered by Zanghirati and Zanni [130] for large scale
QPs. Blomwall [23] has proposed a parallel implementation of a Riccati-based primal IP
algorithm for multistage stochastic programming.

Regarding the third level, the multidirectional search strategies [89] provide a high level
parallelism which can be exploited through a concurrent execution of the minimization pro-
cesses. Ad hoc or application specific algorithms are also concerned, particularly when large-
scale instances are considered [31, 81]. Another case study in statistical model selection is
analyzed by Gatu and Kontoghiorrghes [62]. As many fields of numerical analysis, number
of algorithms in numerical optimization have been revisited because of parallelism consider-
ations. In [56], approaches to expose parallelism through appropriate partitioning of math-
ematical programs are reported. Interior point strategies, because of their direct possibility
of parallel implementation [42, 73], have received much attention compare to active set algo-
rithms, and have stimulated intensive researches in order to understand and overcome their
weak scaling on large supercomputers. Developments in object oriented software for coding
and tuning linear algebra algorithms at a high level of abstraction are available in [123, 128]

As previously said, many techniques have so far been developed to provide a link between
continuous and discrete formulations. Major recent successes based on such approaches in-
clude IP methods for discrete problems, the Goemans-Williamson relaxation of the maximum
cut problem, the Chvatal cuts for the traveling salesman problem, and the Gilbert-Pollak’s
conjecture, to name a few. Parallel algorithms for discrete optimization problems can be
obtained in many different ways including the classical domain decomposition. SPMD (Single
Program Multiple Data) parallelization attempts to enlarge the exploration of the solution
space by initiating multiple simultaneous searches towards the optimal solution. These ap-
proaches are well implemented by clustering methods. Byrd et al. [31, 30] and Smith and
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Schnabel[115] have developed several parallel implementations of the clustering method. Par-
allelization of classical paradigms have also been explored: parallel dynamic programming[63],
branch and bound[26, 45], tabu search, simulated annealing, and genetic algorithms[109]. In
the paper of Clementi, Rolim, and Urland [37], randomized parallel algorithms are studied
for shortest paths, maximum flows, maximum independent set, and matching problems. A
survey of parallel search techniques for discrete optimization problems are presented in [71].
The most active topics are those involved with searching over trees, mainly the depth-first
and the best-first techniques and their variants. The use of parallel search algorithms in
games implementation has been particularly successful, the case of IBM’s Deep Blue [113] is
illustrative.

We now present one of our main contribution in the field of nondiffrentiable convex opti-
mization. As we have explained, such a contribution, made of a method and the corresponding
framework, is very useful for both continuous optimization and combinatorial optimization.
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2.3 Preamble

The work we are going to describe here is a substantial part of our achievement during a
postdoctoral stay at the university of Geneva (LOGILAB). The main content of the ongoing
report was published in [7]. Oracle Based Optimization (OBO) conveniently designates an
approach to handle a class of convex optimization problems in which the information per-
taining to the function to be minimized and/or to the feasible set takes the form of a linear
outer approximation revealed by an oracle. Five representative examples are introduced to
illustrate the effectiveness of the method at different levels of the optimization process. An
efficient algorithm, Proximal-ACCPM, is presented to trigger the OBO approach. Numerical
results for the set of selected examples are provided to illustrate the behavior of the method.
This paper summarizes several contributions with the OBO approach and aims to give, in a
single report, enough information on the method and its implementation to facilitate new ap-
plications. On top of this main contribution to convex optimization, we have studied number
of illustrative cases [118, 117, 16].

2.4 Introduction

Oracle Based Optimization (OBO) conveniently designates an approach to handle a class
of convex optimization problems in which the information pertaining to the function to be
minimized and/or to the feasible set takes the form of a linear outer approximation revealed by
an oracle. By oracle, we mean a black-box scheme that returns appropriate information on the
problem at so-called query points. In convex unconstrained optimization, this information
takes the form of a linear support for the epigraph set of the function to be minimized.
This class of problems is known as “Nondifferentiable Convex Optimization”. We use the
terminology OBO to emphasize the principle of the method — a dialog between an optimizer
and an oracle — and the fact that we can handle more general classes of problems.

The goal of this report is two-fold. We first intend to present an efficient method, Proximal-
ACCPM, that implements an OBO approach. We give a concise but accurate description
of the analytic center cutting plane method (ACCPM), and more precisely of its recent
enhancements that include a proximal term (Proximal-ACCPM) and a logarithmic barrier on
the epigraph of the smooth component of the objective function. The main issue in a cutting
plane method is to decide where to query the oracle in order to improve a current polyhedral
approximation of the problem. Proximal-ACCPM selects the analytic center of this polyhedral
set, that is, the point that minimizes the logarithmic barrier function on that set, augmented
with a proximal term. This choice is efficient since it usually requires relatively few query
points to achieve an accurate approximation of an optimal solution. Proximal-ACCPM relies
on the interior-point methodology to compute the query points. This methodology is well
suited to handle non-linear information and makes it easy to implement the extensions we
discuss in this report.

Our second goal is to provide a set of application problems that are very different in nature
and thus illustrate the versatility of the method. This choice does not cover the full range
of applications successfully handled with Proximal-ACCPM. Yet it gives a flavor of what can
be done and hopefully it will convince readers to develop applications of their own.

In this work we do not deal with the convergence issue. The pseudo-polynomial complex-
ity of the method on the feasibility problem has been proved in [68, 102] and straightforwardly
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extends to optimality problems by casting the latter in the format of a pure feasibility prob-
lem. The proofs are involved but the principles underlying the method are relatively simple.
Neither will we review the literature on nondifferentiable convex optimization. The field is
large and we content ourselves with referring to survey papers [88, 65]. In this presentation we
concentrate on the description of the method with some recent extensions and we illustrate
its implementation and performance on five large-scale applications recently reported in the
literature.

The report is organized as follows. In Section 4 we present the framework of Oracle
Base Optimization. Section 5 provides a succinct description of Proximal-ACCPM. Two
enhancements of the method are discussed. None of them is really new, but we believe that
they crucially contribute to the overall efficiency of the implementation. We also discuss how
to compute a lower bound and thus obtain a reliable stopping criterion. Section 6 deals with
five illustrative examples. The first one, the well-known multicommodity flow problem, is
representative of large-scale continuous optimization. The method has been applied to the
linear [8] and the nonlinear [6] cases. The nonlinear version of the multicommodity flow
problems we present here is particularly interesting, because part of the problem structure
need not be revealed by a first-order oracle. As it is presented in Section 5, Proximal-
ACCPM directly incorporates the non-linear information and thus achieves a significant gain
of efficiency.

The second application is the p-median problem, a combinatorial optimization problem
that is solved by Lagrangian relaxation. This example illustrate how powerful is Lagrangian
relaxation to generate lower bounds for the optimal value of this combinatorial problem.
These bounds are further used in an enumerative scheme which computes an optimal integer
solution. In the same subsection we present the new concept of semi-Lagrangian relaxation,
recently introduced in [16]. There, it is shown that using semi-Lagrangian relaxation permits
us to solve to optimality the original combinatorial problem without resorting to an enu-
merative scheme.

The third application deals with air quality control in urban regions and the coupling
of modules in Integrated Assessment Models (IAM). The economic activity creates pollu-
tant emissions that are spatially distributed. Geographic and climate models translate those
primary pollutant emissions into ozone concentrations which determine air quality. The ob-
jective of the study is to find an optimal adjustment of the economic activity that results in
acceptable ozone concentrations. The modeling approach consists in coupling two models, a
techno-economic model and a climate model, to properly handle the interaction between the
economic activity and the air quality. From a methodological point of view, this approach is
original as it allows the coupling of two models that have totally different natures.

The fourth application is related to the general topic of Data Mining. We address the case
of the linear separation, which can be solved directly from its native formulation as a liner
or quadratic programming problem. We provide an alternative formulation more suitable for
very large instances and show that our method performs better than pure LP or QP approach.

Our last case study is based on a general formulation of the Portfolio Selection Problem.
This a complete solution for a MIP problem for which we have enhanced our solver with a
basic implementation of a branch-and-bound mechanism.

The framework can be download at
https://projects.coin-or.org/OBOE
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2.5 Oracle based optimization

Oracle based optimization deals with the convex programming problem

min{f(u) = f1(u) + f2(u) | u ∈ U ⊂ Rn}, (2.6)

where f1 is a convex function, f2 is a twice differentiable convex function and U is a convex
set. We assume that f1(u) and U are revealed by a first order oracle while f2(u) is accessed
through a second order oracle in an explicit way. By oracle, we mean a black-box procedure
which at any query point u returns the information described in Definitions 1 and 2.5 below.

Definition 1 A first-order oracle for problem (2.6) is a black box procedure with the following
property. When queried at u, the oracle returns 1 or 2.

1. u ̸∈ U and (a, c) is such that aTu′− c ≤ 0, ∀u′ ∈ U (feasibility cut). In that case, we set
f1(u) = +∞.

2. u ∈ U and (a, c) is such that aTu′ − c ≤ f1(u
′), ∀u′ ∈ U (optimality cut). In general,

a ∈ ∂f1(u), c = aTu − f1(u), but this is not necessarily so. The cut may have no
intersection with the epigraph set (i.e., may be situated strictly below that set).

Definition 2 A second-order oracle for problem (2.6) is a black-box procedure with the fol-
lowing property. When queried at u, the oracle returns the function value and the first and
second derivatives of f2(u).

In the traditional OBO approach, the function f2 is handled in the same way as f1, that
is by means of a first-order oracle. This approach looses information. In this work, we exploit
the explicit knowledge of the function f2 and its derivatives in the form of a barrier on the
epigraph set.

Assumption 1 The function f2 is such that the logarithmic barrier − log(ζ − f2(u)) on the
epigraph set of f2, {(u, ζ) | ζ ≥ f2(u), u ∈ U}, is self-concordant.

Remark 1 The concept of self-concordant function has been introduced by Nesterov and Ne-
mirovski [100] to extend the theory of interior-point methods for linear programming to a more
general class of functions. The condition links the second and third derivatives of the function.
For a thorough but more readable presentation of the theory of self-concordant functions we
refer to [103].

In many applications, the objective function f1 is a strictly positively weighted sum of p
nonsmooth convex functions

f1(u) =

p∑
i=1

πif1i(u).

In that expression, we can consider that f1(u) is revealed by p independent first-order oracles.
The epigraph of the function f is the set defined by {(u, z, ζ) | πT z ≥ f1(u), ζ ≥ f2(u)}.
Using this property, problem (2.6) can also be written in as

min πT z + ζ
s.t. f1j(u)− zj ≤ 0, j = 1, . . . , p,

f2(u)− ζ ≤ 0,
u ∈ U.

(2.7)
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This formulation is conveniently named the disaggregate mode.

The first order oracle is used to build a polyhedral approximation of the epigraph of f1.
Suppose the oracle has been queried at uk, k = 1, . . . , κ, and has returned feasibility and/or
optimality cuts associated with those points. The corresponding inequalities are collected in

ATu−ET z ≤ c.

In that definition, the subgradients a of the function f1 form the matrix A while E is a binary
matrix that is constructed as follows. If the objective f1 is treated in an aggregate mode
(p = 1), then E is a binary row vector. An entry one in E indicates that the z variable is
present in the cut, implying that the cut is an optimality cut. In contrast, a zero indicates
that the cut is a feasibility cut. If the objective f1 is disaggregated into p components, row
j of E corresponds to a variable zj and each column corresponds to a cut. An entry one in
row j and column k indicates that the cut k is an optimality cut for f1j(u). If column k is a
null vector, then cut k is a feasibility cut.

Let θ̄ be the best recorded value such that θ̄ = mink≤κ{f1(uk) + f2(u
k)}. In view of the

above definitions, we can define the localization set Lκ as

Lκ =
{
(u, z, ζ) | ATu−ET z ≤ c, f2(u) ≤ ζ, πT z + ζ ≤ θ̄

}
,

which is a subset of an outer approximation of the epigraph of f that contains all optimal
pairs (u∗, f(u∗)). Thus, the search for a new query point should be confined to the localization
set. Among possible solution methods for (2.6), we briefly sketch cutting plane schemes which
work as follows:

1. Select a query point in the localization set.

2. Send the query point to the first order oracle and get back the optimality/feasible cuts.

3. Send the query point to the second order oracle to compute the objective function f2.

4. Update the lower and upper bounds and the localization set.

5. Test termination.

The main issue in the design of a cutting plane scheme is step 1. Different choices lead to
different results. We propose a particular method, named Proximal-ACCPM, that selects the
analytic center of the localization set as the new query point.

2.6 Proximal-ACCPM

It is well-known that efficient methods for non differentiable convex optimization rely on some
regularization scheme to select the query point. We discuss here such a scheme; it is based on
the concept of proximal analytic center which corresponds to the minimum of the standard
logarithmic barrier augmented with a proximal term.



2.6. PROXIMAL-ACCPM 47

2.6.1 Proximal analytic center

We associate with the localization set a standard (weighted) logarithmic barrier

F (s0, s, σ) = −w0 log s0 −
κ∑

i=1

wi log si − ω log σ, (2.8)

with (s0, s, σ) > 0 defined by

s0 = θ̄ − πT z − ζ,
si = ci − (ATu− ET z)i, i ∈ K = {1, . . . , κ},
σ = ζ − f2(u).

The barrier function is augmented with a proximal term to yield the augmented barrier

Ψ(u, s0, s, σ) =
ρ

2
||u− ū||2 + F (s0, s, σ), (2.9)

where ū ∈ Rn is the query point that has achieved the best objective value θ̄. We name it
the proximal reference point. The proximal analytic center is defined as the solution of

min
u,z,ζ,s0,s,σ

Ψ(u, s0, s, σ)

s.t. s0 + πT z + ζ = θ̄,
si + (ATu− ET z)i = ci, i ∈ K = {1, . . . , κ},
σ + (f2(u)− ζ) = 0,
s0 > 0, s > 0, σ > 0.

(2.10)

If (u, z, ζ, s0, s, σ) is feasible to (2.10), then (2.10) is equivalent to minimizing Φ(u, z, ζ) =
Ψ(u, s0, s, σ), in which s0, s and σ are replaced by their value in u, z and ζ. Note that the
localization set is not necessarily compact, but it is easy to show that, thanks to the proximal
term, the generalized analytic center exists and is unique.

In the next paragraphs, we shall use the following notation. Given a vector s > 0, S is
the diagonal matrix whose main diagonal is s. We also use s−1 = S−1e to denote the vector
whose coordinates are the inverse of the coordinates of s. Similarly, s−2 = S−2e. Finally,
given two vectors x and y of same dimension, xy denotes their component-wise product. With
this notation, the first order optimality conditions for (2.10) are

ρ(u− ū) +Aws−1 + ωf ′2(u)σ
−1 = 0, (2.11)

πw0s
−1
0 − Ews

−1 = 0, (2.12)

w0s
−1
0 − ωσ

−1 = 0, (2.13)

s0 + πT z + ζ − θ̄ = 0, (2.14)

si + (ATu− ET z)i − ci = 0, i ∈ K = {1, . . . , κ}, (2.15)

σ + f2(u)− ζ = 0. (2.16)

The algorithm that computes the analytic center is essentially a Newton method applied
to (2.11)-(2.16). We shall see later how the vector ξ = ws−1 is used to derive a lower bound
for the optimal solution.
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In view of Assumption (1), Φ is self-concordant; Newton’s method is thus polynomially
convergent [103]. For the sake of simplicity, let us define v = (u, z, ζ). In the case when v is
feasible to (2.10) the Newton direction is

dv = −[Φ′′(v)]−1Φ′(v).

The damped Newton’s method for computing the proximal analytic center consists in taking
damped steps to preserve feasibility of v. The aim is to achieve a sufficient decrease of Φ,
until the domain of quadratic convergence is reached. Let

λ(v) = ([Φ′′(v)]−1Φ′(v))TΦ′(v) = −dvTΦ′(v). (2.17)

As long as λ(v) > 3−
√
5

2 a step of length (1 + λ(v))−1 preserves feasibility and induces a

decrease of Φ by an absolute constant. When λ(v) ≤ 3−
√
5

2 a full step is feasible and the
method converges quadratically. The method has polynomial complexity.

The stopping criterion is triggered by the proximity measure. When λ(v) falls below the

threshold value η < 3−
√
5

2 , the search for the proximal analytic center stops. In practice, the
much looser criterion η = 0.99 suffices.

2.6.2 Infeasible Newton’s method

Unfortunately we don’t have easy access to feasible solution for problem (2.10). In cutting
plane schemes, new constraints cut off the current iterate from the new localization set and
there is no direct way to retrieve feasibility if the cuts are deep. Since we can’t anymore elim-
inate the variables (s0, s, σ), we can’t apply a feasible Newton method to minimize Φ. Thus,
we propose an infeasible start Newton method for (2.10), which aims to achieve feasibility
and optimality simultaneously in the extended space (u, z, ζ, s0, s, σ).

In the course of the optimization process, the first order conditions (2.11)-(2.16) are never
satisfied. However, we can assume that (s0, s, σ) > 0. We introduce the residuals r =
(ru, rz, rζ , rs0 , rs, rσ) and write

ρ(u− ū) +Aws−1 + ωf ′2(u)σ
−1 = −ru, (2.18)

w0πs
−1
0 − Ews

−1 = −rz, (2.19)

w0s
−1
0 − ωσ

−1 = −rζ , (2.20)

s0 + πT z + ζ − θ̄ = −rs0 , (2.21)

si + (ATu− ET z)i − ci = −rsi , i ∈ K = {1, . . . , κ}, (2.22)

σ + f2(u)− ζ = −rσ. (2.23)

The Newton direction associated to (2.18)-(2.23) is given by

P



du
dz
dζ
ds0
ds
dσ

 =



ru
rz
rζ
rs0
rs
rσ

, (2.24)
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where

P =



ρI + ωf2(u)
′′σ−1 0 0 0 −AS−2 ωf2(u)

′σ−2

0 0 0 −w0πs
−2
0 ETS−2 0

0 0 0 −w0s
−2
0 0 ωσ−2

0 πT 1 1 0 0
AT −ET 0 0 I 0
f ′2(u) 0 −1 0 0 1.


Since (2.14) and (2.15) are linear, a full Newton step, i.e., a step of length 1, yields a

point that is feasible with respect to these equations. However, the same step does not yield
a feasible point with respect to the nonlinear equation (2.16). Thus, the method remains
essentially infeasible and we cannot use the proximity measure λ to determine the steplength
αstep. Instead, we use the following empirical rule. Let

αmax = max(α | s+ αds > 0, s0 + αds0 > 0, σ + αdσ > 0),

the selected step is

αstep = min(1, γαmax),

where the parameter γ is a safeguard to stay away from the boundary of the domain. In
practice, we take γ = 0.95.

When f2(u) is linear (or constant), it may be the case that (2.14) and (2.15) become
satisfied. Instead of using the default step length (1 + λ(v))−1, as prescribed by the theory,
we perform the one-dimensional linesearch

αstep = argminΨ(v + αdv).

As mentioned earlier, the query point is not feasible for the new cuts returned by the first
order oracle. Finding a good starting value for sκ+1 and/or s0 after a cut has been added
is an issue. Though [66] proposes a scheme that preserves the polynomial complexity of the
method, in our practical implementation we use a simple heuristic that turn out to be very
efficient.

To summarize, a basic step of the Newton iteration is

1. Send the current point u to the second order oracle to compute the objectif function
f2(u) and its first and second derivatives.

2. Compute the Newton step (du, dz, dζ, ds0, ds, dσ) by (2.24).

3. Compute a step length αstep to update (u, z, ζ, s0, s, σ).

4. Test termination.

2.6.3 Lower bound

A lower bound for (2.6) permits a measure of progress to optimality. We now explain a way
to generate such a bound. The first step in the derivation of the lower bound consists in
introducing the perturbed function f(u)− rTu, where r is a vector to be specified later. The
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second step is to replace the non-smooth function f1(u) by its current polyhedral approxima-
tion. This is done by replacing f1(u) by π

T z under the constraints ATu−ET z ≤ c. We thus
have the bounding inequality

f(u)− rTu ≥ min
u,z
{πT z + f2(u)− rTu | ATu− ET z ≤ c}.

In view of the convexity of f2, we may write

f(u)− rTu ≥ f2(u
c)− f ′2(uc)Tuc +

min
u,z
{πT z + f ′2(u

c)u− rTu | ATu− ET z ≤ c},

where uc is a point of choice (e.g., approximate analytic center). By duality we obtain

f(u)− rTu ≥ f2(u
c)− f ′2(uc)Tuc +

min
u,z

max
ξ≥0
{(f ′2(uc) +Aξ)Tu+ (π − E)T z − cT ξ − rTu},

= f2(u
c)− f ′2(uc)Tuc +max

ξ≥0

{
−cT ξ +

+min
u,z

[
(f ′2(u

c) +Aξ − r)Tu+ (π − Eξ)T z
]}

. (2.25)

If ξ ≥ 0 is such that f ′2(u
c) +Aξ = r and Eξ = π, then

f(u) ≥ f2(uc)− f ′2(uc)Tuc + rTu− cT ξ.

We now show how one can get such a vector ξ at the end of the iterations that compute
the proximal analytic center. In view of (2.19), we let ξ = ξc = w(sc)−1 > 0 and we scale ξc by
using the special structure of the matrix E to have π−Eξc = 0 and we define r = f ′2(u

c)+Aξc.
In view of the optimality conditions (2.11) and (2.12) one may expect r to be small. We obtain
the bound for the optimal objective function value by

f(u∗) ≥ f2(u
c)− f ′2(uc)Tuc − cT ξc + rTu∗,

≥ f2(u
c)− f ′2(uc)Tuc − cT ξc + rT (u∗ − uc) + rTuc,

≥ f2(u
c)− f ′2(uc)Tuc + rTuc − cT ξc − ||r||δ. (2.26)

The last inequality follows from Cauchy-Schwartz and δ ≥ ||u∗ − uc|| is an upper bound on
the distance of the current point uc to the optimal set. Finding a good value for δ cannot be
done on theoretical grounds. It is essentially problem dependent. In practice, we obtained
good results by taking the “empirical” value δ = 5× ||uc − ū||.

If the variable u is constrained to be nonnegative in (2.6), we can further improve the
computation of the lower bound by taking r = −min{0, f ′2(uc)+Aξc}, where the min operator
is taken component-wise. In that case, the coefficient of u in the inner minimization is always
nonnegative and (f ′2(u

c)+Aξ−r)Tu = 0 at the solution of (2.25). This remark is particularly
useful when r = 0. Then we obtain the exact lower bound f2(u

c)− f ′2(uc)Tuc − cT ξc.

2.6.4 Implementation

Since the oracle is entirely user-defined, we do not include it in the description. The code has
two main blocks: the first one computes query points; the second one organizes the dialog
between the oracle and the query point generator. The code also includes an important
initialization block.
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Initialization This module initializes the instance and the various parameters.

Query point generator This modules includes two submodules: the first one creates the
localization set based on the information sent by the cut manager; the second one
computes approximate proximal analytic centers.

Manager This module keeps track of the cuts generated by the oracle and of the current
primal and dual coordinates of the analytic center. It also controls the parameters that
are dynamically adjusted and computes criteria values that can be used by the user to
stop the algorithm. Finally, it acts as a filter between the oracle and the query point
generator.

Two parameters of Proximal-ACCPM are often critical in the applications: the weight w0

on the epigraph cut in (2.8) and the coefficient ρ of the proximal term in (2.9). The general
strategy is to assign to w0 a value equal to the number of generated cuts [65]. The management
of the proximal term is more problem dependent. This point will be briefly commented in the
next section. When the problem to be solved has no box constraints on the variables (e.g.,
when relaxing equality constraints in Lagrangian relaxation) the computation of the Newton
direction in Proximal-ACCPM can be made more efficient than in plain ACCPM [51].

The code is written in Matlab; it has around 700 lines of code in the query point generator
and 400 in the manager. Matlab is particularly efficient in dealing with linear algebra. Not
much gain can be expected by translating the code into C++. However, a C version would
make it easier to link Proximal-ACCPM with oracles written in C or FORTRAN or to do
an embedding of Proximal-ACCPM within a larger optimization scheme (e.g., a branch and
bound scheme). The code is the result of a continuing development efforts by teams at Logilab
partly supported by Swiss NSF.

2.7 Applications

We have seen that oracle based optimization is relevant when it is possible to approximate
the epigraph set of the function to be minimized, and the feasible set, by polyhedral sets. Let
us list a few techniques that lead to this situation: Lagrangian relaxation [64], Lagrangian
decomposition [72], column generation [14], Benders’ decomposition [18], dual gap function in
variational inequalities [101], etc. In this section we present three representative applications,
one in large-scale nonlinear continuous optimization, one in combinatorial optimization and
one dealing with the coupling of economic and environmental models. Those problems have
been fully treated in [8, 6, 16, 33].

In each case, we give a brief presentation of the problem and report a sample of numerical
results. This will give the reader an idea of the type of problems that can be solved with
Proximal-ACCPM. When the numerical results are displayed in a table, we give the follow-
ing information: problem identification, denoted ‘Problem ID’, number of outer iterations
(equivalently, the number of oracle calls), denoted ‘Outer’, number of inner iterations (New-
ton iterations to compute an analytic center), denoted ‘Inner’, total CPU time in second,
denoted ‘CPU’ and the fraction of the CPU time spent in the oracle, denoted ‘%Oracle’.
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2.7.1 Multicommodity flow problems

Given a network represented by the directed graph G(N ,A), with node set N and arc set A,
the multicommodity flow problem consists in shipping some commodity flows from sources
to sinks such that the demands for each commodities are satisfied, the arc flow constraints
are met and the total cost flow is minimum. The arc-flow formulation of the multicommodity
flow problem is

min
∑
a∈A

fa(ya) (2.27)

s.t.
∑
k∈K

xka = ya, ∀a ∈ A, (2.28)

Nxk = dkδ
k, ∀k ∈ K, (2.29)

xka ≥ 0, ∀a ∈ A, ∀k ∈ K. (2.30)

Here, N is the network matrix; K is the set of commodities; dk is the demand for commodity
k; and δk is vector with only two non-zeros components: a 1 at the supply node and a −1 at
the demand node. The variable xka is the flow of commodity k on the arcs a of the network
and xk is the vector of xka. The objective function f is a congestion function on the arcs.
For the sake of simpler notation we write problem (2.27) in the more compact formulation

min{f(y) | Bx = y, x ∈ X}, (2.31)

whereX represents the set of feasible flows that meet the demands with respect to the network
constraints. Bx defines the load flow.

The standard Lagrangian relaxation of (2.31) assigns the dual variables u to the coupling
constraints Bx = y and relaxes them. The Lagrangian problem is

max
u≥0
L(u), (2.32)

where

L(u) = min
x∈X,y

f(y) + uT (Bx− y),

= min
y

(f(y)− uT y) + min
x∈X

uTBx,

= −f∗(u) + min
x∈X

uTBx.

The function f∗(u) is the Fenchel conjugate of f ; it is convex. In the multicommodity case,
the second part of the Lagrangian is a sum of |K| shortest path problems. We denote

SP(ū) = min
x∈X

(BT ū)Tx. (2.33)

We recall that in Proximal-ACCPM, we treat the negative of the objective function (2.32).
Let x̄ be an optimal solution returned by the oracle (2.33) at a given point ū. Since SP(u)
results from a minimization problem, the inequality SP(u) ≤ (Bx̄)Tu provides a linear upper
estimate of the concave function SP(u). The solution computed by the oracle −f∗(ū)+(Bx̄)T ū
produces a lower bound for the original problems. Instead of using (2.26) to compute an up-
per bound, we use the variable ξ to compute a feasible solution to (2.27) (It can be shown).
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For the nonlinear multicommodity flow problem, we use the most widely used function in
telecommunications, the so-called Kleinrock congestion function:

f(y) =
y

c− y
,

where c is the vector of capacities on the arcs. The conjugate function is

f∗(u) = 2
√
cTu− cTu− 1, ∀u ≥ 1

c
.

For the linear case, the objective function is

f(y) =

{
tT y, 0 ≤ y ≤ c,
+∞, otherwise,

where c is the vector of capacities and t the vector of unit shipping cost on the arcs. The
conjugate function is

f∗(u) = cTu, ∀u ≥ 0.

To get a feel for the numerical performance, we pick few examples that have been solved
in [8, 6]. We select 3 types of problems. Planar and Grid instances are telecommunications
networks while Winnipeg, Barcelona and Chicago are transportation problems. Table 2.1
gives for each problem the number of nodes, the number of arcs, and the number of com-
modities. The oracle is a shortest path problem solved with Dijkstra algorithm. The code is
written in C. The tests were performed on a PC (Pentium IV, 2.8 GHz, 2 Gb of RAM) under
Linux operating system.

Table 2.2 shows the numerical results to solve the linear and the nonlinear case with a
relative otpimality gap less than 10−5. We followed different strategies in the management of
the proximal term, depending on whether the problem is linear or not. In the linear case, a
constant value for the proximal parameter, say ρ = 10−2 is suitable. In the nonlinear case,
the proximal parameter is dynamically adjusted, according to success or failure in improving
the value of the Lagrangian dual objective (lower bound). We start with ρ = 1 and multiply
the current ρ by 10 in case of a 3 consecutive failures, up to the limit value ρ = 1010.

Problem ID # nodes # arcs # commodities

planar500 500 2842 3525
planar800 800 4388 12756
planar1000 1000 5200 20026
grid12 900 3480 6000
grid13 900 3480 12000
grid14 1225 4760 16000
grid15 1225 4760 32000
Winnipeg 1067 2975 4345
Barcelona 1020 2522 7922
Chicago 933 2950 93513

Table 2.1: Test problems.
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Linear case Nonlinear case

Problem ID Outer Inner CPU %Oracle Outer Inner CPU %Oracle

planar500 229 744 88.7 21 127 324 32.2 37
planar800 415 1182 557.2 16 182 429 110.5 40
planar1000 1303 2817 7846.7 12 381 869 568.1 26
grid12 509 1341 658.5 18 201 409 106.7 41
grid13 673 1629 1226.8 12 222 454 128.7 39
grid14 462 1363 843.6 22 204 414 173.2 48
grid15 520 1450 1055.1 20 203 414 172.8 48
Winnipeg 224 592 81.2 18 338 988 215.0 14
Barcelona 157 421 35.9 23 253 678 101.1 15
Chicago 180 493 79.2 47 145 370 48.6 41

Table 2.2: Numerical results.

The results in Table 2.2 have been further improved by means of column elimination and
an active set strategy. With these enhancements, the method could solve huge instances with
up to 40,000 arcs and 2,000,000 commodities. It has also been compared to other state-of-
the-art methods. It appears to be very competitive, especially in the linear case, where it
turns out to be from 4 to 30 times faster than the best known results. (For more details, see
[8, 6].)

Let us also mention that the impact of the proximal term has been analyzed to some depth
in the two papers cited above. The introduction of a proximal term in ACCPM instead of box
constraints on the variables has proved to be beneficial in almost all cases. It never appeared
to be detrimental. On nonlinear multicommodity flow problems or on linear problems with an
advanced treatment (column elimination, active set strategy) the version with the proximal
term outperformed the version with box constraints.

2.7.2 Lagrangian relaxations of the p-median problem

In the p-median problem the objective is to open p ‘facilities’ from a set of m candidate
facilities relative to a set of n ‘customers’, and to assign each customer to a single facility.
The cost of an assignment is the sum of the shortest distances cij from a customer to a facility.
The distance is sometimes weighted by an appropriate factor, e.g., the demand at a customer
node. The objective is to minimize this sum. Applications of the p-median problem can be
found in cluster analysis, facility location, optimal diversity management problem, etc. [27].
The p-median problem is NP-hard [83].
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The p-median problem can be formulated as follows

min
x,y

m∑
i=1

n∑
j=1

cijxij (2.34)

s.t.

m∑
i=1

xij = 1, ∀j, (2.35)

m∑
i=1

yi = p, (2.36)

xij ≤ yi, ∀i, j, (2.37)

xij , yi ∈ {0, 1}, (2.38)

where xij = 1 if facility i serves the customer j, otherwise xij = 0 and yi = 1 if we open
facility i, otherwise yi = 0.

In the following two sections we formulate the (standard) Lagrangian relaxation of the
p-median problem, and the semi-Lagrangian relaxation.

Standard Lagrangian relaxation of the p-median problem

In this section we focus in the resolution of the (standard) Lagrangian relaxation (LR) of the
p-median problems by means of Proximal-ACCPM. To this end, we relax constraints (2.35)
and (2.36) in (2.34), to yield the dual problem

max
u,v
L1(u, v), (2.39)

and the oracle

L1(u, v) = min
x,y

m∑
i=1

n∑
j=1

cijxij +

n∑
j=1

uj(1−
m∑
i=1

xij) + v(p−
m∑
i=1

yi) (2.40)

s.t. xij ≤ yi, ∀i, j, (2.41)

xij , yi ∈ {0, 1}, (2.42)

where u ∈ Rn is associated to the constraints
∑m

i=1 xij = 1, j = 1, . . . , n, and v ∈ R to the
constraint

∑m
i=1 yi = p.

We name Oracle 1 this oracle; it is trivially solvable. Its optimal solution is also optimal
for its linear relaxation. Consequently, the optimum of L1 coincides with the optimum of the
linear relaxation of (2.34).

To show Proximal-ACCPM performance when solving the standard Lagrangian relaxation
(2.40), we take a few examples reported in [51]. In this technical report, several p-median
problems based on data from the traveling salesman problem (TSP) library [110] are solved.
Instances of the grid problem, where the customers are regularly spaced points on square,
are also solved. In Table 2.3 we show the results for ten representative instances (Proximal-
ACCPM stopping criterion set equal to 10−6). In this case, the proximal parameter is set
to ρ = 1 initially and is dynamically adjusted by multiplicative factors 2 and 0.5 depending
on the success or failure in improving the objective of the Lagrangian dual objective. The
updating is limited by the bounds 10−6 and 104. Programs have been written in MATLAB
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and run in a PC (Pentium-III PC, 800 MHz, with 256 Mb of RAM) under the Linux operating
system.

Problem ID n p Outer Inner CPU %Oracle

Grid1521 1521 10 348 902 132 33
Grid1849 1849 10 417 1042 241 32
Grid2025 2025 10 382 961 229 37
Grid2304 2304 10 448 1111 370 34
Grid2500 2500 10 440 1095 428 34
TSP1817 1817 10 1070 2303 1861 10
TSP2103 2103 10 316 701 156 48
TSP2152 2152 10 196 430 98 51
TSP2319 2319 10 369 775 237 46
TSP3038 3038 10 127 292 102 62

Table 2.3: Numerical results.

Semi-Lagrangian relaxation of the p-median problem

The standard Lagrangian relaxation is commonly used in combinatorial optimization to gen-
erate lower bounds for a minimization problem. An optimal integer solution is obtained by a
branch and bound scheme. The semi-Lagrangian relaxation (SLR) is a more powerful scheme,
introduced in [16], that generates an optimal integer solution for (linear) combinatorial prob-
lems with equality constraints.

To strengthen L1, the SLR introduces in (2.34) the redundant constraints
∑

i xij ≤ 1,
j = 1, . . . , n, and

∑
i yi ≤ p. After relaxing (2.35-2.36), we obtain the SLR dual problem

maxL3(u, v), (2.43)

and the new oracle

L3(u, v) = min
x,y

m∑
i=1

n∑
j=1

cijxij +
n∑

j=1

uj(1−
m∑
i=1

xij) + v(p−
m∑
i=1

yi) (2.44)

s.t.
m∑
i=1

xij ≤ 1, ∀j, (2.45)

m∑
i=1

yi ≤ p, (2.46)

xij ≤ yi, ∀i, j, (2.47)

xij , yi ∈ {0, 1}. (2.48)

This oracle, which we name Oracle 3, is much more difficult than Oracle 1 (in fact, Oracle3
is NP-hard). To cope with this difficulty one can use an intermediate oracle (Oracle 2 ) defined
as the Oracle 3 but without constraint (2.46). We denote L2 the associated dual function.
In general, Oracle 2 is easier to solve than Oracle 3, especially in cases where the p-median
underlying graph associated to Oracle 2 decomposes into independent subgraphs. In such
situation, we solve an integer problem per subgraph (see [16] for more details).
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It can be seen that solving the SLR dual problem (2.44) completely solves the p-median
problem. Based on this result, we design a branch-and-bound free procedure to completely
solve the p-median problem. This procedure successively maximizes the dual functions
Li(u, v), i = 1, 2, 3. In this succession of three dual problems, the optimal solution of one
dual problem is used as the starting point for the next dual problem. After solving the last
dual problem (L3(u, v)) we obtain, as a by-product, an optimal integer solution for (2.34).
These dual problems are solved by means of Proximal-ACCPM. Oracle 2 and 3 are solved by
means of CPLEX 8.1. Note that, although our procedure is branch-and-bound free, CPLEX
is, of course, based on a sophisticated branch-and-bound procedure.

If we are not able to solve the three dual problems we will only have a lower bound of the
p-median optimal value. In this case, we will compute an integer solution for the p-median
problem by means of an heuristic as for example the ’Variable Neighborhood Decomposition
Search’ (VNDS) [76]. The quality or the integer solution will be determined by the dual lower
bound.

In Tables 2.4 and 2.5 we show the results (solution quality and performance) for 10
representative examples of the 44 instances tested in [16]. These instances can be found
in the TSPLIB [110] and range from 1304 to 3795 customers, which implies 2 to 14 million
binary variables. The proximal parameter is set to the constant value ρ = 10−2 for problems
with Oracle 2 and Oracle 3. In these tables ‘Or.’ stands for Oracle, ‘VNDS’ for variable
neighborhood decomposition search, ‘SLR’ for semi-Lagrangian relaxation and ‘ANIS’ for
averaged number of independent subgraphs. ‘%Opt.’ gives the quality of the solution and is
computed as

100×
(
1− ‘Upper bound’− ‘Lower bound’

‘Lower bound’

)
.

Programs have been written in MATLAB and run on a PC (Pentium-IV Xeon PC, 2.4 GHz,
with 6 Gb of RAM) under the Linux operating system. Note that in some cases the Oracle
3 is not called. The reason is either because the problem has been completely solved by the
second dual problem or the CPU time limit has been reached when solving the second dual
problem.

Instance Lower bound Upper bound %Opt.

Problem ID n p Or. 1 Or. 2 Or. 3 Value Method

rl1304 1304 10 2131787.5 2133534 - 2134295 VNDS 99.96
rl1304 1304 500 97008.9 97024 - 97024 SLR 100
vm1748 1748 10 2982731.0 2983645 - 2983645 SLR 100
vm1748 1748 500 176976.2 176986 176986 176986 SLR 100
d2103 2103 10 687263.3 687321 - 687321 SLR 100
d2103 2103 500 63938.4 64006 64006 64006 SLR 100
pcb3038 3038 5 1777657.0 1777677 - 1777835 VNDS 99.99
pcb3038 3038 500 134771.8 134798 134798 136179 VNDS 98.98
fl3795 3795 150 65837.6 65868 - 65868 SLR 100
fl3795 3795 500 25972.0 25976 25976 25976 SPR 100

Table 2.4: Solution quality
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Instance Outer ANIS CPU

Problem ID n p Or. 1 Or. 2 Or. 3 Or. 1 Or. 2 Or. 3 Total

rl1304 1304 10 390 35 0 1 95 17241 0 17336
rl1304 1304 500 133 15 0 143 8 40 0 48
vm1748 1748 10 500 21 0 1 174 3771 0 3945
vm1748 1748 500 146 15 2 131 14 61 22 97
d2103 2103 10 241 7 0 2 41 504 0 545
d2103 2103 500 500 26 2 39 143 10086 4309 14538
pcb3038 3038 5 341 5 0 1 111 1988 0 2099
pcb3038 3038 500 211 17 2 38 56 3269 3900 7225
fl3795 3795 150 1000 27 0 17 1100 39199 0 40299
fl3795 3795 500 500 38 1 25 259 2531 218 3008

Table 2.5: Performance

2.7.3 Coupling economic and environmental models

Integrated assessment of environmental (IAM) policies is becoming an important priority due
to the social need for local air pollution control or global climate change mitigation. Typically
an IAM will combine an economic model and an environmental model to yield an evaluation of
the costs and benefits associated with some environmental goals, given the technological and
economic choices that are available. In this section we present a successful implementation
using Proximal-ACCPM in this context.

In [77], it has been proposed to use an oracle-based method to couple an Eulerian air
quality model and a techno-economic model of energy choices in an urban region. The im-
plementation of the approach has been further developed and tested in [33]. Ozone (O3)
pollution is usually modelled in so-called Eulerian models that represent the transport of
primary pollutants (typically NOx and VOCs) and the air photochemistry under various
weather conditions and for the specific topography of the region considered. These models
take the form of large scale distributed parameter systems that are run over specific “weather
episodes” (for example a two-day summer sunny period which may amplify the probability of
ozone peaks in green areas). These simulations serve to build air-quality indicators like, e.g.
the ozone concentration peak or the average over a threshold (AOT) during an episode. On
the other side techno-economic models are dynamic capacity expansion and production mod-
els, also called activity analysis models. A typical example is MARKAL, initially developed
to represent energy-technology choices at a country level (see [58], [20]) and also adapted to
the description of these choices at a city level in [60] and [59]. In a MARKAL model the
planning horizon is in general defined as 9 periods of 5 years. The model finds, for specified
demands in energy services, world prices of imported energy and given a gamut of technology
choices, an investment plan and a production program that minimize a system-wide total
discounted cost while satisfying some pollutant emissions limits.

From this brief description of the two categories of models, the reader may realize that
they belong to very different worlds. The interaction of the models in a coupling procedure
can be schematized as follows. The economic model produces a vector of pollutants emis-
sions per sector of activity. These emissions are then distributed over time and space using
patterns that depend on the type of activity. For instance, global urban heating emissions
are easily dispatched in space using the geographical distribution of buildings. They are also
distributed in time to follow a yearly seasonal pattern. The other important cause of emis-
sion is the volume of traffic. The economic activity analysis proposes a list of technologies
used in different transport sectors (cars, public transport, taxis, etc), resulting in a global
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emission level for each of these sectors. To obtain the spatio-temporal distribution of these
emissions due to traffic one resorts to a complex congestion model of traffic, that essentially
computes traffic equilibria. These different sources of pollutant emissions are then combined
into a spatio-temporal distribution map of emissions. The last step in the analysis consists
in simulations performed with the Eulerian model to compute air quality indices on a set of
critical episodes. The combination of models that eventually produces the air quality indices
is complex, but at the end one can effectively compute air quality indices as a function of the
global emissions of pollutants by sector of economic activity. Clearly, one cannot expect this
function to be linear. Even worse, the computation may be very time consuming.

We have described a one-way interaction of the models, starting from the economic model
and ending with air quality indices. Let us now describe the feedback from the air quality
assessment. Indeed, one may want to limit peaks of pollution. This can be translated into
upper limits on the air quality indices. We now study this reverse mechanism and show how
the complete problem can be recast in the format of problem (2.6). Let us first schematize
the economic activity analysis as the linear program

min{cTx | Ax = a, x ≥ 0}. (2.49)

We shall refer to it as the E3 model. The economic activity x induces a vector y of pollutants
emissions. This vector is indexed by sector of activity. In the paradigm of linear activity
analysis, the total emission vector is assumed to be a linear function of the economic activity
level, say

y = Bx.

The complex transformation of the vector y of sectorial emissions into air quality indices is
represented by a vector function Π(y). In [33] it is shown that one can compute the function
value and estimate its gradient at any point y. If Π̄ is the bound imposed on the air quality
indices (higher indices imply lower air quality), we can represent our complex problem as the
mathematical programming problem

min{cTx | Ax = a, Bx− y = 0, Π(y) ≤ Π̄, x ≥ 0}. (2.50)

This large-scale highly nonlinear model is intractable by standard optimization tool. How-
ever, it is quite easily amenable to an Oracle Based Optimization approach. To this end, we
introduce the function

f(y) = min{cTx | Ax = a, Bx = y, x ≥ 0}, (2.51)

and the set
Y = {y | Π(y) ≤ Π̄}. (2.52)

Our original problem can now be written as

min{f(y) | y ∈ Y }.

It remains to show that the above problem is of the same type as (2.6). It is a well-known fact
of convex analysis that the function f(y) is convex (this is easily seen by considering the dual
of the linear program that defines f) and that one can compute a subgradient at each point of
the domain of the function. Unfortunately, one cannot make a similar statement on Y . Being
the result of such a complex transformation process, Π(y) is likely to be nonconvex. However,
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one can hope that in the range of values that are of interest the nonconvexity is mild. This is
supported by empirical evidence. A gradient is also estimated by a finite difference scheme.

Even in presence of mild nonconvexity, one cannot exclude pathology in running Proximal-
ACCPM. A separating hyperplane for the set Y may turn out to cut off part of the set, and
exclude a point that was proved to be feasible earlier. To cope with this difficulty, the authors
of [33] simply shifted the plane to maintain feasibility. They also made problem (2.51) easier
by assuming monotonicity that made it possible to replace the equality constraint Bx = y by
Bx ≤ y.

As the air chemistry description actually involves nonlinear functions, we have imple-
mented a technique of successive local linearization of the air pollution dynamic equations.
The details of the implementation are given in [33]. In a particular simulation based on data
describing the Geneva (Switzerland) region, a solution to the reduced order optimization
problem is obtained through Proximal-ACCPM, with 30 calls to the oracles (24 feasibility
cuts and 6 optimality cuts were peformed). A feasibility cut (call to the air quality oracle)
takes 30 minutes computing time (SUN Ultra-80, Ultrasparc driver) whereas an optimality
cut (call to the techno-economic model) takes 10 seconds.

This application demonstrates the possibilities offered by an OBO method to tackle Inte-
grated Assessment Models where part of the modeling is a large-scale simulator of complex
physics and chemistry processes. Since Proximal-ACCPM keeps the number of oracle calls to
a small or moderate size it permits the use of these simulators in the design of some oracles
and therefore it realizes the coupling that is the essence of IAMs.

Remark A similar implementation has been realized recently for an IAM of climate change
policies. It is reported in [47, 48]. In that case the coupling is realized between an economic
growth model and an intermediate complexity climate model. This second successful expe-
rience that we will not further described here confirms the potential of OBO techniques for
the exploitation of complex and large-scale IAMs.

2.7.4 Linear pattern separation

This section summarize our contribution to the linear separation problem using prox-accpm[118].
Linear separation [24, 92] is an important concept in data mining [75]. It is widely used and
has been applied in many fields, e.g., cancer diagnosis [93], human genome [78], game strate-
gies [85], pattern recognition [94], decision/selection making [126], and others. Many other
separation rules can be found in the literature, and our method can handle those of them that
are based on a functional rule expressed by a convex formulation. Since the qualitative aspect
of these rules is not the main goal of this work, we consider the linear separation rule as an
illustration of our approach. The problem of finding a satisfactory linear separation can be
formulated as a mathematical programming problem. In some cases, the size of the data set
[55] is so large that solving the mathematical programming problem becomes a challenge even
with the state-of-the-art optimization software. We propose to consider an alternative NDO
formulation of the problem and use the cutting plane methodaccpm to find the optimum of
the objective function efficiently.

The purpose of the linear separation is to find a linear function to separate a given set
of multi-attribute items that are partitioned into two subsets. In general it is unlikely that
a perfect separation exists. Thus, one has to look for an approximative separation with
the minimum error. A natural way is to find a separation plane that minimizes the total
number of misclassified instances. Unfortunately this leads to a mixed integer programming
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problem, which may be very hard even for moderate size data. A more tractable approach
[93] consists of minimizing the total deviation (or gap) of the misclassified instances. This
approach can be handled through a pure linear programing formulation, or a convex non-
differentiable formulation. We consider the second approach using analytic center cutting
planes solver[70, 7] and compare it with the LP approach.

Given a set of points A = {ai ∈ Rn, i = 1, 2, · · · , N}, and a partition S1 ∪ S2 of the set
of indices S = {1, 2, · · · , N}, we wish to find w ∈ Rn and γ ∈ R such that the hyperplane
{x | wTx = γ} separates the two subsets A(S1) and A(S2), where

A(S1) = {ai ∈ A | i ∈ S1}, (2.53)

A(S2) = {ai ∈ A | i ∈ S2}. (2.54)

For typographical convenience, we will write (w, γ) instead of (wT , γ).

Actually, one looks for a strong separation. Thus, given a separation margin ν > 0, we
hope to achieve the separation properties (2.55-2.56) displayed bellow

∀ai ∈ A(S1) wTai ≥ γ + ν, (2.55)

∀ai ∈ A(S2) wTai ≤ γ − ν. (2.56)

In general, there is no guarantee that the two sets can be strongly separated. Therefore, for
any choice of w and γ, we might observe misclassification errors, which we define as follows

e1i =
max(−wTai + γ + ν, 0)

||(w, γ, ν)||
, i ∈ S1, (2.57)

e2i =
max(wTai − γ + ν, 0)

||(w, γ, ν)||
, i ∈ S2. (2.58)

Our goal is then to build a separation hyperplane {x | wTx = γ} (i.e., compute w and γ)
for which the total sum of misclassification errors is minimal. In other words, we want to find
a vector w and a scalar γ such that the average sum of misclassifications errors is minimized
[92].

The separation margin ν helps avoiding the useless trivial solution (w, γ) = (0, 0). Its
value is usually set to 1. In some cases the separation margin may lead to large values for w
and γ. It may be necessary [55] to bound w to avoid this undesirable feature; so, we add the
constraint ||w||2 ≤ k.

Formally, we have to solve the following optimization problem

min
(w,γ)∈Rn×R

 1

|S1|
∑
i∈S1

max(−wTai + γ + ν, 0) +

1

|S2|
∑
i∈S2

max(wTai − γ + ν, 0)

 (2.59)

subject to: ||w||2 ≤ k. (2.60)

The objective function is the sum of two functions f = f1+f2, f1 and f2 being themselves
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the sum of elementary functions

f1(w, γ) =
1

|S1|
∑
i∈S1

max(−wTai + γ + ν, 0), (2.61)

f2(w, γ) =
1

|S2|
∑
i∈S2

max(wTai − γ + ν, 0). (2.62)

The following vectors

ξ1 =
1

|S1|
∑

i∈S1|−wT ai+γ+ν>0

(−ai, 1)(w, γ) (2.63)

ξ2 =
1

|S2|
∑

i∈S2|wT ai−γ+ν>0

(ai,−1)(w, γ) (2.64)

are subgradients ξ1 ∈ ∂(f1) and ξ2 ∈ ∂(f2) of the two functions of interest.
In accpm the square normed in the constraint ||w||2 ≤ k2 is also treated as black box. If

w̄ is not feasible (||w̄||2 > k2), the constraint

w + 2⟨̄,w − w̄⟩ ≤ k2 (2.65)

holds for any feasible point.
Finally, let us give two bounds on f . Since f(0, 0) = 2ν, then 2ν is an upper bound of

the optimal value of the objective. A straightforward lower bound is 0, but this can be only
attained if perfect classification is achieved.

Let us discuss now the formulation of problem (2.59)–(2.60) as a standard mathematical
programming problem. Let zi, i ∈ S. be an auxiliary variable. The original problem becomes

min
(w,γ)∈Rn×R

z≥0

1

|S1|
∑
i∈S1

zi +
1

|S2|
∑
i∈S2

zi (2.66)

subject to: zi ≥ (−wTai + γ + ν), i ∈ S1 (2.67)

zi ≥ (wTai − γ + ν), i ∈ S2 (2.68)

||w||2 ≤ k. (2.69)

Note that the constraints (2.67)–(2.68) are numerous but linear. The problem is thus
a large linear programming problem with one quadratic constraint (2.69). Some authors
[55] prefer to replace the quadratic constraint by a quadratic penalty term in the objective.
Another possibility consists in replacing the Euclidean norm in (2.69) by the ℓ∞ norm [94],
thus obtaining a fully linear formulation.

We compare our approach with direct methods based on a pure linear programming
formulation of the problem (i.e. equations (2.66)–(2.68)). The norm constraint is dropped.
The dual problem can be formulated as follows:

max ν
∑
i∈S

ξi

s.t. Hξ = 0

0 ≤ ξi ≤
1

|S1|
, i ∈ S1

0 ≤ ξi ≤
1

|S2|
, i ∈ S2.
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Here ξ ∈ R|S|×1 and

H =

[
A(S1) −A(S2)
−e(S1) e(S2)

]
. (2.70)

e is a row vector of 1 of appropriate dimension.
The two equivalent formulations provided above can be solved using standard techniques of

linear programming such as simplex or interior point methods. We have compared accpm with
two linear programming codes: mosek[91] and cplex[32]. Both offer the options between a
simplex and a primal-dual log barrier algorithm. Table 2.6 displays the timings (in seconds)
we have obtained.

n m mosek(1) cplex(1) mosek(2) cplex(2) accpm

10 10000 2.54 1.95 6.31 1.81 1.95
20 10000 2.21 2.47 11.37 2.35 2.63
30 10000 4.45 4.45 18.70 4.12 3.40
40 10000 6.34 6.11 23.78 5.99 4.50
50 10000 9.23 8.18 26.11 8.20 4.95
60 10000 11.84 11.10 30.78 11.10 6.30
70 10000 15.13 13.07 40.87 12.82 8.86
80 10000 19.87 15.00 50.21 14.21 10.16
90 10000 26.04 19.97 69.20 19.46 15.03

100 10000 30.22 22.19 62.63 21.29 16.81
10 100000 143.86 81.08 113.40 78.12 5.11
20 100000 120.47 109.53 132.25 108.29 8.22
30 100000 172.21 143.98 179.24 141.31 10.59
40 100000 253.38 194.34 215.89 190.40 16.31
50 100000 311.35 223.71 280.87 219.60 16.95
60 100000 576.77 273.46 303.09 285.38 18.97
70 100000 742.84 408.01 411.66 396.50 28.88
80 100000 850.15 427.15 478.61 406.19 31.25
90 100000 906.57 496.57 590.95 439.29 34.06

100 100000 1443.25 543.25 680.81 493.78 40.30

(1) simplex
(2) interior point

Table 2.6: Comparison between LP and NDO aproaches

2.7.5 Cardinality bounded portfolio selection

The classical approach to study the portfolio selection problem[38] is based on the Markowitz
mean-variance formulation [97, 96]. The mean (resp. the variance) of a portfolio configuration
represents the benefit (resp. the risk) associated with the corresponding investment. The
approach boils down to a simple quadratic convex programming problem that is easily solved
by nowadays standards [32, 91]. A number of authors have studied this problem in different
aspects [74, 90, 99, 111, 131, 132].

The problem can be considered through different aspects: an upper bound on the potential
investment, a limit in the number of assets that can be selected (cardinality constraint), a
lower(resp. upper) bound on the risk(resp. reward) for each selected asset. Other kind of
meaningful constraints have been considered in the literature. Jobst et al [80] have studied
the case of a portfolio with a fixed number of assets. We consider an upper bound instead.
For investors, the cardinality constraint is important for monitoring and control purposes.
Chang et al [34] have proposed some heuristics (genetic algorithm, tabu search, and simulated
annealing) for the cardinality constraint. There is also the so-called buy-in-threshold, which
specifies the minimum investment level, and therefore eliminates small trades in the selection.
We also consider buy-in-limit, which is the maximum investment level (see Bienstock [21] and
Lee-Mitchell[86]). It is obvious that bounding the investments has an impact on the number
of selected assets. Another interesting constraint is the roundlots, which are discrete numbers



64 CHAPTER 2. LARGE-SCALE OPTIMIZATION

of assets taken as the basic unit of the selection. The size of the portfolio is an integer linear
combination of the roundlots. The feasibility problem coming from the roundlots constraints
has been established to be NP-complete [95].

We extend the standard mean-variance portfolio model by considering three special con-
straints. First, we assume a fixed transaction cost on each item. Transaction costs are also
considered in [1, 129]. Second, we impose a bound on the total number of items in the
portfolio. Third, we consider lower and upper limits on the amount that can be invested on
each item. The resulting mathematical programming problem is a quadratic mixed integer
program. The restriction on the investment levels yields an additional feasibility constraint,
which makes the problem more difficult. For a given distribution of the investments, selecting
the appropriate set of asset is similar to the bounded knapsack problem. We have provided a
heuristic that performs well on common instances. Our heuristic is used on the nodes of the
branch and bound process (which we have implemented) to obtain upper bounds and hope-
fully prune some nodes accordingly. The node problem, which a quadratic nondifferentiable
optimization instance, is solved using an analytic center cutting planes solver[70, 7].

In our contribution [117], we consider a more general formulation of the problem from
the mathematical point of view. Let V ∈ Rn×n be the variance-covariance matrix of the n
available assets, and r ∈ Rn the vector of expected returns. We consider the expected returns
from an individual basis (at the level of the asset), while usual formulations consider a global
expectation[34]. The decision variable x ∈ Rn represents the fractional shares for each of
the assets in the portfolio. By definition, x belongs to the simplex, that is eTx = 1, where
e = (1, · · · , 1)T , and x ≥ 0. The lower and upper bounds on the investment are given by the
positive vectors d, f ∈ Rn, 0 ≤ d, f ≤ 1. We shall denote D (resp. F ) the diagonal matrix
with main diagonal d (resp. f). Next, we define the vector of transaction costs h ∈ Rn, and
p ≤ n is the maximum number of assets that can be selected. Finally, we consider a selection
variable y ∈ {0, 1}n (yi = 1 if asset i is selected, and 0 otherwise). We formulate the portfolio
selection problem as follows:

min
x,y

1

2
xTV x− µrTx+ hT y (2.71a)

eTx = 1, (2.71b)

Dy ≤ x ≤ Fy, (2.71c)

eT y ≤ p, (2.71d)

x ∈ [0, 1]n, (2.71e)

y ∈ {0, 1}n. (2.71f)

As previously mentioned, the literature commonly considers a global expectation of the re-
turns, which means a constraint of the form rTx = Rexpected. In our formulation, we have
included this into the objective to be minimized through the term −µrTx, where µ is a pa-
rameter (the unit of the return). Note that, for a given asset i, xi = 0 (null proportion)
is equivalent to yi = 0 (not selected). This is well represented by the bound constraint
diyi ≤ xi ≤ fiyi, written in a matrix form (2.71c). Our purpose is to provide an efficient
framework to solve the portfolio selection selection problem based on the formulation (2.71),
based on the cutting planes method (with ACCPM), Bender decomposition, and the branch
and bound.

We now report our computational results obtained with a MATLAB implementation of
our algorithms on a 2.5 Ghz processor with 2 Go of memory. The quadratic programming
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subproblem was solved using MOSEK [91]. The first group of data has been generated
randomly using (the rand routine of MATLAB), which follows a normal distribution. The
second group is a collection of five data sets drawn from the Hang Seng, Dax, FSTE, S&P,
and Nikkei indices [34].

n p nodes time(s)

30 10 37 267

30 15 14 122

30 20 22 226

50 5 25 155

50 10 160 878

100 10 13 95

100 20 527 2734

200 10 8 167

200 20 715 5639

300 10 74 3200

300 20 287 6300

400 10 238 17240

400 30 33 551

500 10 181 20016

500 50 429 8922

Table 2.7: Global performance on randomly generated data sets

Set n p nodes time(s)

Hang Seng 31 10 28 140.0

DAX 85 10 3 14.5

FTSE 89 10 3 28.0

S&P 98 10 5 40.8

Nikkei 225 10 92 2837.5

Table 2.8: Global performance on Beasley collection

As we can see in Table 2.7 and Table 2.8, our algorithm solves the portfolio selection
problem quite efficiently. The results are better with lower values of p (the maximum number
of selections). It is clear that we could have obtained better timings if we were using a
compiled binary version of our codes.

2.8 Conclusion and perspectives

We have presented Proximal-ACCPM, an efficient method for convex nondifferentiable op-
timization, and discussed five large-scale applications that are representative of an oracle
based optimization approach. The last application, the cardinality bounded portfolio selec-
tion, was fully implemented within a branch-and-bound framework. Our presentation of
Proximal-ACCPM focuses on the necessary information for an efficient implementation. It
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also includes recent extensions, in particular an explicit treatment of second-order informa-
tion when this information is available. The five selected examples have been reported in
the literature. They are genuinely very large-scale problems. The first two are solved using
a classical transformation known as Lagrangian relaxation. The transformed problem has
much smaller dimension, thousands of variables instead of millions, but one can only collect
information about it via a first-order oracle. It is shown that Proximal-ACCPM is powerful
enough to solve huge instances of these problems. The third application fully exploits the
concept of oracle based optimization to organize a dialog between two large-scale models
that have totally different natures, a techno-economic model and a large-scale simulator of
complex physics and chemistry processes. The exchanges between the two models are per-
formed through few variables and each model is treated as a first-order oracle vis-à-vis these
variables. These oracles, and especially the simulator, are computationally costly. The last
example illustrates the use of Proximal-ACCPM within a branch-and-bound mechanism to
solve a given MIP problem.

To make the OBO approach successful, one needs a method that keeps the number of
calls to the oracles as low as possible. Proximal-ACCPM aims to achieve that purpose in a
generic approach. However, number of important aspects still need to be seriously addressed.
We list some of them.

⋄ The kernel of the Proximal-ACCPM method involves solving a linear system, which the
solution is expected to be accurate enough to yield a useful search direction for the next
query point. As we get close to the boundaries or to the optimal solution, the principal
matrix of the linear system becomes ill-conditioned, thus making difficult the computa-
tion of the required solution. This severely increases the associated computational cost,
unless we chose to sacrifice the accuracy, which will extend the number of iterations to
the solution. Thus, it is important to carefully address this issue, which belongs to the
more general topic of solving ill-conditioned linear systems. However, there is probably
a way to exploit the specific structure of the principal matrix in this case.

⋄ The query point generator of the cutting planes method looks for a guess within a local-
ization set defined by the set of cuts accumulated from the start. A good management
of those cuts is crucial. Indeed, their number linearly increases with the number of
iterations. If the dimension of the problem is huge, or if we have already performed
a large number of iterations, the corresponding memory volume to keep the cuts will
become significant, and this will slowdown the global memory efficiency. One way to
fight against this problem is to eliminate redundant cuts, or to keep the minimal set
of the cuts that correspond to the same (or equivalent) localization set. Doing this is
not trivial as there are many valid configurations. Another way is to aggregate the cuts
instead of eliminating them. We could also weight the cuts according to their impact on
the localization set. All theses have to be studied deeply, at least from an experimental
basis. However, we need to be careful with approach as we could destroy the coherence
of the localization set, this either delay the convergence or completely diverge.

⋄ Cutting planes methods are iterative, and the convergence is monitored by the calcula-
tion of the gap between the best solution found and the estimated lower bound (ideally
the optimal objective value, but we don’t have it). The process converges if: (a) the
gap is below the tolerance parameter; (b) we have reached the maximum number of
iterations; (c) a null gradient is provided by the oracle; (d) an incoherent information is
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provided or calculated; (e) an unexpected critical hardware/system issue has occurred.
The main focus here is the lower bound estimation. In Proximal-ACCPM, this is ob-
tained from the localization set (the cuts + the objectives), thus could become heavy
and inaccurate over the time (again, because of the large number of collected cuts and
their relative layout). If the estimation of the lower bound is bad, we will perform a
lot of additional iterations or never converge (even if we should, either because we are
already at the optimum or there is no further improvement). It is therefore important
to address this problem and provide a more robust routine.

⋄ Concerning the newton system that is solved at iteration to get the search direction for
the next query point, it could be very useful to find a way to work through less costly
updates. Indeed, at each iteration, the matrix of generated cuts A is updated to [A, u],
where u is the new cut, then we solve a linear system using a matrix of the form

A× diag(s2)×AT , (2.72)

where s is the vector of slack variables. It is quite frustrating to solve this system from
scratch at each time. Indeed, the principal matrix (2.72) has a suitable form for a direct
Cholesky factorization. One could imagine a way to keep on such a factorization, with
the hope that this could be obtained by means of efficient updates (i.e. of a quadratic
complexity instead of cubic as the whole factorization). The current state-of-the-art in
matrix computation does not provides such a routine. Thus, this need to be investigated.

⋄ For the branch-and-bound, we have provided a basic implementation illustrated on the
cardinality bounded portfolio selection in order to test the effectiveness of Proximal-
ACCPM for solving MIP problems. However, there are more sophisticated generic
frameworks for the branch-and-bound associated with continuous optimization solvers
[28]. An efficient connexion of Proximal-ACCPMwith existing branch-and-bound solvers
need to be studied.

⋄ Proximal-ACCPM has only a sequential implementation. In order to take advantage of
supercomputers, we need to investigate on its parallel implementation. This should be
the occasion to consider the design of a parallel scalable branch-and-bound framework.
Branch-and-bound is likely to yield an irregular computation scheme with an unpre-
dictable path to the solution, thus making very challenging for efficient parallelization,
especially on large-scale supercomputers. Among critical issues, we mention: heavy syn-
chronization, irregular communication pattern, huge amount of memory to handle the
generated cuts, and load unbalanced.
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[88] C. Lemaréchal. Nondifferentiable optimization. In G.L. Nemhauser, A.H.G Rinnooy Kan, and
M.J. Todd, editors, Handbooks in Operations Research and Management Science, volume 1, pages
529–572. North-Holland, 1989.

[89] R. M. Lewis and V. J. Torczon, Pattern search methods for linearly constrained minimization,
SIAM Journal of Optimization, 10, pp. 971-941, 2000.

[90] D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formula-
tion, Math. Finance 10, 387-406, 2000.

[91] MOSEK, http://www.mosek.com/.

[92] O. L. Mangasarian, R. Setino, and W. Wolberg, Pattern Recognition via linear programming:
Theory and Applications to Medical Diagnosis, 1990.

[93] O. L. Mangasarian, W.N. Street, and W.H. Wolberg, Breast Cancer Diagnosis and prognosis via
linear programming, Operation research, Vol. 43, No. 4, July-August 1995, pp. 570-577.

[94] O. L. Mangasarian, Linear and Non-linear Separation of Patterns by linear programming, Oper-
ations Research, 13, pp. 444-452.

[95] R. Mansini and M. G. Speranza, Heuristic algorithms for the portfolio selection poblem with
minimum transaction lots, Eur. Jour. Op. Res., 114, 219-223, 1999.

[96] H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, John Wiley & Sons,
New-York, 1959.

[97] H. Markowitz, Portfolio Selection, The Journal of Finance 1, 77-91, 1952.

[98] A. Migdalas, G. Toraldo, and V. Kumar, Nonlinear optimization and parallel computing, Parallel
Computing 29, pp. 375-391, 2003.

[99] J. Mossin, Optimal multiperiod portfolio policies, J. Business, 41, 215-229, 1968.

[100] Y. Nesterov and A. Nemirovsky. Interior Point Polynomial Algorithms in Convex Programming:
Theory and Applications. SIAM, Philadelphia, Penn., 1994.

[101] Y. Nesterov and J.-P. Vial. Homogeneous analytic center cutting plane methods for convex
problems and variational inequalities. SIAM Journal on Optimization, 9:707–728, 1999.

[102] Y. Nesterov. Complexity estimates of some cutting plane methods based on the analytic center.
Mathematical Programming, 69:149–176, 1995.



BIBLIOGRAPHY 75

[103] Y. Nesterov. Introductory Lectures on Convex Optimization, a Basic Course, volume 87 of
Applied Optimization. Kluwer Academic Publishers, 2004.

[104] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, 1997.

[105] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity,
Prentice-Hall 1982.

[106] P. M. Pardalos, A. T. Phillips, and J. B. Rosen, Topics in Parallel Computing in Mathematical
Programming, Science Press, 1993.

[107] P. M. Pardalos, M. G. C. Resende, and K. G. Ramakrishinan (eds), Parallel Processing of
Discrete Optimization Problems, DIMACS Series Vol. 22, American Mathematical Society, 1995.

[108] Paul A. Jensen and Jonathan F. Bard, Operations Research - Models and Methods, John Wiley
and Sons , 2003.

[109] Per. S. Lauren, Parallel heuristic search - Introduction and new approach, LLNCS, A. Ferreira
and P. Pardalos (Eds), pp. 248-274, 1995.

[110] G. Reinelt. Tsplib, 2001. http://www.iwr.uni-heidelberg.de / groups / comopt / software /
TSPLIB95.

[111] P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, Rev. Econ.
Stat. 51, 239-246, 1969.

[112] R. B. Schnabel, A view of the limitation, opportunities, and challenges in parallel nonlinear
optimization, Parallel Computing 21(6), pp. 875-905, 1995.

[113] Scott Hamilton and Lee Garber, Deep Blue’s hardware-software synergy, IEEE Computer,
30(10), pp. 29-35, 1997.

[114] Y. Shinano, T. Fujie, ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer,
Recent Advances in Parallel Virtual Machine and Message Passing Interface Lecture Notes in
Computer Science Volume 4757, pp 97-106, 2007.

[115] S. L. Smith, R. B. Schnabel, Centralized and distributed dynamic scheduling for adaptative par-
allel algorithms, in P. Mehrotra, J. Saltz, R. Voight (Eds), Unstructured Scientific Computation
on Scalable Multiprocessors, MIT Press, pp. 301-321, 1992.

[116] C. Tadonki and J.-P. Vial, Efficient algorithm for linear pattern separation, (to appear in)
International Conference on Computational Science, ICCS04 (LNCS/Springer), Krakow, Poland,
June 2004 .

[117] C. Tadonki, C. Beltran and J.-P. Vial , Portfolio management with integrality constraints, Com-
putational Management Science Conference and Workshop on Computational Econometrics and
Statistics, Link, Neuchatel, Switzerland, April 2004 .

[118] C. Tadonki, J.-P. Vial, Efficient Algorithm for Linear Pattern Separation, International Confer-
ence on Computational Science, ICCS04 (LNCS/Springer), Krakow, Poland, June 2004.

[119] C. Tadonki, A Recursive Method for Graph Scheduling, International Symposium on Parallel
and Distributed Computing (SPDC), Iasi, Romania, July 2002

[120] C. Tadonki, Parallel Cholesky Factorization, Workshop on Parallel Matrix Algorithm and Ap-
plications (PMAA), Neuchatel, Switzerland, August 2000.



76 BIBLIOGRAPHY

[121] E.-G. Talbi (Editor), Parallel Combinatorial Optimization,Wiley Series on Parallel and Dis-
tributed Computing,2006.

[122] S. Tomov R. Nath P. Du J. Dongarra, MAGMA: Matrix Algebra on GPU and Multicore Archi-
tectures, http://icl.cs.utk.edu/magma, 2012.

[123] R. A. Van de Geijn, Using PLAPACK, The MIT Press, 1997.

[124] Vance et. al. , Using Branch-and-Price-and-Cut to solve Origin-Destination Integer Multi-
commodity Flow problems,Operation Research, Vol 48(2), 2000.

[125] P. H. Vance, A. Atamturk, C. Barnhart, E. Gelman, and E. L. Johnson, A. Krishna, D. Mahid-
hara, G. L. Nemhauser, and R. Rebello, A Heuristic Branch-and-Price Approach for the Airline
Crew Pairing Problem, 1997.

[126] M.S. Viveros, J.P. Nearhos, M.J. Rothman, Applying Data Mining Techniques to a Health Insur-
ance Information System, 22nd VLDB Conference, Mumbai(Bombay), India,1996, pp. 286-294.

[127] B. W. Wah, G.-J. Li, and C. F. Yu, Multiprocessing of combinatorial search problems, IEEE
Computer, June 1985.

[128] R. C. Whaley, et al., Automated empirical optimizations of software and the ATLAS project,
Parallel Computing 27, pp. 3-35, 2001.

[129] M. R. Young, A minimax portfolio selection rule with linear programming solution, Management
Science 44, 673-683, 1992.

[130] G. Zanghirati and L. Zanni, A parallel solver for large quadratic programs in training support
vector machines, Parallel Computing, 29, 2003.

[131] T. Zariphoulou, Investment-consumption models with transactions costs and Marko chain pa-
rameters, SIAM J. Control Optim 30, 613-636, 1992.

[132] X. Y. Zhou and D. Li, Continuous-Time mean-variance portfolio selection: A stochastic LQ
framework, Appl. Math. Optim. 42, 19-33, 2000.

[133] CPLEX, http://www.ilog.com/products/cplex

[134] LOGO, http://www.orfe.princeton.edu/ loqo/

[135] MOSEK, http://www.mosek.com/



Chapter 3

Accelerated computing

77



78 CHAPTER 3. ACCELERATED COMPUTING

3.1 Abstract

The current chapter presents our contributions in the field of accelerated computing. A de-
scription of our achievements is provided [23, 25, 24, 20], surrounded by technical discussions
about critical points and the perspectives. Accelerated computing is an important notion
one should keep in mind when it comes to future generations of supercomputers. The basic
idea is to offload highly regular tasks to one or several accelerators associated to the main
CPU. This requires the programmer to organize the computation as a combination of regulars
kernels (to be executed on the accelerators) and explicitly specify the management of data
transfers to/from the host. Accelerators are indeed very fast, but the cost of loading and
storing data is a performance bottleneck in most cases. The common way to overcome this
issue is to overlap computation and data exchanges whenever possible, and follow the strict
technical recommendations for efficient memory accesses. We illustrate this topic through
three different case studies on the CELL Broadband Engine. The most important aspect here
is not the device itself, but our methodology instead.

3.2 The CELL Broadband Engine

The CELL Architecture, also known as the Cell
Broadband Engine, grew from the need to provide
power-efficient and cost-effective high-performance
processing for a wide range of applications. Cell
is a multi-core chip that consists of an IBM
64-bit Power Architecture core, augmented with
eight specialized co-processors based on a specific
single-instruction multiple-data (SIMD) architec-
ture called Synergistic Processor Unit (SPU), which
is for data-intensive processing. The system is in-
tegrated by a coherent on-chip bus and can deliver
up to 256 GFlops in single-precision and 26/108
GFlops in double-precision (with 8 SPUs) [17].

Figure 3.1: Cell Block Diagram

The CELL really provides a significant processing power with a low power consumption,
thus making it a good candidate as a computing node for a modern supercomputer. Indeed,
the 2008 world fastest supercomputer, the IBM Roadrunner, is made with PowerXCell 8i
(and conventional AMD Opteron processors). Moreover, the Roadrunner was the first super-
computer to deliver a sustained petaflop performance. Note that the current world fastest
supercomputer (Titan-CRAY) is also made up with accelerated nodes (using GPUs). At least
for these reasons, accelerated computing deserves a close attention.
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Figure 3.2: Roadrunner node

Another good illustration is the QPACE architecture, mainly devoted to Lattice Quan-
tum ChromoDynamics (LQCD). In [18], QPACE architecture is presented as a new, scalable
Lattice QCD machine based on the IBM PowerXCell 8i, with the following design highlights:

⋄ Fast commodity processor = IBM PowerXCell 8i

⋄ FPGA directly attached to processor

⋄ LQCD optimized torus network (custom network)

⋄ Custum system design

⋄ Novel, cost-efficient liquid cooling system

⋄ Very power efficient architecture

⋄ Two installations with an aggregate performance of 200/400 TFlops (DP/SP)

⋄ Good sustained performance of O(20-30%) for key LQCD kernels → O(10-15) TFlop-
s/rack (SP)

Figure 3.3: QPACE node-card Figure 3.4: QPACE rack data

The need of a custom network for the QPACE architecture illustrates the fact that having
efficient computing nodes exacerbates the need of a faster interconnect.
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The CELL processor has proved efficient on a wide range of stream processing appli-
cations. Under the motivation of reported results and from its potential capabilities, its
effective/prospective use has been extended to traditional high performance computing top-
ics. The price to achieve an efficient program on the CELL is the underlying programming
effort due to specific hardware and software constraints. Indeed, although the strong poten-
tial of the CELL, as other accelerators like the GPU, harvesting a significant fraction of the
theoretical peak performance is a difficult programming task. In fact, accelerators are made
for highly regular computation, preferably operating on single precision numbers. Thus, on a
standard application, there are number of performance issues that need to be addressed very
carefully. Among the important aspects, we cite:

⋄ data alignment: program running on the CELL need to have aligned data and align
memory references. This is required both for the computation on the SPEs and for
PPE↔SPEs memory accesses.

⋄ local store size: each SPE has a rather small local memory (called local store). Thus,
lot of block memory accesses are required when operating on large arrays. In addition,
the program that has to be executed on the SPE should be sufficiently lightweight to fit
into the local store while leaving enough space for the minimum chunk of input/output
data.

⋄ double precision penalty: whatever the version of the hardware, operating with double
precision numbers severely affect the sustained performance of the CELL. The pro-
grammer has to deal with a compromise between the real need of a double precision
computation and the associated performance slowdown. This aspect was improved in
the latest version of the CELL (PowerXCell 8i), but the penalty remains.

⋄ different level of parallelism: a coarse grain parallelism is applied when distributing the
tasks among the SPEs, and with a SPE, a fine grained parallelism is considered through
SIMD instructions.

⋄ memory hierarchy: this is one of the most important point when programming the
CELL. The memory organization is quite particular and data need to be loaded/sorted
from/to the main memory located into the main CPU, which orchestrates the over-
all computation process. Access to the main memory, called Direct Memory Access
(DMA), has very strict rules. Some of them are mandatory, while other are related to
performance purposes. The main technical consequence is that the programmer has to
manually adapt the data layout accordingly, which is likely to be a tedious task. We
address this issue in the section 3.3 and present our related contribution.

3.3 Generic DMA Routine

3.3.1 Introduction

On parallel and/or accelerated computing systems, because the communication latency is
likely to dominate, the cost of communicating a single data element is only marginally dif-
ferent from that for a ”packet” of data. Therefore, it is necessary to combine the results
of a number of elementary computations, and send these results together. This is typically
achieved by a technique called supernode partitioning [9] (also called iteration space tiling,
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loop blocking, or clustering), where the computation domain is partitioned into (typically
parallelepiped shaped) identical ”blocks” and the blocks are treated as atomic computations.
Such a clustering, which can be applied at various algorithmic level, has also proven to be
a good way for a systematic transition from a fine-grained parallelism to a coarse-grained
parallelism [2].

Although tiling [34] is a well known strategy, even used on uniprocessors to exploit hierar-
chical memories [8], most compilers are only able of tiling rather simple programs (perfectly
nested loops with uniform dependences). Thus, producing a tiled version of a given program
is likely to be a manual task.

The case of the CELL is rather special. Indeed, transferring data between the PPU
and the SPEs (DMA) is subject to specific constraints which dictate the shape of any tiling
approach. From the performance point of view, this might impede the use the optimal tile
shape for instance. From the design point of view, accessing and internal block (whose any
of its dimensions does no equal that of its container) would require a tedious programming
effort. Such a generic tiling is essential for block pivoting algorithms for instance. This
work addresses the problem and provides a framework that makes it easier to implement a
tiled model on the CELL. Indeed, using our routines, the programmer just need to provide
the references of the tile (pointer and dimensions) whatever their shape and location. We
perform the required DMAs with the necessary pre-processing and/or post-processing (if any).
In addition to be able to perform the task seamlessly, we achieve the requested DMA with a
negligible software latency in any cases.

3.3.2 DMA rules and description of the need

A DMA of V bytes from location a to location b must fulfill one the following requirements:

(1) (V ∈ {1, 2, 4, 8}) ∧ (a mod 16 = b mod 16)
(2) (V = 16q, q ≤ 1024) ∧ (a mod 16 = b mod 16 = 0)

A list DMA follows the same rules, applied to each item within the list, and can handle up to
2048 transfers in a single request (treated sequentially). From the PPE to a given SPE, a list
DMA gathers all the data from each individual DMA within the list to the target location.
From a given SPE to the PPE, a list DMA scatters the source array into the different locations
indicated by each individual DMA. For the programmer, memory addresses are processed as
variables of type unsigned int.

The problem we want to solve can be stated as follows. Given Ap, a np × mp matrix
located into the main memory (PPE), and As, a ns ×ms matrix located into the local store
(SPE), how can we copy the a × b submatrix of Ap located at (ip, jp) into As at location
(is, js). Figure 3.5 depicts the task.

Main memory: np = 6, mp = 10, ip = 2, jp = 4
Local store: ns = 5, ms = 7, is = 2, js = 2

a = 3, b = 4

Figure 3.5: Generic DMA pattern
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Performing the DMA as expressed in figure 3.5 raises the following issues:

1. The region to be transfered is not contiguous on memory, thus an explicit list DMA will
be used most of the time to achieve the task.

2. One “row” is referenced by an misaligned memory address, thus the whole list DMA
will not be executed. It is thus critical to have each row aligned, which is unlikely to
happen by plain coincidence; an appropriate preprocessing is then needed.

3. One “row” has an (address, volume) pair which does not match the basic DMA rules
(see (1)&(2) of section 3.3.2), thus the whole list DMA cannot be executed.

4. Either the source address or the target address is misaligned (this can occur even if the
initial allocations were aligned). The DMA will be canceled.

5. The target region on the local store is out of the container limits. This commonly
happens which boundary tiles. This will lead to data corruption.

Our goal is to overcome the above problems at the minimum processing time-cost, since
the consequent (pre/post)processing is an overhead for the programmer. We now provide a
complete formulation of each problematic configuration and describe our solution.

3.3.3 Description of our solution

The generic data structure we use to store the basic information concerning the main matrix
Ap (located on the main memory) is the following:

struct spe_arg_t {

unsigned int matrix;

unsigned int nblines;

unsigned int nbcols;

unsigned int datatype_size;

unsigned int my_ppe_buffer;

}__attribute__((aligned(16)));

One spe arg t variable is created par SPE, where

⋄ matrix is a pointer to the main matrix (Ap on the PPE)

⋄ nblines (resp. nbcols) is the height (resp. width) of the main matrix

⋄ datatype size is the size (in bytes) of each element of the matrix. We use this in-
formation to calculate the volume (in bytes) of the submatrix to be transfered and to
perform necessary adjustments as we shall see.

⋄ my ppe buffer is a pointer to the main memory region where the SPE should send back
its results (if any).

Typically, the PPE initializes and sends one spe arg t variable to each of the SPEs. Next,
the each SPE iterates on different blocks using our DMA routine and synchronizes with the
PPE through mailboxes.

We now describe the work done to get (resp. send) a tile on the SPE (resp. to the PPE).
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3.3.4 From the PPE to the SPE

Figure 3.6 synthesizes the routine executed by the SPE to load a tile from the main memory.

Figure 3.6: Tile transfer workflow

We now address each of the issues raised in section 3.3.2.

1. We check if the width of the submatrix equals that of its container (i.e. b = mp). In
that case, we just need a single DMA, since the submatrix is a contiguous block memory.
Otherwise, we prepare a list DMA, where each DMA item is devoted to a row of the tile.
Note that for a single DMA request, if the volume is greater than 16 KB, then we convert
the request into an equivalent list DMA.

2. We inspect each DMA item to check for alignment and volume constraints. If the
address p is not aligned, then we look for the greatest aligned address p′ lower than p (p′ < p).
Typically, p′ = p−r, where r = p mod 16. One can search for r iteratively among 1, 2, · · · , 15.
Now, the volume to be transfered is V + (p − p′). Again we need to adjust that volume to
the nearest aligned one (factor of 16), we denote V ′.

3. Once a valid list DMA is prepared, we need to focus on where to store the data. If
the previous checks did reveal some issues, then we first get the DMA data into a buffer,
because a postprocessing is necessary to extract relevant data. This is also required if the
target region in the local store is not contiguous (i.e. b < ms). Indeed, a list DMA stores
data in a contiguous way into the local store. We reshape the data while copying them from
the buffer to the right destination.

In any of the above cases, our implementation is optimized in order to minimize the over-
head. Technical details (conceptual improvements and programming strategies) are omitted
for simplicity. The whole chain is provided through a seamless interface described by the
following generic command

spe get tile(Ap, np,mp, ip, jp, a, b, As, ns,ms, is, js)

3.3.5 From the SPE to the PPE

Since all of our DMAs are issued from the SPE, we need a synchronization mechanism to
complete the postprocessing on the PPU (in a symmetric way as the PPE→SPE transfer).
For this purpose, we chose to use the mailboxes. Once the DMA put from the SPE local
store is completed (into the PPE buffer referenced by ppe buffer), the SPE sends a mail
to the PPE to indicate that its data are available. The PPE then copies the data from the
corresponding buffer to the right destination (known at the PPE side only). We provide a
PPE routine to perform such a copy/reshape from the buffer. The command to be issued
from the SPE is the following:

spe put tile(ppe buffer, As, ns,ms, is, js, a, b)

At completion, the buffer is automatically freed for future uses. Once this is done, the SPE
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sends a mail to the PPE, who then executes the command

ppe put tile(ppe buffer, Ar, nr,mr, ir, jr, a, b)

to store the block data back to the right location. We now provide some performance mea-
surements of our procedure.

3.3.6 Performance measurements

We consider a 200 × 125 matrix of unsigned int (i.e. datatype size = 4) on the main
memory and a 100 × 125 matrix on the SPE. For k = 1, 2, · · · , 20, we copy a tile of size
20 × 125 from (k, 0) to (k, 0). The container matrices are aligned in both sides. Thus, no
additional processing is needed when k is a factor of 4 (because 125 ∗ k ∗ 4 is a multiple of
16). Figure 3.7 displays the measured performances on a QS22 blade.

k time( µs) (pre/post)processing

0 15.020 0
1 22.888 1
2 16.928 1
3 17.166 1
4 12.875 0
5 17.881 1
6 17.166 1
7 18.120 1
8 12.875 0
9 16.928 1

10 16.955 1
11 18.120 1
12 12.875 0
13 16.928 1
14 16.928 1
15 17.166 1
16 12.875 0
17 16.928 1
18 16.928 1
19 18.120 1

Figure 3.7: Tiled DMA timings

tileh tilew time( 10−3s)

4 1024 8.62
8 512 9.16
16 256 9.32
32 128 9.43
64 64 10.67
128 32 12.92
256 16 16.84
512 8 24.95

Figure 3.8: Tiled DMA timings

We see that our extra processing has a cost of 25% in average, which seems acceptable.
In a context where computation significantly dominates, the overhead of our procedure will
become quite negligible. The second experiment is performed with a 512 × 1024 matrix of
float. We perform a tiled round trip with the entire matrix between the PPE and the SPE.
Figure 3.8 provides the timings with various tile sizes (fixed volume, i.e. tileh× tilew = cste).
We see that, for a fixed tile volume, the performance variance with various possible tile shapes
is relatively marginal.
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3.4 The Harris corner detection algorithm

3.4.1 abstract

Real-time implementation of corner detection is crucial as it is a key ingredient for other
image processing kernels like pattern recognition and motion detection. Indeed, motion detec-
tion requires the analysis of a continuous flow of images, thus a real-time motion detection
would require the use of highly optimized subroutines. We consider a tiled implementation
of the Harris corner detection algorithm on the CELL processor. The algorithm is a chain
of convolution kernels and point-to-point matrix operations. The corresponding memory ac-
cess pattern is a stencil, which is known to exacerbate cache misses. In order to reduce the
consequent time overhead, tiling is a commonly considered way. When it comes to image pro-
cessing filters, incoming tiles are overdimensioned to include their neighborhood, necessary
to update boundary pixels. As the volume of this ”extra data” depends on the tile shape
(its dimensions), we need to seek a good tiling strategy. On the CELL, such an investigation
is not directly possible with native DMA routines. We overcome the problem by using our
previously described framework, which enhances the DMA mechanism to operate with non
conventional requests. Based on this extension, we experiment various tile sizes and shapes
on the CELL, thus trying to confirm our intuition on the optimal clustering.

3.4.2 Introduction

The common characteristic of image processing algorithms is the heavy use of convolution
kernels. Indeed, the typical scheme is an iterative application of a stencil calculation at the
pixel level. The fact that each output pixel is obtained from the corresponding input pixel
and its periphery breaks any hope of regular memory accesses, thus making it hard to achieve
a real-time performance implementation.

The Harris algorithm [7] for corner detection is an interesting case study application
because it allows various implementations and different optimization strategies [20]. Among
these possibilities, tiling [34] is potentially attractive as it can be naturally applied on top of
any valid scheduling to improve memory performance. However, tiling on the CELL cannot be
directly implemented because of data alignment constraints when using native DMA routines.
Because of this constraint, tiles corresponding to contiguous memory region (full row tiles for
instance) are used most of the time, thus preventing other choices for the tile shape.

Tile shape restriction is particularly frustrating with image processing operators because
either it does not allow the use of a predicted optimal tile shape, or it acts as a runtime bot-
tleneck. The later could occurs, for instance, with an image so large that the SPE local store
cannot hold three of its entire rows (one active row plus its top and bottom neighborhoods).
Data alignment is another critical requirement. In this work, we rely on a our framework,
which provides a seamless way to deal with any tile shape. We study the effect of tiling and
report experimental results driven by theoretical predictions. Our approach is more general
an can be considered for any accelerated-based computation, the current illustration on the
CELL BE attempts to validate our strategy. We now described three case studies from our
contributions.

3.4.3 The Harris-Stephen algorithm

Harris and Stephen [7] interest point detection algorithm is an improved variant of theMoravec
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corner detector [16], used in computer vision for feature extraction like motion detection,
image matching, tracking, 3D reconstruction and object recognition. Figure 3.9 illustrates the
use of the algorithm in the basic case of corner detection.

Figure 3.9: Illustration of the Harris-Stephens procedure

The algorithm is mainly a successive application of convolution kernels that globally im-
plement a discrete form of an autocorrelation S, given by

S(x, y) =
∑
u,v

w(u, v)[I(x, y)− I(x− u, y − v)]2, (3.1)

where (x, y) is the location of a pixel with color value I(x, y), and u, v ∈ 1, 2, 3 model the
move on each dimension. At a given point (x, y) of the image, the value of S(x, y) is compared
to a suitable threshold in order to determine the nature of the corresponding pixel. Roughly
speaking, the process is achieved by applying four discrete operators, namely Sobel (S), Mul-
tiplication (M), Gauss (G), and Coarsity (C). Figure 3.10 displays an overview of the global
workflow.

Figure 3.10: Harris algorithm diagram

Multiplication and Coarsity are point to point operators, while Sobel and Gauss, which
approximate the first and second derivatives, are 9→ 1 or 3× 3 operators defined by

Sx =
1

8

 −1 0 1
−2 0 2
−1 0 1

 Sy = 1
8

 −1 −2 −10 0 0
1 2 1

 (3.2)

G =
1

16

 1 2 1
2 4 2
1 2 1

 (3.3)
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Applying a 3×3 operator to a given pixel (x, y) consists in a point-to-point multiplication
of the corresponding 3× 3 matrix by the following pixels matrix I(x− 1, y − 1) I(x− 1, y) I(x− 1, y + 1)

I(x, y − 1) I(x, y) I(x, y + 1)
I(x+ 1, y − 1) I(x+ 1, y) I(x+ 1, y + 1)

 (3.4)

Here comes the notion of border. In order to compute the output pixel O(x, y), we need the
pixel I(x, y) and those of its neighborhood. We say the operator is of depth 1. Operator
depth is additive, means that if two operators f and g are of depth p and q respectively, then
the depth of f ◦ g is p+ q. Three problems are raised by the way operators are applied:

• Accessing the points at the periphery yields an irregular memory access pattern, which
is a serious performance issue because of the sever penalty of cache misses.

• Computing two consecutive points involves some reused pixels (those on their com-
mon border). This yields redundant memory accesses and computation, thus another
performance issue.

• Applying each convolution kernel separately implies several read/write operations on/to
main memory (same location or not), yet another source of performance penalty.

There are several ways to deal with the above problems. One way is to fuse or chain con-
secutive operators whenever possible. This overcome the repetitive read/write of the entire
image, at the price of data and computation redundancy (more border pixels), thus should be
done under a certain compromise. The first two issues are well tackled by tiling, which could
be considered with fused operators. Although tiling is a more general technique, we really
need a specific analysis in order to understand how the extra data that covers each incoming
tile affect the global performance when dealing with operator-based algorithms.

3.4.4 Experimental results

The goal here is to validate our implementation over various tile shapes, and see how close
we are to our prediction of the optimal tile shape. The main program is executed from the
PPE, which orchestrates the work of the cooperating PEs. For each image, we chose a fixed
tile volume and then iterate on various shapes.

tileh tilew total time(s)

8 512 0.0494
16 256 0.0598
32 128 0.0485

64 64 0.0345

128 32 0.0517
256 16 0.0699
512 8 0.0734

Table 3.1: 512× 512 image

tileh tilew total time(s)

8 512 0.198
16 256 0.238
32 128 0.187

64 64 0.110

128 32 0.180
256 16 0.218
512 8 0.352

Table 3.2: 2048× 512 image
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tileh tilew total time(s)

5 1200 0.494
10 600 0.360
20 300 0.264
40 150 0.235

80 75 0.183

160 37 0.247
320 18 0.275

Table 3.3: 1200× 1200 image

tileh tilew total time(s)

8 512 0.985
16 256 0.726
32 128 0.643

64 64 0.438

128 32 0.692
256 16 0.866
512 8 1.422

Table 3.4: 2048× 2048 image

We see that the most squared tile always gives the best global performance. The difference
is marginal with closest shapes, but we should keep in mind that the typical use of the algo-
rithm is with a flow of images. Our implementation does not overlap DMA with computation
because of the necessary postprocessing due to memory misalignment. This aspect should be
studied in the future, probably at the level of the DMA framework. For wider images (Tables
3.3 and 3.4), we see that the improvement using a square tile is more than 50% compared to
the full row tile, which should be easier and fastest since it involves contiguous blocks memory.
We emphasize on the extra cost for managing irregular DMAs, although our implementation
seems to perform well. The main difference between full row tiles and rectangular tiles is that,
for the later, a list DMA is always necessary. Thus, the compromise here is between irregular
DMAs and redundancies. Our experimental results clearly show that it still interesting to
consider tiles with balanced dimensions.

3.5 The algebraic path problem

3.5.1 abstract

The algebraic path problem (APP) unifies a number of related combinatorial or numerical
problems into one that can be resolved by a generic algorithmic schema. In this work, we
propose a linear SPMD model based on the Warshall-Floyd procedure coupled with a system-
atic shift-toröıdal. Our scheduling initially requires n processors for a n×n matrix to achieve
the O(n3) task in n2+O(n) steps. However, with a fewer number of processors, p < n, we ex-
ploit the modularity revealed by our linear array to achieve the task in n3/p+O(n) after n/p
rounds, using a locally parallel and globally sequential (LPGS) partitioning. In any case, we
just need each processor to have a local memory large enough to house one (block) column of
the matrix. These two characteristics clearly justify an implementation on the CELL Broad-
band Engine, because of the efficient and asynchronous SPE to SPE communication (for the
pipeline) and the floating point performance of each SPE. We report our experimentations on
a QS22 blade with different matrix sizes, thus exhibiting the efficiency and scalability of our
implementation. We show that, with a highly optimized Warshall-Floyd kernel (in Assembly),
we could get close to 80 GFLOPS in single precision with 8 SPEs, which represents 80% of
the peak performance for the APP on the CELL.
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3.5.2 Introduction

The algebraic path problem (APP) unifies a number of related problems (transitive closure,
shortest paths, Gauss-Jordan elimination, to name a few) into a generic formulation. The
problem itself has been extensively studied at the mathematic, algorithmic, and program-
ming point of view on various technical contexts. Among existing algorithms, the dynamical
programming procedure proposed by Floyd for the shortest paths [6] and by Warshall for the
transitive closure [30] so far remain on the spotlight. Due to the wide range of (potential) ap-
plications for this problem, also used as an ingredient to solve other combinatorial problems,
providing an efficient algorithm or program to solve the APP is crucial.

In this work, we consider an implementation on the CELL [17]. The CELL processor
has proved to be quite efficient compared to traditional processors when it comes to regular
computation. For a more general use, an important programming effort is required in order
to achieve the expected performance. Apart from providing highly optimized SPE kernels,
it is also important to derive a global scheduling in which all participating SPEs efficiently
cooperate in order to achieve the global task (managed from the PPE). Most of the existing
codes for the CELL are based on a master slaves model, where the SPEs get the data from the
PPE, perform the computation, and send the result back to the main memory through direct
memory accesses (DMAs). Such models suffer from lack of scalability, especially on memory
intensive applications. Our solution for the APP is based on a linear SPMD algorithm,
with quite interesting properties like local control, global modularity, fault-tolerance, and work
optimal performance.

Some attempts to implement the transitive closure on the CELL can be found in the
literature. Among them, we point out the works described in [15] (up to 50 GFLOPS)
and in [28] (up to 78 GFLOPS in perspective). The two solutions are both based on a block
partitioning of the basic Warshall-Floyd procedure together with ad-hoc memory optimization
and efficient global synchronization. With such master-slaves models where all the SPEs
compute the same step of the Warshall-Floyd procedure at a time, a special care is required
for data alignment in addition to redundant data management (the pivot elements). Moreover,
since the memory is a critical resource for the SPE, we think it is important to come with
a solution which is less memory constrained. Our answer to this demand is a pipelined
algorithm efficiently implemented on the CELL, which we find to be a valuable contribution,
both from the methodology point of view and its competitive absolute performance (potential
of 80 GFLOPS).

3.5.3 The algebraic path problem

Formulation

The algebraic path problem(APP) may be stated as follows. We are given a weighted graph
G = ⟨V,E,w⟩ with vertices V = {1, 2, · · · , n}, edges E ⊆ V × V and a weight function
w : E → S, where S is a closed semiring ⟨S,⊕,⊗, ∗,0,1⟩ (closed in the sense that ∗ is a unary
“closure” operator, defined as the infinite sum x∗ = x ⊕ (x ⊗ x) ⊕ (x ⊗ x ⊗ x) ⊕ · · · ). A
path in G is a (possibly infinite) sequence of nodes p = v1 · · · vk, and the weight of a path is
defined as the product w(p) = w(v1, v2) ⊗ w(v2, v3) ⊗ · · · ⊗ w(vk−1, vk). Let P (i, j) denotes
the (possibly infinite) set of all paths from i to j. The APP is the problem of computing, for
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all pairs (i, j), such that 0 < i, j ≤ n, the value d(i, j) defined as follows

d(i, j) =
⊕

p∈P (i,j)

w(p). (3.5)

For the transitive closure, M is the incidence boolean matrix and {⊕,⊗} = {∨,∧}. For
the shortest path, M is the cost matrix and {⊕,⊗} = {min,+}. In any case, ⊕ and ⊗ are
commutative and associative. Moreover, ⊗ is distributive over ⊕. These three properties are
very important as they allow to safely permute and factorize the computations as desired.

Warshall-Floyd algorithm

If M is the incidence or weight matrix of a finite graph G of order n, then M (k) denotes the
matrix of d(k)(i, j) (distance between i and j i to j considering intermediate nodes from 1 to
k), and M∗ the closure matrix (the one we want to compute). By extending the operator ⊕
to matrices, we obtain

M∗ =M (0) ⊕M (1) ⊕M (2) ⊕ · · · ⊕M (n), (3.6)

where M (0) =M .
The Warshall-Floyd dynamical programming procedure to solve the APP formulation is

inspired from equation (3.6). Thus, m(k)(i, j) can be computed from m(k−1)(i, j) by consid-
ering node k as follows

m
(k)
ij = mij ⊕ (m

(k−1)
ik ⊗m(k−1)

kj ). (3.7)

An important property of this algorithm, which turns to be a memory advantage, is that
the successive M (k) can be housed inside the same matrix M on memory. So, we perform
n in-place (matrix) updates within the input matrix M and end up with the closure matrix
M∗. At step k, row k (resp. column k), called pivot row (resp. pivot row), is used to upgrade
M (k−1) to M (k).

A part from the O(n3) floating point operations, it is important to notice that the move
of the pivot row and the pivot column, although quite regular compared to gaussian pivoting,
needs a special attention. There are mainly two impacts. The first one is on the memory
access pattern, because the pivots are shifted between one step and the next one. The second
one is on the pipeline scheduling, the pivot elements have to be ready before starting the
corresponding Warshall-Floyd step. In order to get rid of the difference between Warshall-
Floyd steps, we now consider a toröıdal shift proposed by Kung, Lo, and Lewis [11].

Kung-Lo-Lewis mapping

The idea is to maintain the pivots at the same location, preferably on the axes. To do so,
Kung, Lo, and Lewis suggested a shift-toröıdal of the matrix after each application of the
standard Warshall-Floyd procedure. Technically, this is equivalent to say that after each
step, the nodes are renumbered so that node i becomes node i − 1 (or (i − 1) mod n + 1
to be precise). Thereby, the matrices M (k) become completely identical, with the pivot row
(resp. pivot column) remaining the first row (resp. first column). There are two ways to
handle such a reindexation. The first one is to explicitly shift the matrix after the standard
Warshall-Floyd procedure. The second one is perform the shift-toröıdal on the fly, means
after each update of the matrix entries. Figure 3.11 depicts the two possibilities.
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Figure 3.11: Toröıdal shift

In a formal point of view, we apply the following rule

m
(k)
i−1,j−1 = mij ⊕ (m

(k−1)
ik ⊗m(k−1)

kj ), (3.8)

where operations on subscripts are performed modulo n. When implementing the algorithm
in this way, one needs to keep away the pivot row and/or the pivot column (its depends on
the scheduling) as they could be overwritten due to the shift. In a parallel context, where
the data move between the computing units, the aforementioned shifts could be done by just
adapting the transfer patterns accordingly (i.e. data transfers + shifts are thus performed at
the same time at the price of the transfers only). We take all these into account to derive our
linear pipeline scheduling.

3.5.4 Description of our algorithm

Scheduling

Given a graph of order n, our scheduling can be intuitively described as follows. The com-
putation of M (k), assigned to a single processor, is performed row by row, from the first row
(the pivot) to the last one. Each row is computed from the first point (the pivot) to the last
one.

If (i, j, k) refers to the (i, j) entry of M (k), then our scheduling can be expressed by the
timing function t and the task allocation function a given by

t(i, j, k) = L(k, n) + (i× n+ j) + 1 (3.9)

a(i, j, k) = k (3.10)

where L(k, n) is the computation latency from graph dependencies and the row-wise schedul-
ing. At this point, we need n processors that cooperate on a linear basis. Each processor
operates as follows:

⋄ compute the first row (the pivot) and keep it on the local memory

⋄ compute and send each of the remaining rows

⋄ send the pivot row

Computing the pivot row requires n steps, which count for the computation latency as no value
is sent out during that time. In addition, because of the rotation, a given processor computes
a row in the order 0, 1, 2, · · · , n − 1 and outputs the results in the order 1, 2, · · · , n − 1, 0.
Thus, the total latency between two consecutive processor is (n+ 1), and we thus obtain

L(k, n) = (k − 1)(n+ 1), k ≥ 1. (3.11)
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So, processor k starts at step L(k, n) = k(n+ 1) and ends its task n2 steps after (i.e. at step
n2 + k(n+ 1)). It is important to keep these two values in mind as they will be locally used
by each processor to asynchronously distinguish between computing phases. Our solution
originally needs n processors, which is a strong requirement in practice. Fortunately, the
conceptual modularity of our scheduling naturally helps to overcome the problem as we now
describe.

Modularity

Recall that processor k computesM (k) and communicates with processors k−1 and processor
k+1. If we have p processors, p < n, then we adapt our schedule by just requesting processor
k to computes M (k+αp), for all integers α such that k + αp ≤ n. This is naturally achieved
by performing several rounds (n/p to be precise) over our linear array of p processors. This
corresponds to the so-called locally parallel and globally sequential (LPGS). The fact that
our steps are completely identical makes it really natural to implement. Moreover, there is
no additional memory requirement. Indeed, the capability of performing all updates within
the same matrix is still valid, processor 0 continuously reads from A and processor p − 1
continuously writes to A (there will be no read/write conflict since they always act on disjoint
memory locations).

The remaining part of M (αp) and the yet computed part of M ((α+1)p) will reside in the
same matrix space into the main memory. Moreover, the idempotent property of the APP
(i.e. M (n+k) =M (n) =M∗, ∀k ≥ 0) provides another simplicity. Indeed, if p does not divides
n, then a strict application of our partitioning will end up with M (m), where m = ⌈(n/p)⌉×p
is greater that n. We will still get the correct result, but with an additional p − (n mod p)
steps. If we do not want this additional unnecessary computation, we could just dynamically
set processor n mod p to be the last processor at the beginning of the ultimate round.

Because of the communication latency, it is always faster to perform block transfers instead
of atomic ones. From a starting fine-grained scheduling, this is achieved by tiling. Since we
plan to implement our algorithm at row level (i.e. we compute/send rows instead of single
entries), applying a standard tiling just means globally block row partitioning and locally
block column partitioning.

Tiling

Considering the original APP formulation and the Warshall-Floyd algorithm as previously
described, a tile version can be derived by extending the atomic operations ⊕ and ⊗ to
operate on blocks. Now, each step is either the resolution of the APP on a b × b subgraph,
or a “multiply-accumulate” operation A ⊕ (B ⊗ C), where the operands are b × b matrices
and the operations are the matrix extension of the semiring operators. The only structural
change imposed by a block version is that the row pivot (resp. column pivot) need to be
explicitly updated too (they do not remain constant as in the atomic formulation). An
important question raised by the tile implementation of our linear algorithm is the optimal
tile size. Indeed, tiling yields a benefit from the communication latency, but at the price of
the global computation latency (i.e. p × n, which now becomes p × (bn)). We now explain
our implementation on the CELL. The goal is to validate our algorithm and discuss about
latency, tiling and scalability.
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3.5.5 Performance results

All our experimentations are performed on a QS22 CELL Blade with single precision data.
First, we need to see how tiling affects the performance of our program. In table 3.5, we use
our algorithm to solve the APP on a single SPE with matrices of size 128 × 128, 256 × 256,
and 512× 512 respectively (times are in seconds).

Tile 128× 128 256× 256 512× 512
1 0.0216 0.1321 0.8921
4 0.0110 0.0823 0.6371
8 0.0104 0.0782 0.6082
12 0.0092 0.0754 0.5839
16 0.0105 0.0781 0.6017
20 0.0095 0.0696 0.5757
24 0.0098 0.0704 0.5872
28 0.0088 0.0782 0.5901
32 0.0115 0.0815 0.6119

Table 3.5: Relative impact of tiling

Recall that tile size b means we operate on the whole matrix by b× n block rows. What
we see is that, a part from the fine grained computation, the variance using different tile
sizes is marginal. This is certainly due the fact that the matrix operations dominate as we
will see on the next results. However, as previously mentioned, our kernel for the b× b APP
is not sufficiently optimized, otherwise we would have certainly observed a more significant
performance gap. Nevertheless, we observe a factor 2 improvement between using tile of
size 20 and the fine-grained version for instance. Now, we reconsider the same matrices and
perform a scalability test from 1 SPE to 8 SPEs. In figure 3.6, we display the global execution
time ( measured from the PPE) with various tile sizes in {1, 4, 8, 12, 16} (we stop at 16 because
12 seems to be the optimal), σ refers to the speedup compared to 1 SPE.

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 1.3 1.25 1.06 0.31 4.29
4 0.8 0.41 2.00 0.11 7.78
8 0.7 0.39 1.99 0.11 7.21

12 0.7 0.36 2.08 0.10 7.93
16 0.7 0.40 1.97 0.14 5.65

(a) Performance with a 256×256 matrix

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 0.892 0.434 2.05 0.213 4.19
4 0.637 0.318 2.00 0.080 7.96
8 0.608 0.304 2.00 0.078 7.79

12 0.584 0.293 1.99 0.074 7.88
16 0.602 0.302 1.99 0.083 7.23

(b) Performance with a 512×512 matrix

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 6.67 3.28 2.03 1.60 4.16
4 5.01 2.50 2.00 0.62 7.99
8 4.79 2.39 2.00 0.60 7.95

12 4.70 2.32 2.02 0.58 7.98
16 4.72 2.36 2.00 0.60 7.79

(c) Performance with a 1024×1024 matrix

Table 3.6: Timings on a CELL QS22

Apart of the fine-grained version (first row of the results), we observe a perfect scaling
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of our program. In order to illustrate the efficiency of our method (scheduling + DMA
+ synchronization), we show in table 3.7 the timings using a full version of our program
where the block APP kernel is not executed. We clearly see that the overhead due to our
pipeline mechanism is definitely negligible, thus the overall performance just relies on the
block APP kernel. By replacing our APP kernel code by a fast implementation similar to
that of the matrix product in [35], our implementation achieves 80 GFLOPS (note that the
peak performance on the APP is 102 GFLOPS as the ”multiply-add” cannot be used).

1 SPE 2 SPEs 8 SPEs

Tile t(s) t(s) σ t(s) σ

1 1.87 1.20 1.56 0.53 3.49

4 0.39 0.47 0.83 0.11 3.70

8 0.19 0.12 1.64 0.06 3.78

12 0.12 0.08 1.65 0.03 4.02

16 0.09 0.06 1.63 0.03 3.78

Table 3.7: DMA timings (1024×1024 matrix)

rr

3.6 Lattice Quantum Chromodynamics library

3.6.1 Abstract

Quantum chromodynamics (QCD) is the theory of subnuclear physics, aiming at modeling the
strong nuclear force, which is responsible of the interactions between nuclear particles. Numer-
ical QCD studies are performed through a discrete analytical formalism called LQCD (Lattice
Quantum Chromodynamics), from which numerical simulations are performed. LQCD sim-
ulations involve very large volume of data and numerically sensitive entities, thus the crucial
need of high performance computing systems. The most heavy calculation requires to solve a
huge and numerically sensitive linear system. For this purpose, iterative methods are definitely
considered. Therefore, the corresponding matrix-vector product, also so-called Wilson-Dirac
operator, appears as a critical computation kernel. This work was mainly motivated by the
aim of providing an efficient accelerated implementation of the Wilson-Dirac operator an as-
sociated linear algebra subroutines on the CELL B.E.. Our framework is provided as a unified
library and is particularly optimized for an iterative use. Each routine is parallelized among
the SPEs, and each SPE achieves it task by iterating on the entire array in main memory by
small chunks. The SPE code is vectorized with double precision data and we overlap memory
accesses and computations. Moreover, we permanently keep the SPE context alive and we
use mailboxes to synchronize between consecutive calls. We validate our library by using it
to derive a CELL version of an existing LQCD package (tmLQCD). Experimental results on
each routine in double precision show a significant speedup compare to standard processors,
11 times better than a 2.83 GHz INTEL quad-core processor for instance (without SSE, but
multi-threaded). This ratio is around 9 (with QS22 blade) for the full Wilson-Dirac inversion.

3.6.2 Introduction

Quantum chromodynamics (QCD) [31], the theory of the strong nuclear force, can be nu-
merically simulated on massively parallel supercomputers using the method of lattice gauge
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theory (LQCD), see Vranas et al [29]. A LQCD simulation chain involves basic linear alge-
bra computations on large scale entries. Moreover, basic operations are repeated so many
times following a stopping criterion, which is either purely numerical or based on the physical
meaning of the result. One major kernel is the inversion of the Dirac operator, which is an
important step during the synthesis of a statistical gauge configuration sample. Indeed, in
the Hybrid Monte Carlo (HMC) algorithm [26], it appears in the expression of the fermionic
force, used to update the momenta associated with the gauge fields along a trajectory.

A common way to parallelized LQCD applications is to partition the lattice into sublattices
and then assign each sublattice to a computing node (see [4, 14]). This yields a standard
SPMD model which is then mapped onto a given parallel machine. Thus, tuning an individual
computing node to efficiently perform a critical part of the simulation is a good way towards a
powerful LQCD supercomputer. Number of authors have studied LQCD implementation on
various supercomputers [29]. For the special case of solving theWilson-Dirac system, a mixed-
precision solution accelerated with GPUs is proposed by Clark[4]. A domain decomposition
approach associated with the deflation technique is studied by Luscher[14]. A prospective
overview of QCD implementation on the CELL is reported in [1]. A specific study of the
Dirac operator (the most CPU consuming kernel) on the CELL (simulator) is reported in [8].

LQCD computation kernels are built up from basic linear algebra routines with special
data structures. Hence, comes the idea of a computing library dedicated to LQCD. A well
known example of such a library is the so-called QDP++[19], which provides a data-parallel
programming environment suitable for Lattice QCD. In this work, we propose a CELL-
accelerated library for the same purpose. Our main concern is performance. Indeed, having a
more powerful node yields the additional advantage of a smaller computing network request,
which significantly reduce the inter-nodes communication overhead. This aspect is crucial
in LQCD performance, otherwise people consider very large supercomputers and suffer from
communication penalty, and of course a high running cost.

3.6.3 Background and preliminaries

Foundations

Definition 3 Given a complex square matrix A and an integer µ, we state the followings
definitions

⋄ |A| denotes the order of matrix A

⋄ IA is the identity matrix of order |A|

⋄ A† = ĀT

⋄ µ̂ = eµ (µth vector of the canonical basis)

Definition 4 Given two matrices A and B, the tensor product C = A⊗B is defined by

C = (aijB) (3.12)

Property 1 Given three complex matrices A, B and C, we have
Associativity:

A⊗ (B ⊗ C) = (A⊗B)⊗ C (3.13)
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Normal factors decomposition:

A⊗B = (A⊗ IB)(IA ⊗B) = (IA ⊗B)(A⊗ IB) (3.14)

Tensor product is rarely computed explicitly as it involves a huge amount of memory and lot of
computation redundancies. Instead, an implicit approach is commonly considered depending
on the desired operation [5].
We now consider five 4× 4 special matrices, called Dirac γ-matrices, which are given by

γ0 =


0 0 -1 0
0 0 0 -1
-1 0 0 0
0 -1 0 0

 γ1 =


0 0 0 -i
0 0 -i 0
0 i 0 0
i 0 0 0

 (3.15)

γ2 =


0 0 0 -1
0 0 1 0
0 1 0 0
-1 0 0 0

 γ3 =


0 0 -i 0
0 0 0 i
i 0 0 0
0 i 0 0

 (3.16)

γ5 =


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 (3.17)

The Wilson-Dirac operator the following generic form:

Dψ(x) = Aψ(x) −
1

2

4∑
µ=0

{ [(I4 − γµ)⊗ Ux,µ]ψ(x+ µ̂)+

[(I4 + γµ)⊗ U †
x−µ̂,µ]ψ(x− µ̂)}

(3.18)

where

⋄ A is a 12 × 12 complex matrix of the form αI12 + β(ν ⊗ γ5), where α, β are complex
coefficients and ν a 3× 3 complex matrix

⋄ x is a given point of the lattice (a site), which is a finite subset of N4

⋄ ψ (called quark field or Wilson vector) is a 12-components complex vectors

⋄ Ux,µ is a 3× 3 complex matrix (called gluon field matrix or gauge matrix) at (x, µ).

At a given lattice point x, ψ(x) (called quark spinor or spin-color vector) is a 12-components
complex vector. For a given quark field ψ, Dψ is obtained by considering Dψ(x) for all points
within the lattice, and the result is a vector of the same size as for the input. In addition, for
a given x, Dψ(x) is a linear combination of the components of ψ(x). Thus, it is consistent
to see Dψ as a matrix-vector product, and thereby consider D as an implicit square matrix
(commonly referred to as the Wilson-Dirac matrix). The corresponding operation (3.18) is
the most time consuming kernel as it involves a significant amount of floating point operations
on larger lattices and is done very frequently. However, other linear algebra operations are
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also time consuming because they are applied on very large arrays of complex numbers.
One advantage when using the CELL on such memory intensive processing is the possibility
of overlapping data transfers and computations, similarly to the classical memory prefetch
concept on standard processors. We describe the basic data structures commonly used in
LQCD calculations.

Data structures

The aspect of data structure is important in the LQCD community, as it concerns the in-
teroperability of existing software packages and files format. Typical data structures used in
LQCD are based on the following data types.

typedef struct

{

double re,im;

} complex;

typedef struct

{

complex c00,c01,c02,c10,c11,c12,c20,c21,c22;

} su3;

typedef struct

{

complex c0,c1,c2;

} su3_vector;

typedef struct

{

su3_vector s0,s1,s2,s3;

} spinor;

typedef struct

{

su3_vector s0, s1;

} halfspinor;

Note that any arrays based on one of the above data structures can be manipulated as an
array of contiguous double precision numbers (i.e. pointer on double). Table 3.8 provides
the aforementioned equivalences.

Original type Equivalent type size (bytes)

complex c; double c[2]; 16
su3 u; double u[18]; 144
su3 vector v; double v[6]; 48
spinor s; double s[24]; 192
halfspinor h; double h[12]; 96

Table 3.8: Data structures equivalence
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The inputs/outputs of the routines implemented in our library are of type double, complex,
or spinor. At runtime, DMAs operate on arrays of spinor. Thus, since a spinor has size 192
= 16×12 bytes, aligning the entry pointer of the whole array of spinors is sufficient to have
the DMA of any subarray being 16 bytes aligned. In the case of the Wilson-Dirac operator,
we also transfer su3 data (U matrices) together with the unsigned int data representing
the indices of the right hand side spinors (see equation (3.18)). From equation (3.18), we also
see that eight U matrices and eight indices are needed for each spinor component. Thus, we
transfer 8K su3 and 8K unsigned int, which are both of a suitable size for a DMA (multiple
of 16 bytes). Let now see how each of our CELL-accelerated routines are built.

3.6.4 Generic acceleration scheme

For each of the selected routines, we perform the acceleration on the CELL through three
main mechanisms.

Single Instruction Multiple Data

We derive a SIMD version of the code using the SPE intrinsics provided by IBM. With double
precision data, each vector register (16 bytes length) can handle two values. An illustrative
example is provided through Procedure 1 which subtracts two su3 vector (array of 3 complex
numbers).

Procedure 1 SIMD subtraction of two su3 vector

1: SPU vector add(su3 vector *r, su3 vector *s1, su3 vector *s2)
2: v 1 = (vector double *)&(s1);
3: v 2 = (vector double *)&(s2);
4: v 3 = (vector double *)&(r);
5: v 3[0] = spu sub(v 1[0], v 2[0]);
6: v 3[1] = spu sub(v 1[1], v 2[1]);
7: v 3[2] = spu sub(v 1[2], v 2[2]);

For some cases like those involving the product of two complex numbers, register swapping
instructions are necessary. This additional processing has a cost, thus preventing a perfect
SIMD scaling. Unfortunately, this cannot be avoided for free when processing with complex
numbers. However, the benefit of the vectorization is still noticeable, especially if swapping
instructions and calculation instructions are soundly pipelined.

Task partitioning

Wemainly follow the standard manager/workers scheme as it commonly applied when schedul-
ing the tasks among the SPEs of the CELL. The PPE is the host and the manager of the
whole task. For each subroutine to be accelerated, the task is block partitioned, and each
portion is assigned to one SPE through the corresponding thread. Then, each SPE iterates by
chunks over its own subregion while performing the required calculation. This is semantically
equivalent to a loop partitioning followed by a inner loop blocking. Figure fig. 3.12 provides
an overview of the workflow.



3.6. LATTICE QUANTUM CHROMODYNAMICS LIBRARY 99

Figure 3.12: Global SPUs-acceleration mechanism

The SPE executes its task from a data partitioning of its domain. Once it has received the
parameters of its iteration subspace, the generic computation is repeatedly performed on each
chunk of arrays (the maximum that fits into the local store) until the whole assigned domain is
covered. The typical iteration follows the scheme DMA get + SIMD Computation + DMA put.
Since we need to perform two DMAs per step (one for getting the block data and another
one for sending the result back to the main memory), double buffering is implemented by
interleaving and overlapping memory accesses with computation (another benefit of splitting
the computation) as we now explain.

DMA and Double buffering

When it comes to DMA on LQCD calculations, there are several issues to overcome. The first
one concerns the alignment of the data. As we already explained, the case of spinor arrays
is rather simple because each spinor has a size of 192 bytes, which is a multiple of 16 bytes.
For su3 data, the situation needs a little more attention, since each su3 data (a U matrix)
has a size of 144 bytes, which is not a multiple of 16 bytes as required for a DMA. This
problem is sometimes solved by aggregating the height required su3 data for each spinor

into a contiguous block memory. The second DMA issue concerns the size of the data, even
for a single computation. Indeed, for the Wilson-Dirac operator (see (3.18)), calculating a
single spinor requires

⋄ 8 spinors,

⋄ 8 SU(3) matrices,

⋄ 8 indexes (pointer to the 8 neighbor spinors to be used)

Thus a total of 8× 192 + 8× 144 + 8× 8 = 2752 bytes. Therefore, if we want to compute a
block of N spinors, keeping in mind that the size of the SPE local memory is 256 KB (262
144 Bytes), the maximum number of spinors we can compute in one step (namely Nmax)
is constrained by 2752×Nmax ≤ 262 144, means Nmax ≤ 95. Taking into account the part
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allocated for the program itself, we found N = 64 as the best working value. We see that the
optimal working data volume for a single block computation on the SPE is fixed and does not
depend on the lattice size, thus a good modularity of the global computation (bigger lattice
just implies more iterations). Figure 3.13 provides the timings of our DMA implementation
and the ratio over the total execution time for the Wilson-Dirac operator.

nb SPUs time(µs) % comp. time
1 0.56 24%
2 0.29 25%
3 0.22 27%
4 0.18 29%
5 0.21 37%
6 0.21 40%
7 0.16 37%
8 0.10 34%

Figure 3.13: DMA timings for the Dirac operator

From figure 3.13, we see that even for the heaviest kernel, DMAs take around 30% of the
total computing time. This clearly shows that the DMAs cost can be perfectly hidden by
overlapping them with double precision computation (both for QS20 and QS22 blades). For
single precision computation (not yet tested at this time), we think we still have room for
an acceptable partial overlapping. Procedure 2 gives a prototype of our computation/DMA
relative scheduling.

Procedure 2 Generic double buffering scheme

1: DMA get request data(0);
2: for (k=0; k < N; k++) do
3: DMA get waitfor data(k);
4: DMA get request data(k+1);
5: SPU compute range(k, a, (a+b)/2);
6: if (k>0) then
7: DMA put waitfor data(k-1);
8: end if
9: SPU compute range(k, (a+b)/2 + 1, b);

10: DMA put request data(k);
11: end for
12: DMA put waitfor data(N-1);

The generic DMA mechanism of Procedure 2 considers two-ways transfers. We need to make
sure that a partial result as been sent back to the main memory before we reuse the same space
for the next computation. That’s why we split the SPE computation into two parts. The first
part should overlap with the DMA put of the previous result, while the second one should over-
lap with the DMA get of the next input. For reduction operations like the scalar product or
the square norm, this additional strategy is not needed because we don’t send any data during
the whole computation (we just send the final result at the end). However, if we chose to keep
the global mechanism for reduction operations too, then we will be able to do an assignment
operation at the same time. Thus, we provide the routine CELL square norm assign(spinor

*S, spinor *R, int N) which calculates the square norm of the spinor arrays R while copy-
ing it into S. We then eliminate the cost of the memory copy by hiding it into the square norm



3.6. LATTICE QUANTUM CHROMODYNAMICS LIBRARY 101

calculation. This local optimization, applied in many parts of our library, is not negligible as
memory accesses is a critical part of LQCD computations.

Eliminating the overhead of threads creation

SPE threads are created and launched from the PPE in a sequential way. With several SPEs,
the corresponding overhead becomes more important, especially if we create and destroy the
threads at each iteration. Consequently, as the SPE code is improving (by code optimization,
faster hardware, or single precision calculation), the overall cost of creation/destruction of
the threads might become dominant. What we did was to keep each created SPE thread per-
manently alive during the entire computation. We use a generic master data structure for all
our SPE routines. The corresponding variables, one for each SPE, contain scalar parameters
(if any) and pointers to the input/output arrays. The SPE first initiates a DMA to get its
own master structure, and then uses it to perform it task following the scheme of Procedure
2. The master structure remains the same (we only change its values) during different calls.
By this way, each SPE thread is created once and kept active during a complete session with
our library. The use of our library at the SPE level is orchestrated by the code of figure 3.14,
combined with the full binary code. So, the SPE just need to select which routine to execute
using an indicator sent by the PPE using the mailbox mechanism.

int main(int argp){

unsigned int which_code;

/* SPE asks what to do */

which_code = spu_read_in_mbox();

while(which_code!=-1){

switch(which_code){

case 0: routine_0(argp); break;

case 1: routine_1(argp); break;

...

case n: routine_n(argp); break;

default: break;

}

/* SPE tells he has finished */

spu_write_out_mbox(1);

/* SPE waits for next run */

which_code = spu_read_in_mbox();

}

return 0;

}

Figure 3.14: SPE main program

At the initialization of the library, the PPE creates and loads the context on each partici-
pating SPE. During a session with our library, when the user requests the execution of
PPE routine id, the PPE prepares the data and mails id to the SPEs. Each SPE receives
id, executes SPE routine id, and waits for the next request. Figure 3.15 displays the list of
routines yet implemented in our library (see [10] for their original specifications).
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void CELL_QCD_INIT();

void CELL_QCD_FINALIZE();

complex CELL_scalar_prod();

double CELL_scalar_prod_r();

double CELL_square_norm();

double CELL_square_norm_assign();

void CELL_assign_diff_mul();

void CELL_mul_r();

void CELL_assign();

void CELL_assign_mul_add_r();

void CELL_assign_diff_mul_serie();

void CELL_Hopping_Matrix();

void CELL_H_eo_tm_inv_psi();

void CELL_diff();

void CELL_mul_one_pm_imu_sub_mul_gamma5();

void CELL_mul_one_pm_imu_inv();

build_dependence_indices();

Figure 3.15: List of implemented routines

3.6.5 How to use the library

The library is intended to be integrated into any C (or C++) codes. The only one required
change (if not yet done) concerns the memory allocations, which have to be 16 bytes aligned.
Our suggestion is to use #define statements to change every malloc into malloc align

and free into free align. This is done in the file cell lqcd.h, which also contains the
declaration of all the routines. The steps necessary to use the library are the followings:

⋄ include the file cell lqcd.h into the code

⋄ compile the code and link it with the library
ppe lqcd.o spu lqcd.a -lspe2 -lmisc

Typical use of the library follows the sequence below:

⋄ CELL QCD INIT(); (called once at the beginning)

⋄ different calls to the routines

⋄ CELL QCD FINALIZE(); (called once at the end)

If CELL Hopping Matrix() needs to be used, then a call to build dependence indices() is
necessary to build the dependence indices following formula (3.18). The result of this proce-
dure is an array of indices that will be passed as an argument to CELL Hopping Matrix().
We chose to separate it from CELL Hopping Matrix() because it this done once.
The library can be dowloaded at
www.omegacomputer.com/staff/tadonki/dirac/cellqcd.htm
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3.6.6 Performance results

We present some performance results using our library in a 32 × 163 lattice (hence 131 072
sites). We use 8 SPEs simultaneously.

Intel CELL BE
2.83Ghz QS20 QS22

cell diff 0.0110 0.00177 0.00183
cell scalar prod 0.0060 0.00148 0.00110
cell assign diff mul 0.0080 0.00176 0.00175
cell Hopping Matrix 0.1210 0.01155 0.00650

Figure 3.16: Timings (seconds) of individual routines

We see from figure 3.16 that our implementation is globally competitive. The difference
between QS20 and QS22 is perceptible only with the Hopping Matrix() because of its sig-
nificant computing load. This is in our favor, because Hopping Matrix() implements the
Wilson-Dirac operator, which consumes more that 80% of the computation time when deal-
ing with linear system solving. Indeed, figure 3.17 displays the elapsed times for solving a
Wilson-Dirac system using iterative methods (GCR: Generalized Conjuguate Residual and
CG: Conjugate Gradient) on our 32× 163 lattice.

Intel CELL BE
2.83Ghz QS20 QS22

GCR (57 iterations) 27 s 5.58 s 3.68 s
CG (685 iterations) 362 s 42 s 20 s

Figure 3.17: Timings of the Wilson-Dirac inversion

Comparing our library executed the CELL with the original one executed on an Intel 2.83
Ghz (without SSE and using one core just to be close to the 3.2 GHz frequency of an SPE), we
globally see a promising speedup (around 9). The case of CG is more impressive because the
algorithm mainly relies on the Wilson-Dirac operator, which is the best accelerated routine
of our library. With an improvement in the DMA organization, we got the following results
on the Dirac operator.

QS20 QS22
#SPE Time(s) S GFlops Time(s) S GFlops

1 0.109 1.00 0.95 0.0374 1.00 2.76
2 0.054 2.00 1.92 0.0195 1.91 5.31
3 0.036 3.00 2.89 0.0134 2.79 7.76
4 0.027 3.99 3.85 0.0105 3.56 9.90
5 0.022 4.98 4.73 0.0090 4.15 11.56
6 0.018 5.96 5.78 0.0081 4.61 12.84
7 0.015 6.93 6.94 0.0076 4.92 13.88
8 0.013 7.88 8.01 0.0075 5.75 14.02

Figure 3.18: Dirac operator on the CELL
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Without SSE With SSE
1 core 4 cores 1 core 4 cores
0.0820 0.0370 0.040 0.0280

Figure 3.19: Dirac operator Intel i7 quadcore 2.83 Ghz

We see from figure 3.18 that our implementation of the Dirac operator scales very well on
a QS20 and suffers from a slowdown on a QS22. We think, at this stage of our work, that this
is due to an inappropriate SPE allocation, since we use a dual Cell based blade. This should
be easy to fix and then provide a scalable implementation on a QS22 too. Moreover, even
with our optimal DMA organization, this part is still highly dominant on a QS22. The main
idea we have in mind to overcome this is to use of the SU(3) reconstruct mechanism. This will
significantly reduce the volume of exchanged data and increase the SPE computation load,
thus a more balanced implementation.

3.6.7 Perspectives

The promising results of our work motivate to explore other sources of improvement. Among
them, we might independently consider to:

⋄ derive a single precision version. This will improve the SPE performance while
reducing the DMA cost (volume + occurrences). The require adaptation looks straight-
forward at the SPE level, since we just need to change our vector double variables to
vector float. However, the data layout consistency of the whole framework should be
rechecked, as well as the numerical impact on the global iterative process (maybe could
consider a mixed precision methods).

⋄ calculate the dependence indexes directly on the SPEs instead of getting them
from DMAs. At the price of an extra work for the SPE, the reward will be again a
reduction of the DMA cost and a bigger space on the SPE local store to house more
spinors (bigger TLP granularity).

⋄ explore the impact of reconstructing the U matrices on the SPEs (from 12 numbers
parametrization or 8 numbers parametrization) [4]. The same reward arguments as for
the previous statement apply.

⋄ generalized our CELL deployment methodology to other inversion paradigms (within
the same package) like the Conjugate Gradient (CG).

⋄ perform some experiments on a cluster of CELL blades. Since, a distributed memory
parallelization through MPI is already implemented in the tmLQCD package [10], there
will be any additional effort to run on a cluster of CELL blades, preferably with a high
speed network like the Infiniband.

3.7 Conclusion and perspectives

Accelerated computing is a very promising way to provide efficient implementations for appli-
cations that has quite regular computation kernels. The price to achieve a high performance
is the underlying programming efforts, which is really the critical point. In order to overcome
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this technical barrier, the current trend is to consider code generation frameworks. From the
global performance point of view, the problem of moving data from the host to the accelerators
and vice-versa is still a noticeable limitation and should remain on the way for improvements.
Another important point concerns the interprocessor communication when the computing
nodes are accelerated. The question is how to exchange data between accelerators without
going through the memory of the host processor. For the GPU, this topic is already under
consideration. For numerical computation, reducing the performance slowdown when moving
to double precision calculations is crucial to widespread the use of accelerators.
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4.1 Abstract

This chapter raises of energy consumption issue from computing activities. There are mainly
two contexts where the energy is one of the top priority concerns: embedded computing and
supercomputing. For embedded computing, power consumption is critical because the amount
of energy that is available for the devices is limited. For supercomputers, the heat dissipated
is a serious source of failure, especially in the context of high-throughput computing. Cooling
is the typical way to manage the issue, but its cost is likely to be a significant part of the
maintenance budget. On a single computer, the problem is commonly considered through the
electrical power consumption. This chapter, we discuss the problem and describe different
formulations. Our formal analysis is articulated around our main contribution on the topic
[28].

4.2 Overview of the energy concern and optimization

Due to the growing popularity of embedded systems [18, 19, 20], energy has emerged as a new
optimization metric for system design. As the power availability in most of these systems is
limited by the battery power of the device, it is critical to reduce energy dissipation in these
systems to maximize their operation cycle. Power limitation is also motivated by heat or noise
limitations, depending on the target application. For a multiprocessor system, the intuitive
way is to optimize the energy consumption at the processor level (individually), assuming that
the part coming from network activities can be neglected. Although this approach focuses
on a local optimization, it can lead to a global scheduling strategy designed accordingly. The
objective could be, for instance, to efficiently transition to the low-power states of each pro-
cessor. In a low-power state, the processor is not active and has a reduced consumption, but
it takes a transition delay to come back to an active state, thus a good compromise should be
found. On a distributed memory machine, one could choose, for instance, to switch to an idle
state on each blocking MPI communication, especially when waiting for data from another
processor. In any case, a good profiling of the program to optimize is crucial to schedule the
state transitions efficiently. This can be done from a static point of view following a good
performance prediction model, or dynamically based on a suitable performance monitoring.

Cloud computing is also an important area where energy is an
important concern. Indeed, computing and storage devices are
continuously requested by different users. Such intensive use of
resources implies a significant power consumption at various lev-
els. One way to address the problem is through the concept of
federated clouds, where different clouds are virtually merged in
order to provide a flexible system to end users. From there, we
need to find the less (energy/time) costly scheduling from both
the user and the provider standpoints.

The topic of energy reduction has been intensively studied in the literature and is be-
ing investigated at all levels of system abstraction, from the physical layout to software de-
sign. There have been several contributions on energy saving focused on scheduling/proces-
sors [4, 5, 11, 12, 13], data organizations [14, 6], compilation [22, 23, 24, 30], and the algorith-
mic level [26, 27, 30, 5]. Power management in sensors network, where energy is really critical,
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is addressed in [2]. The research at the architecture level has led to new and advanced low en-
ergy architectures, like the Mobile SDRAM and the RDRAM, that support several low power
features such as multiple power states of memory banks with dynamic transitions [16, 17],
row/column specific activation, partial array refresh, and dynamic voltage/frequency scal-
ing [25]. Current and future generation processors have their clock frequency that can be
dynamically modified, and some of them are equipped with a sensor to measure the temper-
ature. In addition, the upper threshold temperature beyond which the fan is automatically
triggered can be dynamically adjusted too. But all these need to be soundly monitored. This
could be done statically at compile time, or dynamically at runtime.

Although power is proportional to the speed cubed[1], it is known that an important
part of energy dissipation comes from memory activities [6, 7], sometimes more that 90%
[17]. Consequently, the topic of memory energy reduction is also into the spotlight. For
the purpose of reducing the energy dissipation, contributions on cache memory optimization
can be considered because of the resulting reduction in memory accesses [8, 9, 10, 27]. In
order to benefit from the availability of different memory operating modes, effective memory
controller policies should suit the tradeoff between the energy reduction obtained from the use
of low power modes and the energy overhead of the consequent activations (exit latency and
synchronization time) [31]. A combinatorial scheduling technique is proposed by Tadonki et
al [29]. A threshold approach is considered by Fan et al. [31] in order to detect the appropriate
instant for transitions into low power modes. A hardware-assisted approach for detecting
and estimating idleness in order to perform power mode transitions is studied by Delaluz
et al [17]. We now describe our contribution on the topic of power minimization related to
memory accesses and storage.

4.3 An analytical model for energy minimization

4.3.1 Summary

The goal of this work is to design and evaluate a formal model for the energy minimization
problem. This is important as a first step toward the design of an efficient power management
policy. Our model clearly shows the relative impact of the storage cost and the activation
overhead. The optimization problem derived from our model is a quadratic programming
problem, that is well solved by standard routines. We consider only the transitions from
low power modes to the active mode, so we say activation instead of transition. Given a
predetermined amount of activations to be performed, our model gives the optimal assignment
among the different power modes and the corresponding fraction of time that should be spent
in each mode. It is clear that there is a correlation between the number of activations and
the time we are allowed to spent in each mode. It is important to assume that the time we
spend in a low power mode after a transition is bounded. Otherwise, we should transition
to the lowest power mode and stay in that mode until the end of the computation. This is
unrealistic in general because memory accesses occur very often following an unpredictable
pattern, and each memory access triggers a transition to the active mode. To capture this
aspect, we consider a time slot for each power mode. Each transition to a given power mode
implies that we will spent a period of time that is in a fix range (parameterizable). Once
those parameters are determined, the associated energy can be expressed as a function of the
total activations pattern. Our goal is then to minimize this objective function and provide
the optimal number of transitions for each mode.
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4.3.2 A model of energy evaluation

We assume that the energy spent for running an algorithm depends on three major types of
operation:

⋄ the operations performed by the processor (arithmetic and logical operations, compar-
isons, etc...);

⋄ the operations performed on the memory (read/write operations, storage, and state
transition);

⋄ the data transfers at all levels of hardware system.

In this paper, we will focus only on the energy consumed by memory operations. We consider
the memory energy model defined in [26], which we restate here. The memory energy E(n)
for problem size n is defined as the sum of the memory access energy, the data storage energy,
and state transition overheads. This yields the formula

E(n) = Ka × C(n) +Ks × S(n)×A(n) +Kp × P (n), (4.1)

where

⋄ Ka is the access energy cost per unit of data, and C(n) represents the total number of
memory accesses

⋄ Ks is the storage energy cost per unit of data per unit time, S(n) is the space complexity,
and A(n) is the total time for which the memory is active

⋄ Kp is the energy overheads for each power transition, and P (n) represents the total
number of state transition.

As we can see, the model consider two memory state (active and inactive), and a single
memory bank. Moreover, the storage cost in intermediate modes is neglected, otherwise we
should have considered T (n) (the total computation time) instead of A(n) (the total active
time). In our paper, we consider the general case with any given number of memory states,
and several memory banks with an independent power control.

The main memory M is composed of p banks, and each bank has q possible inactive
states. We denote the whole set of states by S = {0, 1, 2, · · · , q}, where 0 stands for the active
state. For state transition, we consider only the activations (transition from a low power
mode to the active node). This is justified by the fact that transitions to low power modes
impact a negligible energy dissipation. The activation energy overheads is given by the vector
W = (w0, w1, · · · , wq), w0 = 0. During the execution of an algorithm, a given bank i spends
a fraction αij of the whole time in state j, thus we have

q∑
j=0

αij = 1. (4.2)

About the storage cost, let Q = (qj), j = 0, · · · , q denotes the vector of storage cost, means
qj is the storage cost per unit data and per unit time when the memory is in power state j.

Concerning the activation complexity, note that since activations occur in a sequential
processing, and the transition cost does not depend on the memory bank, we only need to
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consider the number of activations from each state j, we denote xj . We then define the
activation vector x = (x0, x1, · · · , xq).

If we assume that memory banks are of same volume α, we obtain the following memory
energy formula for problem size n

E(n) = Ka × C(n) + T (n)× (

p∑
i=1

q∑
j=0

αijqj)× α+

q∑
j=0

xjwj . (4.3)

We define the vector y = (y0, y1, · · · , yq) by

yj =

p∑
i=1

αij . (4.4)

For a given state j, yj is the accumulation of the fractions of time each memory bank has
spent in mode j. In case of a single memory bank, it is the fraction of the total execution
time spent in the considered mode. The reader can easily see that

q∑
j=1

yj = p. (4.5)

We shall consider the following straightforward equality

p∑
i=1

q∑
j=0

αijqj =

q∑
j=0

(

p∑
i=1

αij)qj = yQT .

We define the vector H = (H0,H1, · · · ,Hq) as the vector of activation delays, Hj is the time
overhead induced by an activation from state j (H0 = 0).
The total time T (n) is composed of

⋄ the cpu time τ(n)

⋄ the memory accesses time δC(n) (δ is the single memory access delay)

⋄ the activations overhead HxT

We can write

E(n) = Ka × C + α× (τ + δC +HxT )× yQT + xW T . (4.6)

We make the following considerations

⋄ the power management energy overhead xW T is negligible [26].

⋄ the the additive part Ka × C(n) can be dropped since it doesn’t depend on the power
state management.

Thus, the objective to be minimized is (proportional to) the following

E(x, y) = [HxT + (τ + δC)]yQT . (4.7)



116 CHAPTER 4. POWER AWARE COMPUTING

4.3.3 Optimization

Problem Formulation

Our goal is to study the energy reduction through the minimization of the objective (4.7).
In order to be consistent and also avoid useless (or trivial) solutions, a number of constraints
should be considered

Domain specification. The variables x and y belong to N and R respectively, i.e.

x ∈ Nq, (4.8)

y ∈ Rq. (4.9)

Time consistency. As previously explained, we have

y ≥ 0, (4.10)

y1 + y2 + · · ·+ yq = p, (4.11)

Another constraint that should be considered here is related to the fraction of time spent in
the active mode (y0). Indeed, the time spent in the active mode is greater than the total
memory access time, which can be estimated from the number of memory accesses C, and
the time of a single access δ. Since, we consider fraction of time, we have

y0 ≥
δC

R
, (4.12)

where δC is the total memory access time, and R the total running time (without the power
management overhead) which can be estimated from the time complexity of the program or
from a profiling.

Activations bounds. It is reasonable to assume that each time a memory bank is acti-
vated, it will earlier or later be accessed. Thus, we have

q∑
i=0

xi ≤ C. (4.13)

However, except the ideal case of a highly regular and predictable memory access, several
activations should be performed for a better use of power modes availability. This is well
captured by a lower bound the number of activations. Thus, we have a lower bound and an
upper bound in the number of activation. In our model we consider a fix amount of activations
instead of a range. This gives,

x1 + x2 + · · ·+ xq = ρC, (4.14)

where ρ is a scaling factor such that 0 ≤ ρ ≤ 1.

Compatibility between time and activation. Recall that a memory bank is activated if
and only if it will be accessed. Moreover, when a memory bank is put in a given low power
mode, a minimum (resp. maximum) period of time is spent in that mode before transitioning
to the active mode. This can be the fraction of time taken by the smallest job (or instruction
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depending on the granularity). We consider the set of time intervals [φi, ηi] low power modes.
Then, we have

φjxj ≤ yj ≤ ηjxj for j = 1, · · · , q. (4.15)

In addition, since any of every activation implies a minimum period of time, we denote γ, in
the active mode, we also have

y0 ≥ γ(
q∑

j=0

xj). (4.16)

Using relation (4.14), relation (4.16) becomes

y0 ≥ γρC. (4.17)

We shall consider µ define by

µ = max{ δ
R
, γρ}. (4.18)

The inequalities (4.12) and (4.17) can be combined to

y0 ≥ µC. (4.19)

We now analyze the model.

4.3.4 Model analysis

We first note that transitioning from the active state to state j for a period of time ∆t is
advantageous (based of storage cost) if and only if we have

qj(∆t+ hj) ≤ q0∆t, (4.20)

which gives the following threshold relation

∆t ≥ (
qj

q0 − qj
)hj . (4.21)

The time threshold vector D defined by

Dj = (
qj

q0 − qj
)hj , j = 1, 2, · · · , q (4.22)

provides the minimum period of time that should be spent in each low power modes, and
is also a good indicator to appreciate their relative impact. We propose to select the time
intervals (4.15) for low power modes as follows

φj = λ1
Dj

R
φj = λ2

Dj

R
, (4.23)

where 1 ≤ λ1 ≤ λ2.
Lastly, the active time threshold as defined in (4.17) should be greater than the memory
accesses time. Then we should have

γ ≥ δ

ρR
. (4.24)

We now solve the optimization problem provides by our model as described above.
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Solving the Optimization Problem

According to our model, the optimization problem behind the energy reduction is the following

min xHTQyT +RQyT

subject to

1. x ∈ Nq,
2. y ∈ Rq,
3. y1 + y2 + · · ·+ yq = p,
4. y0 ≥ µC,
5. x1 + x2 + · · ·+ xq = ρC,
6. y ≤ φx.
7. y ≥ ηx.

Figure 4.1: Energy minimization problem

There are mainly two ways for solving the optimization problem formulated in figure 4.3.4.
The first approach is to consider the problem as a mixed integer programming problem (MIP).
For a given value of x, the resulting model becomes a linear programming (LP) problem. Thus,
appropriate techniques like the standard LP based Branch and Bound can be considered.
However, we think that this is an unnecessarily challenging computation. Indeed, a single
transition does not have a significant impact on the overall energy dissipation as quantified
by our model. Thus, we may consider a pragmatic approach where the variable x is first
assumed to be continuous, and next rounded down in order to obtain the required solution.
This second approach yields a simple quadratic programming model that is easily solved by
standard routines.

4.3.5 Experiments

We evaluate our model with the values provided in [31] for the
RDRAM. Table 4.1 summarizes the corresponding values (vector
D is calculated using the formula (4.22)). Our optimization is
performed with MATLAB through the code listed below.

Q = (300 180 30 3)

H = (0 16 60 6000)

p = 8

q = 4

δ = 60

D = (9.00 6.67 60.61)

Table 4.1: dram settings
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function [X,Y,E] = Energy_Opt(H,Q,R,d,C,p,q,r,g,l1,l2)

% Matlab code to solve the energy minimization problem

% The quadratic objective is considered as follows

% 0.5 * X’ * HH * X + ff’ * X

% We form our objective coefficients

HH = [zeros(q, q), H’ * Q; Q’ * H , zeros(q, q)];

ff = R * [zeros(q, 1); Q’];

% Bound on the main variable Z = [X,Y]

LB = [zeros(q, 1) ; zeros(q, 1)];

UB = [inf * ones(q, 1) ; p * ones(q, 1)];

% Ajust the lower bound on Y1 (Y0 in the text)

LB(q+1) = max(d * C / t, g * r * C);

% Matrix of the equality constraints

Aeq = [ones(1,q), zeros(1,q); zeros(1,q) , ones(1,q)];

beq = [r * C; p];

% Matrix of the inequality constraints

a1 = [l1 * diag(D), - eye(q)]; b1 = zeros(q, 1);

a2 = [-l2 * diag(D), eye(q)]; b2 = zeros(q, 1);

% Y0 is not bounded by X

a1(1,:)=[]; b1(1) =[]; a2(1,:)=[]; b2(1) =[];

% Forming the matrix

A = [a1; a2]; b = [b1; b2];

% OPTIMIZATION unsing the solver quadprog of MATLAB

[Z, E, EXITF,OUTPUT] = quadprog(HH,ff,A,b,Aeq,beq,LB,UB);

% RETRIVING X AND Y from Z

X = Z(1:q);

Y = Z(q + 1: 2 * q);

We consider a problem (abstracted) where 75% of the total time is spent in memory accesses.
We used R = 80000 and C = 1000. Note that our objective function is proportional to the
time vector y and the vector of storage coefficient Q. Thus, the measuring unit can be scaled
as desired without changing the optimal argument. Table 4.2 displays a selection of optimal
activation repartition and the percentage of energy that is saved or lost. Figure 4.2 shows
how the energy varies in relation with the number of activations.
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ρ Nact X Y Eopt Reduction
0 0 (0, 0, 0, 0) (8, 0, 0, 0) 1.92 0%

0.01 10 (0, 10, 0, 0) (7.58, 0, 0.42, 0) 1.84 4%
0.02 20 (0, 0, 7, 13) (3, 0, 0.31, 4.69) 1.43 25%
0.05 50 (0, 0, 41, 9) (3, 0, 1.71, 3.29) 1.30 32%
0.10 100 (0, 0, 97, 3) (3, 0, 4.04, 0.96) 1.04 46%
0.11 110 (0, 8, 100, 2) (3, 0.1, 4.15, 0.74) 1.024 47%
0.125 125 (0, 25, 100,0) (3, 0.85, 4.15, 0) 1.014 48%
0.20 200 (0, 100, 100, 0) (3, 1.3, 3.7, 0)) 1.08 44%
0.21 210 (0, 100, 100, 10) (3, 1.3, 0.83, 2.87) 1.72 -11%
0.22 220 (0, 100, 100, 20) (3, 1.3, 0.83, 2.87) 2.41 -26%
0.25 250 (0, 100, 100, 25) (3, 1.3, 0.83, 2.87) 2.76 -44%

Table 4.2: Experiments with our model on a RDRAM
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Figure 4.2: Energy vs the number of activations

As we can see from Table 4.2, the best number of activation is 125 (12.5% of the number of
memory accesses), with an energy reduction of 48% (taken the always active case as baseline).
We also see that there is a critical value for the number of activations (200 in this case) under
which we begin loosing energy. In addition, the optimal distribution of activations among
low power modes depends on the total number of activations and the time we are allowed to
stay in each mode.

4.3.6 Conclusion

We have formulated the problem of energy optimization in the context of several low power
modes. We have shown that, in order to make a rewarding transition to a given low power
mode, there is a minimum period of time that should be spent in that mode. From our
experiments with a RDRAM, it follows that a reduction of 48% can be obtained by performing
regular transitions. The optimal number of activations is determined experimentally. We
think that our model can be used for a first evaluation of potential energy reduction before
moving forward to any power management policy.
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5.1 Abstract

With the advent and the pervasiveness of the multi-core technology, which stands now as
a standard for processor design, the supercomputing landscape is currently dominated by
multi-level heterogeneous supercomputers. Many well-established computing vendors use to
announce, design, and promote chips with an increasing number of processor cores. However,
most of existing programs are still written from the purely distributed memory basis. Design-
ing programs that mix up both the distributed memory model and the shared memory model
is the way go, especially on large hybrid supercomputers.This requires and algorithmic efforts
to express and quantify all levels of parallelism, and then find the best way to schedule the
tasks on the computing nodes accordingly. On a single multi-core node, there is a complex
hierarchical memory system, which should be carefully taken into account in order to avoid a
severe performance penalty. All these have brought a noticeable level of complexity in hybrid
program design, especially if scalability and good absolute performance are expected. We
discuss this topic in the current chapter and provide one case study of our contribution [10].

5.2 Overview of hybrid supercomputing

When it comes to supercomputer, the main problem is scalability. The complexity of the
communication pattern increases with the number of processors, thus exacerbating the gap
between the virtual topology and the physical interconnect. Supercomputers are generally
made with shared memory computing nodes with several cores. Ordinary programmers use
to consider the processor core as the basic processing unit, and then launch a pure message
passing program onto the machine. Current implementation of MPI allows this to work
seamlessly, but a scalability wall is quickly reached. Having a shared memory implementation
on each multi-core node has several advantages. The first one is that the overall memory of
the computing node is available for the task assigned to the node, this also reduces data
dependencies. Secondly, the cores within a node do no longer need to exchange data through
the network, they concurrently access their local shared memory instead. Third, the global
communication topology becomes lighter, this might lead to a significant reduction of the
communication cost.

5.3 Special focus on memory hierarchy

5.3.1 Overview

Multi-core is the standard architecture model for actual and next generation processors
[1, 17, 7, 8]. As the main trend is to increase the number of cores on a single chip, the asso-
ciated hierarchical memory system is becoming more complex and less predictable. Number
of critical scientific computation kernels suffer from a heavy memory load, which acts as a
bottleneck and likely bounds the overall performance. The case of stencil computation is no-
toriously severe, because most of local dependences yield neighbors which are distant enough
to break the data locality comfort. A plethora of contributions can be found in the literature
about ways to improve data locality, with the aim of reaching an optimal cache memory ben-
efit. As long as the primary cache is the main concern, probably in a sequential computation,
the problem can be tackled by means of purely topological considerations. However, when it
comes to multi-level caches in a multi-core computation, different other aspects need to be
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taken into account because of the elusive data movement between caches and the concurrency
in the memory accesses.

5.3.2 Multi-level Memory Model

A multi-level memory in a multi-core architecture is typically organized as shown in Figure
5.1.

(a) Shared L2 cache (b) Private L2 cache

Figure 5.1: Canonical multi-level memory

The overall memory system is organized into several hierarchical levels (typically 2 or 3)
ranging from the main memory to the primary cache, with a decreasing (resp. increasing)
size (resp. access speed). This multi-level organization is mainly justified by the correlation
between the size of a memory device and its access latency, as it is for the use of a cache
itself. Each core has its own primary cache, namely L1. The second level of cache, namely
L2, is either shared by pair of cores (Figure 5.1 (a)) or is private too (Figure 5.1 (b)). The
third level of cache (whenever exists) is shared by all four cores. Typically, the basic building
block is a CPU die with 2p cores, where L1 is always private, L2 is private (Figure 5.1(a)) or
attached to a pair of cores (Figure 5.1(b)) , and L3 is shared by all cores. For case (a), two
examples are the 6-cores Intel Dunnington and he 4-cores IBM Power5. For case (b), now
more common, two examples Intel Xeon and AMD Opteron series A multiprocessor is made
of a replication of several CPUs, connected via special bus controllers like the QuickPath
Interconnect (QPI). The global (main) memory is of course shared by all processor cores and
is generally NUMA. Figure 5.2 illustrates the standard CPUs packaging.

Figure 5.2: CPUs packaging

For sake of simplicity, it is common to consider a model where both the L3-cache and the
main memory can be accessed by any core in a uniform basis (which is not true!). Because
upper memory levels experience wider sharing, each access might incur an additional delay
due to arbitration, snooping for requests or coherency, and bus contention, to name a few.
The so-called false sharing is just a (somehow frustrating) consequence of a strict coherency
protocol. When it comes to benefit from the cache, sharing also has also number of drawbacks,
which mainly come from unbalanced or disorderly concurrent accesses.
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Shared multi-level memories are technically complex. Current compilers do not address
the concurrency and the multi-level aspects of the memory, nor the multi-threading of the
sequential code. Thus, it is up to the programmer to design his code accordingly. We now
describe a case study of a hybrid implementation on a supercomputer.

5.4 Large scale Kronecker product on supercomputers

5.4.1 Abstract

The Kronecker product, also called tensor product, is a fundamental matrix algebra operation,
which is widely used as a natural formalism to express a convolution of many interactions or
representations. Given a set of matrices, we need to multiply their Kronecker product by a
vector. This operation is a critical kernel for iterative algorithms, thus needs to be computed
efficiently. In a previous work, we have proposed a cost optimal parallel algorithm for the
problem, both in terms of floating point computation time and interprocessor communication
steps. However, the lower bound of data transfers can only be achieved if we really consider
(local) logarithmic broadcasts. In practice, we consider a communication loop instead. Thus,
it becomes important to care about the real cost of each broadcast. As this local broadcast is
performed simultaneously by each processor, the situation is getting worse on a large number
of processors (supercomputers). We address the problem in this work in two points. On
one hand, we propose a way to build a virtual topology which has the lowest gap to the
theoretical lower bound. On the other hand, we consider a hybrid implementation, which has
the advantage of reducing the number of communicating nodes. We illustrate our work with
some benchmarks on a large SMP 8-Core supercomputer.

5.4.2 Introduction

The Kronecker product is a basic matrix algebra operation, which is mainly used for multidi-
mensional modeling in number of specialized fields[5]: Stochastic Automata Networks (SAN)
[3, 4, 5], Fast Fourier Transform (FFT), Fast Poisson Solver (FPS) [13, 14], Quantum Com-
putation (QC) [9] and Lattice Quantum Chromodynamics [12]. Considering a principal matrix
expressed as a Kronecker product of several matrices, iterative schemes require to repeatedly
multiply such a matrix by a vector. Formally, we are given N square matrices A(i) of sizes
ni, i = 1, · · · , N , and a vector x of length L = n1n2 · · ·nN , and we need to compute y (of
length L) given by

y = x(
N⊗
i=1

A(i)). (5.1)

It is well-known that we should not compute the matrix explicitly before performing the mul-
tiplication, as this would require a huge memory to store that matrix and will yield redundant
computations. A cost optimal algorithm for this computation proceeds in a recursive way,
consuming one matrix A(i) after another [11]. Consequently, traditional parallel routines for
matrix-vector product cannot be considered. When starting with the recursive algorithm as
a basis, any parallel scheme will involve a set of data communication at the end of each iter-
ation. The cost of this communication is the main challenge for this problem, especially with
a large number of processors, because there is a significant interleave between the (probably
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virtual) communication links. Moreover, in order to reduce the cache misses due to an in-
creasing stride from one iteration to the next one, array reshuffling is sometimes considered,
and this complicates the communication topology.

In [11], we have proposed an efficient parallel algorithm which achieves the multiplication
without explicit shuffling and requires a minimal number of communication steps. However,
the real cost of each communication step depends on the virtual topology and the way the
transfers are really performed. This problem was left open in this work because of the modest
size of the parallel computers considered (up to 256 processors). In this report, we provide
an algorithm to construct an efficient topology, in addition to a hybrid implementation using
OpenMP[15] on the computing multicore nodes. With this contribution, we keep the global
efficiency of the original algorithm on a larger number of processors as illustrated by some
benchmark results. The rest of the report is organized as follows. Section 5.4.3 gives an
overview of the original algorithm. This is followed in section 5.4.4 by a discussion on its
complexity and the position of the problem. We describe our heuristic to find an efficient
topology in section 5.4.5. We discuss the hybrid implementation and section 5.4.6. In section
5.4.7, we display and comment our benchmark results. We conclude in section 5.4.8.

5.4.3 Original parallel algorithm

We restate our parallel algorithm in order to provide a self-contained material, the reader could
refer to [11] for more details. From (5.1) and using the so-called canonical factorization, we
obtain the recursive scheme defined by (5.2){

V (N+1) = x

V (s) = V (s+1)(In1···ns−1 ⊗A(s) ⊗ Ins+1···nN )
(5.2)

which leads at the last step to V (1) = x⊗N
i=1A

(i). Our parallelization of the recursive computa-
tion expressed by equation (5.2) can be defined as follows. Given p processors (assuming that
p divides L = n1n2...nN ), we proceed as follows. We first compute a sequence of N integers
pi such that p = p1p2...pN and pi divides ni, i = 1, 2, ..., N . Considering a multidimensional
indexation, we say that each processor (a1, a2, · · · , aN ) computes the entries (b1, b2, · · · , bN )
of V (s) such that bi mod pi = ai, i = 1, 2, · · · , N . A complete description of the parallel
algorithm is given by Alg. 1. Note that the send and receive occurrences can be combined
into a single sendreceive call because of the symmetry of the topology.

5.4.4 Communication complexity

Our scheduling onto p processors is based on a decomposition (p1, p2, · · · , pN ) such that
pi divides ni, and p1p2 · · · pN = p. In theory, algorithm Alg. 1 performs log(p) parallel
communication steps when executed with p processors. Indeed, one local broadcast occurs at
the end of each step s, thus we do log(p1)+ log(p2)+ · · ·+ log(pN ) = log(p1p2 · · · pN ) = log(p)
parallel communication steps. This assumes that, at a given step i, we perform log(pi) parallel
transfers (local broadcast to pi processors by each processor). However, in practice, we issue
pi − 1 transfers (communication loop). Thus, the gap between pi − 1 and log(pi) becomes
important for larger pi. Actually, each processor performs p1+p2+ · · ·+pN transfers in total.
On a larger cluster, there will be an additional overhead coming from the gap between the
virtual topology and the physical topology. We first focus on how to find a decomposition
which reduces the measure p1 + p2 + · · ·+ pN .
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π ← 1; r ← 1; ℓ ← c1c2...cN = L/p /*
ci =

ni
di

*/
y ← x(Q1w1 , Q2w2 , ..., QNwN

)
For s← N downto 1 do
ℓ← ℓ/c[s]
ws = [wdiv(π)]mod(d[s]) + 1
e← (ws− 1)× c[s]
v ← 0
i← 1
For a← 1 to ℓ do
For j ← e+ 1 to e+ c[s] do
For b← 1 to r do
For t← e+ 1 to e+ c[s] do
v[i]← v[i] +A(s, t, j)y[I + (t− j)r]

end do
i← i+ 1

end do
end do

end do
If (ws = 1) then H ← d else H ← ws− 1
For T = ws+ 1 to ws+ d[s]− 1 do
G← mod(T − 1, d[s]) + 1
idest← w + (G− ws)× π
isender ← w + (H − ws)× π
send(y, idest, ws)
recv(u, isender, H)
e← (H − 1)× c[s]
i← 1
For a← 1 to ℓ do
For j ← 1 to c[s] do
For b← 1 to r do
For t← e+ 1 to e+ c[s] do
v[i]← v[i] +A(s, t, j)u[I + (t− j)r]

end do
i← i+ 1

end do
end do

end do
If (H = 1) then H ← d[s] elseH ← H−1
end do
r ← r × c[s]
π ← π × d[s]
If (s > 1) then y ← v

end do
z(Q1w1 , Q2w2 , ..., QNwN

)← v

Alg. 1 : Implementation of the matrix-vector product.
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5.4.5 Heuristic for an efficient topology

We propose the algorithm Alg. 2 to find an efficient decomposition for a given number of
processors p, which is a factor of n1n2 · · ·nN .

d← p
{Starting decomposition }
For i← 1 to N do
pi ←gcd(d, ni)
d← d

pi
enddo
{Recursive refinement }
For i← 1 to N do
For j ← 1 to N do
α←gcd(pi,

nj

pj
)

if ((α > 1) ∧ (pi > cpj))
pi ← di

α
pj ← αdj

endif
enddo

enddo
Alg. 2 : Heuristic for an efficient decomposition

The principle of Alg. 2 is the following. We start with a gcd decomposition. Next, we
refine it using the fact that if pi > αpj , with α a non trivial factor of pi, then pi/α + αpj <
pi + pj . It is thus rewarding to replace pi (resp. pj) by pi/α (resp. αpj). Once this is done,
it is clear that on a larger cluster (i.e. large value of p), all these simultaneous transfers
will exacerbate the communication overhead and certainly slowdown the global performance.
Fortunately, most modern supercomputers are built up with multicore nodes. Thus, a hybrid
implementation, which combines the standard distributed memory implementation with a
shared memory program (SMP) on the nodes, will overcome the problem by reducing the
number of communicating nodes.

5.4.6 SMP implementation

We chose to use OpenMP to derive our shared memory code. Looking at Alg. 1, we decide
to put the loop distribution pragma over the a loop. In order to do so, we first need to
remove the i ← i + 1 incrementation and directly calculate the i index, which is given by
i← c[s]× r × (a− 1) + r × (j − 1) + b. Now, the length ℓ where the loop blocking will occur
varies with s (ℓ ← ℓ/c[s]). Thus, we need to keep it being a factor of the (fixed) number of
threads. We achieve it by splitting the main loop into two parts, means isolating the case
s = N and then enclose the rest (s = N − 1, N − 2, · · · , 1) into a parallel section. Moreover,
since the number of nodes is now reduced to p/T (T is the number of OpenMP threads), we
need to adapt our primarily decomposition such that ℓ remains a factor of T . The general way
to do that is to split the loop over s at the right place (not only the extremal iteration), but
this would be better implemented with Posix threads library, because we could dynamically
manage the threads to handle desired loop partitioning (this is left for future work). We now
show the impact of our strategy on benchmark results. Interested reader can download the
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source code at
http://www.omegacomputer.com/staff/tadonki/codes/kronecker.f

5.4.7 Experimental results

We consider a SMP 8-core cluster named JADE [16]. The whole cluster JADE is composed
of 1536 compute nodes (i.e. 1536 x 8 = 12288 cores of Harpertown type processors) and
1344 compute nodes of nehalem type processor (1344 x 8 = 10 752 cores). The network
fabric is an Infiniband (IB 4x DDR) double planes network for the first part of the machine (
Harpertown), whereas 4 drivers InfiniBand 4X QDR provide 72 ports IB 4X QDR on output
of each IRU of the second part of the machine (576 Go/s).

We choose N = 6 square matrices of orders 20, 36, 32, 18, 24, and 16, which means
a principal matrix of order L = 159 252 480. We first show in table 1 the results of the
pure MPI code. The decomposition obtained with our algorithm is marked with a star and is
surrounded by two alternative decompositions (the one obtained by a basic gcd decomposition
and the less distributed one) to illustrate the difference.

p decomposition time(s)

32 (4,1,8,1,1,1) 2.06 s

32 (2,2,2,2,2,1)* 1.62 s

32 (1,1,32,1,1,1) 4.14 s

180 (20,9,1,1,1,1) 0.75 s

180 (5,3,2,2,3,1)* 0.34 s

180 (10,6,1,1,3,1) 0.49 s

720 (20,36,1,1,1,1) 1.20 s

720 (10,3,2,2,3,2)* 0.23 s

720 (10,9,4,2,1,1) 0.35 s

2880 (20,36,4,1,1,1) 1.47 s

2880 (10,6,2,2,6,2)* 1.20 s

2880 (20,12,2,2,3,1) 1.32 s

4320 (20,36,2,3,1,1) 1.48 s

4320 (10,3,4,3,3,4)* 0.92 s

4320 (20,18,4,3,1,1) 1.34 s

Table 5.1: MPI implementation timings

From Table 5.1, we see that for a given number of processors, the partition obtained with
our procedure can improve the global performance by a factor from 2 to 5 (see p = 720).
However, when the number or MPI processes increases, we see that we lose the scalability,
because data communication severely dominates (the code is cost optimal for floating point
operations). We now see how this is improved using a hybrid implementation. We reconsider
the previous best decompositions as baseline and compare each of them with the corresponding
hybrid configuration. For each number of cores in {4320, 2880, 720}, we consider a k-cores
SMP clustering, k ∈ {1, 4, 8}.
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#MPI decomposition #threads time speedup

4320 (10,3,4,3,3,4) 1 0.92 s 1

1080 (5, 3, 2, 3, 3, 4) 4 0.16 s 5.75

540 (5, 3, 2, 3, 3, 2) 8 0.12 s 7.67

2880 (10,6,2,2,6,2) 1 1.20 s 1

360 (5, 3, 2, 3, 3, 4) 8 0.16 s 7.5

720 (10,3,2,3,3,2) 1 0.23 s 1

90 (5, 3, 2, 1, 3, 1) 4 0.45 s 0.51

Table 5.2: Hybrid (MPI+OpenMP) code timings

We can see from Table 5.2 that we are close to a linear (threads) speedup with 4320 and
2880 cores. This is due to the fact that the global computation time was really dominated by
data communication and synchronization mechanism. For a smaller number of cores, we see
that we start loosing the benefit of the SMP implementation. This is due the (predictable)
cache misses penalty coming from the stride (t− j)× r in Alg. 1, which is increasingly bigger
since r does. We could use larger number of cores, but we our experimental configuration
sufficiently illustrative of what we need to show and how our solution contributes to the issues.

5.4.8 Conclusion

The problem of multiplying a vector by a Kronecker product of matrices is crucial in stochastic
sciences and is a computationally challenging task for large instances. In order to avoid a
memory bottleneck and redundant computation, a recursive scheme has been mathematically
formulated, for which corresponding efficient implementations are expected. In one hand, the
increasing loop stride needs to be handled carefully in order to reduce the impact of caches
misses. This aspect really dominates and thus needs to be seriously taken into account in the
performance analysis. In the other hand, the parallelization requires an important number
of parallel transfers, which could become problematic on large clusters. This paper provides
a contribution on both aspects, based on a cost optimal solution (floating point computation
point of view) from the literature. Our solution is a combination of a heuristic procedure
to build an efficient virtual topology and the use of hybrid programming paradigm. Our
experimental results illustrate the improvement of our contribution, and evidence the need of
a compromise on large clusters.
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Chapter 6

Conclusion

High Performance Computing currently stands as a hot topic both for computer scientists
and end users. The level of expectations is increasing, motivated by the noticeable technical
advances and what is announced at the horizon. Harvesting a high fraction of the available
processing power to solve real life problems is a central goal to achieve, as the gap between
the theoretical performance and the sustained efficiency is more and more perceptible on
modern supercomputers. From the scientific viewpoint, there are number of challenging
achievements that are expected in order to come up with efficient and scalable computing
solutions. Each involved topic is subject to intensive researches, with significant discoveries
that are already effective. However, the connection among these individual advances need to
be more investigated. This should be one of the major concern of future HPC investigations.

As we have so far demonstrated, solving large-scale problems in a short period of time
using heterogeneous supercomputers is the main concern the high performance computing.
We found that combining the advances in continuous optimization with suitable mathematical
programming formulation of combinatorial problems remains the major approach in operation
research. However, there is lack of studies on implementing state-of-the-art optimization
methods on modern supercomputers. This is great technical challenge that I want to keep
investigating. The branch-and-bound, for instance, is quite irregular and is likely to exhibit an
elusive memory access pattern. Providing the right answer to the load unbalanced process, that
will certainly show up from a standard scheduling, is a challenging task, but very important
for efficiency and scalability. From a fundamental point of view, there is a need to reformulate
problems accordingly, with a strong collaboration with people directly involved with real-life
applications.

Another interesting topic we which to consider is automatic code generation for HPC.
Programming current and future supercomputers is becoming more and more difficult, mainly
because of their heterogeneity. In addition, obtaining a high fraction of the increasing peak
performance is technically hard. One way to obtain an efficient code is to locally optimize
each of its critical parts. Another way is to act at the code generation level. Tailoring a code
to adapt or achieve the best possible performance on given architecture requires a complex set
of program transformations, each designed to satisfy or optimize for one or more aspects (e.g.
registers, cache, TLB, and instruction pipeline, data exchanges) of the target system. When
the processing code is becoming complex, or when the target architecture is a combination of
different processing units (hybrid or accelerated), it becomes very hard to handle the task by
hand. Thus, it is highly expected to be able to achieve the necessary code transformations
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in a systematic way. We plan to keep investigation this topic, which involves compilation
techniques, hardware comprehension, and performance prediction.

We also plan to drive some research in cloud computing, modeling and minimization of
power consumption, and hierarchical memory profiling. Study large-scale ill-conditioned ma-
trix computation on supercomputers is another topic that needs to be addressed.
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