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ABSTRACT
Optimizing computing and communication systems that host energy-
critical applications is becoming a key issue for software developers.
In previouswork, we introduced and validated the Energy/Frequency
Convexity Rule for CPU-bound benchmarks on recent ARM plat-
forms. This rule states that there exists an optimal clock frequency
thatminimizes the CPU’s energy consumption for non-performance-
critical programs.We showed that the Energy/Frequency Convexity
Rule is related to the non-linearity of power with respect to fre-
quency and is not dependent on the supply voltage.

Here, we discuss the application of an analytical energy consump-
tion model proposed previously to our target board, a TI AM572x
EVM. We show that this non-linear analytical model can, for our
experimental settings, be approximated by a frequency-linear vari-
ant, as our voltage is maintained constant. This, however, does not
fit the measurements on the board, suggesting that a parameter
is currently missing in the analytical model. We conjecture that
accounting for temperature in the model would yield more accurate
results that are in-line with our measurements. This builds the case
for the inclusion of this important parameter in our energy models.

1 INTRODUCTION
Despite the advances in hardware technology, which have reduced
the energy consumption of today’s computing systems, designers
are quickly learning that it is beneficial to consider a system-level
view in order to minimize the overall energy consumption of the
hardware/software platform instead of just striving for chips with
very low power requirements. This co-design approach to system
design involves making predictions of the energy consumption
during the early stages of the design cycle – way before the final
hardware and software versions are chosen/ready. Analytical tools
can help system designers by providing energy consumption met-
rics up-front, which allows to streamline and optimize the energy
budget during the initial phase of the project when decisions in the
interest of energy consumption are likely to have less impact on
the performance and cost criteria.

The application of this system-level approach in recent work
lead to the discovery of the, so-called, Energy/Frequency Convexity
Rule [4]. This rule states that the curve relating energy consumption
to processing frequency exhibits convex behaviour, which implies
the existence of an optimal frequency that minimizes energy con-
sumption for compute-bound applications. This result has been
validated on various platforms. Notably, the result was recently
confirmed [10] for the TI AM572x evaluation module using a highly
accurate on-linemeasurements that allow to perform precise energy
monitoring and profiling of non-performance-critical applications.

In this paper, we build an analytical model that can be used by
firmware and application developers to optimize their software
for power consumption for a given target platform running at a
particular technology node. We compare the predictions obtained
from the analytical model with measurements obtained from on-
line runs on the target platform and highlight some of its advantages
and limitations. In particular with respect to temperature issues,
this paper makes the following contributions.

• We provide an analytical energy consumption model for a
typical central processing unit (CPU). The model consists
of two separate submodels for power and execution time.
The power model, proposed previously [3], is further decom-
posed into dynamic, short-circuit, and static components.

• We apply this analytical model to our target board, the TI
AM572x evaluation module, considering controlled voltage
settings. We confirm that the convexity in the experimental
data is maintained, even with a fixed voltage.

• However, with a fixed supply voltage, the non-linear ana-
lytical model becomes linear w.r.t. the processing frequency.
The model then no longer fits the measurements on the plat-
form. Based on preliminary results, we conjecture that this
is due to the fact that the model does not accurately consider
temperature – which was masked in previous experiments
by non-linear voltage terms.1

The remainder of this paper is structured as follows. In Section 2,
we describe the analytical energy consumption model, using a
small number of parameters. This theoretical framework, which
was proposed earlier [3], forms the fundamental groundings for the
Energy/Frequency Convexity Rule. In Section 3, we discuss how De
Vogeleer et al. [3] derived this energymodel and validated it on a test
bed. Next, we describe the experimental setup for the TI AM572x
EVM board used in this work, provide details on the data acquisition
infrastructure, and explain how the host and the board under test are
synchronized. The results obtained by running various benchmarks
on our target board are discussed in Section 5, paving the way
towards a refined model. Finally, we conclude in Section 6 and
provide remarks on future work and research directions.

2 ENERGY CONSUMPTION MODEL
Earlier research endeavours put forward some intuition-based mo-
tivations for the convex behaviour of energy consumption by com-
puter programs, but few introduce analytical frameworks based on
proper physical principles. De Vogeleer et al. [4] have proposed

1These terms are derived indirectly from measurements through fitting, as direct
measurements are impossible behind the sensitive voltage regulators.
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a physics-based analytical model for energy consumption of pro-
cessors. It was then validated on an actual test bed under realistic
conditions. Part of this present work assesses the accuracy of this
analytical model with energy data obtained from a new and much
more accurate test bed.

The energy consumption of a typical CPU over an execution
time period t is equal to the integral of its power over time. The
relationship between the power (in Watt or Joule/s) and energy
(Joule) consumed over the time period [0, t] is as follows:

Ecpu (t) =
∫ t

0
Pcpu (t)dt =

∫ t

0
I (t)V (t)dt, (1)

where Pcpu (t), I (t), V (t) represents the instantaneous power, cur-
rent, and operating voltage of the CPU.

For a discrete time interval ∆t , the energy consumption can
be deemed quasi constant, which, in practice, also means that the
parameters that define energy consumption are also constant during
this time interval. According to the Riemann sum approximation
technique, the integral in Equation 1 can then be approximated by
a finite sum, as denoted in the following equation, with t = n∆t :

Ecpu (n∆t) =
n−1∑
i=0

Pcpu (i∆t)∆t . (2)

2.1 Power Model
When power requirements are reduced, end-user devices become
longer-lasting and more reliable. Hence, it is important to know
where the power is being dispatched and how to calculate it. An
analytical model may help us to understand how various factors,
like power constraints, capacitance, input voltage, switching activ-
ity, and temperature, affect the power characteristics of a device.
Such a model can thus be used to calculate the power features of a
device and determine the maximum reliable operating frequency,
current requirements, power-supply sizing, cooling/heat-sink re-
quirements, and, eventually, help in coming up with a criterion for
selecting devices for future systems.

A typical CMOS digital circuit always requires power, indepen-
dent of whether its logic states undergo transitions due to dynamic
switching or remain unchanged. Its power is mainly composed of
three components, namely 1) dynamic (switching) power, 2) short-
circuit power, and 3) static (leakage) power. The total power of a
CPU at a given time instant t (omitted in the formula) can then be
denoted by the following equation:

Pcpu = Pdynamic + Pshor t−circuit + Pstatic , (3)

2.1.1 Dynamic power. This is the power required for the charg-
ing and discharging of capacitances in the integrated circuit. It
is represented by an effective switching capacitance, Csc , and is
proportional to the switching clock frequency (fclk ) and power
supply voltage (VDD ). The dynamic power of a logic gate can be
represented by the following relationship:

Pdynamic =
1
2
Csc V

2
DD fclk Nt , (4)

where the switching capacitanceCsc is the sum of the power-related
capacitance (Cpd ), which is the equivalent circuit capacitance, and
the external load capacitance (Cload ). Nt denotes the total number
of logic state transitions.

2.1.2 Short-circuit power. This is the power required by the CMOS
circuit due to the short-circuit currents flowing from the voltage
supply to the ground. This occurs only in static CMOS circuits when
both the NMOS and PMOS field effect transistors for an inverter are
conducting simultaneously. The short-circuit power is then given
by the following equation [2]:

Pshor t−circuit =
β

12
(VDD − 2VT )3 τ fclk , (5)

with β the MOS transistor gain factor, τ the input transition time
and VT the threshold voltage.

2.1.3 Static power. This is the power induced by the flow of leak-
age currents, which usually occur when the circuit is in steady-state
with no switching activity. There are two sources of leakage cur-
rents in typical CMOS circuits: the diode- and sub-threshold leakage
currents.

A diode-leakage current occurs when the leakage current pass
through the reverse-biased diode junctions of the transistors, lo-
cated between the source/drain and the substrate. The diode-leakage
current is given by the Shockley diode equation, which is repre-
sented as follows [7]

Idl = is (eqVd /kT − 1), (6)

with is , the reverse bias saturation current, k , Boltzmann’s con-
stant, Vd , the diode voltage, T , the absolute temperature of the p-n
junction, and q, the electrical charge of the electron.

Subthreshold leakage occurs when the leakage currents flow
from the drain to the source when the gate-source voltage is smaller
than the threshold voltage. The closer the threshold voltage is to
0V, the greater the leakage current [2]. The subthreshold leakage
current is expressed by the following equation [1]:

Isl = Ke(VGS−Vth )/(nVT )(1 − e−VDS /VT ), (7)

with K , a parameter dependent of the technology node, VGS , the
gate-to-source voltage, VDS , the drain-to-source voltage, Vth , the
threshold voltage, VT = kT /q, the thermal voltage, where T is
the absolute temperature in Kelvin, n = 1 + Ωtox /D, where tox is
the thickness of gate oxide, D is the channel depletion width, and
Ω = ϵsi/ϵox , where ϵsi and ϵox are the permittivity of the silicon
and gate oxide, respectively.

The resulting static power for both sources of leakage currents
is expressed by the following equation:

Pstatic = IleakaдeVDD , (8)

where Ileakaдe is the sum of Idl and Isl . The total power of the
CPU is then the sum of the dynamic, short-circuit, and static power
– as expressed in Equation 3.

Based on the ITRS measurement traces, Skadron et al. [9] have
established an interesting relationship between dynamic and leak-
age power. They established a relationship where leakage power
has a dependence on the temperature T . The short-circuit power
contribution is ignored in their model. It is represented as follows:

RT =
Pleakaдe

Pdynamic
=

R0
V0T 2

0
e
B
T0 VDD T 2 e

−B
T (9)

where R0, V0, T0, and B are constants that are obtained through
fitting from a series of measurements on actual target platforms.
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If T is considered to be constant across different operating volt-
ages, then RT is a function of the voltage multiplied by a constant
γ , which includes temperature-dependent variables and other con-
stants. The total power of the CPU is then simply the combination
of the dynamic and leakage current formulas from Skadron et al. [9].
It is presented by the following equation:

Pcpu = Pdynamic + Pleakaдe

= (1 + γVDD ) ξ fcpuV 2
DD ,

(10)

where γ is a parameter describing the magnitude of the leakage
currents due to capacitor-based circuits and ξ a parameter defining
the power requirements of the microprocessor.

2.2 Execution Time Model
Applications usually run on top of an operating system. So, in order
to get an estimate of an application computing time, we need to
account for the time consumed by the OS to perform periodical
tasks, like process scheduling, interrupt handling, and processing
kernel events. De Vogeleer et al. [3] have proposed to model the
total time needed to complete a program (t ) as follows:

t =
ccb

fcpu − fcck
+ tcck + tidle , (11)

where t is the total time needed to complete an application, ccb the
number of clock cycles to complete the instructions of an applica-
tion, fcck the inverse of the number of clock cycles per time unit
required by the OS kernel, and fcpu the CPU’s clock frequency.

The time accounting for the kernel overhead to perform periodi-
cal tasks (tcck ) and the operating system’s idling (tidle ) is (gener-
ally) small compared to the time that the CPU is able to perform
useful work, i.e., execute applications. Hence, Equation 11 can be
rewritten as follows:

t = ccb (
1

fcpu − fcck
+ β), (12)

where β is a system architecture-dependent scaling factor.

2.3 Energy Consumption Model
Typical compute-bound non-performance-critical applications in-
cur a constant load on the CPU. The power requirements of the
CPU increase linearly with the increase in CPU utilization. The
energy consumption of a benchmark is thus given by the product
of its average power and execution time.

Thus, fromEquation 10 and Equation 12, the energy consumption
of the CPU for running a given benchmark for tbench seconds at
fixed temperature and power (Pbench ) can be modelled as follows:
ECPU (tbench ) = Pbench .tbench

= ((1 + γVDD )ξ fcpuV 2
DD )ccb (

1
fcpu − fcck

+ β).

(13)

3 PARAMETER ESTIMATION AND
VALIDATION

The energy consumption model defined by Equation 13 has earlier
been validated by De Vogeleer et al. using measurements obtained
from a Samsung Galaxy S2 test bed. This smartphone sports a
1.2GHz dual core ARM Cortex-A9 processor, which uses Samsung’s

Figure 1: Frequency/voltage relationships of multiple appli-
cation microprocessors as found in the Linux kernel. [3]

own Exynos 4210 SoC [4]. They used the Gold-Rader implementa-
tion [5] of the bit-reverse algorithm, which is the part of the ubiqui-
tous Fast Fourier Transform (FFT) algorithm that deterministically
rearranges elements in an array; this kernel is often considered the
reference algorithm for FFT applications.

Different array sizes N were tested (N = 6, 8, 10, 12, 14, 16),
with various frequencies. Figure 1 shows the Frequency/Voltage
relationships for various application microprocessors found in the
Linux kernel. The red dotted line is fitted on the depicted data
from the first three microprocessors (Exynos 4210, Exynos 4x12
and Exynos 5250). It represents the linear relationship between
supply voltage and frequency of operation and has been used in
their curve fitting process.

The experimental data (see Figure 2) show their measured and
modelled energy ECPU for the benchmark kernel with different
operating frequencies. The curve-fitting process used for fixing
the parameter values used in Equation 2 invokes the non-linear
least squares (nls , in R) technique, which minimizes the sum of
the squares of the discrepancies between the curve and the data.
This technique fits the power and execution time equations to
the experimental data and yield the unknown parameters from
Equation 13. The data shows that the analytical model for the
energy consumption fits nicely with the measured data. Indeed, the
absolute error between the fitted model and the measured data for
the energy consumption stays well below 6%.

4 EXPERIMENT
To provide a detailed analysis of the energy consumption model
described in Section 2, we selected a more advanced experimental
setup than the one used by De Vogeleer et al. [4]. We also focused
on an extended set of benchmark kernels on which to perform
minute power and execution time measurements.

Test Platform. To provide a detailed analysis of the energy con-
sumption model described in Section 2, we chose the AM572x EVM
development board from Texas Instruments (TI). It is equipped with
a high-performance SitaraTM SoC running GNU/Linux with ker-
nel release version 4.9.59. The SoC is implemented using a 28-nm
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Figure 2: Energy required by the CPU at 37◦C to complete
our benchmark kernel given an input size. The dashed lines
denote the theoretical curve as per Equation 13.

process technology and is comprised of several subsystems. The
MPU subsystem incorporates two ARM Cortex-A15 cores. It also
incorporates individual level 1 (L1) and level 2 (L2) caches which
are shared between the cores and includes various other shared
peripherals. The subsystem supports a configuration to completely
shut off one core and run the other at low voltage and low frequency
to achieve low-power operation [6].

The AM572x EVM board offers current-sense resistors for all
its submodules, including the MPU. These resistors provide access
to the power supply rail and allow continuous power monitoring
in real time during software execution. We modified the board by
soldering male headers across the current-sense resistors to easily
connect probes. The resistor’s value is 0.01 Ω and has been chosen
to provide the best possible dynamic range during data acquisition.

We use a compact data acquisition device from National In-
struments (NI cDAQ-9174) for all our data acquisition needs. NI
CompactDAQ is a portable platform that integrates connectivity
and signal conditioning into I/O modules that can directly inter-
face with many different sensors. We use an NI 9215 voltage input
module to measure the voltage drop across the sense resistor. We
then calculate the current using Ohm’s law and multiply it with
common-mode voltage to get power values.

Finally, our experimental setup includes a Windows host ma-
chine running the LabVIEW software, the NI cDAQwith the NI 9215
voltage input module plugged in, and the TI AM572x board.

Protocol. We put our platform to the test using different work-
loads and measured three key characteristics (execution time, av-
erage power, and energy consumption) while varying the clock
frequency in steps of 100 MHz between 100 MHz and 1500 MHz,
while keeping the supply voltage at a fixed setting. We evaluated
the power and execution time models presented in [4] with the data
obtained from our experimental platform.

For our experiments, we use two cryptographic benchmarks,
namely SHA and Blowfish, from the BEEBS suite [8] and the Gold-
Rader bit-reverse algorithm. The benchmarks are run 3 times in
similar environmental conditions and it has been found that there
are no significant variations in terms of energy consumption.
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Figure 3: Frequency/Voltage relationship for TI AM572x
evaluation module. The plot also includes the assumed volt-
age data for [4].

5 ANALYSIS
Based on the experimental data acquired as described in Section 4,
the adequacy of the analytical model of energy consumption of
Section 2 was analysed. Here, we present our main findings.

5.1 Frequency/Voltage Relationship
The underlying assumption of [3] is that the relationship between
frequency and supply voltage in a DVFS process is approximately
linear for modern microprocessors. The documentation for the
TI AM572x EVM board used here, for instance, indicates three
operating modes for frequencies from 100MHz to 1GHz, from 1GHz
to 1.176GHz, and from 1.2GHz to 1.5GHz. For each of these modes,
a reference voltage (1.06 V, 1.16 V, 1.21 V respectively) is indicated
with a range of ±10% at run time. This would roughly match the
hypothesis underlying the analytical model.

There is, however, a caveat. The voltage does not vary dynami-
cally at run time with regard to these reference voltages. Instead,
a fixed value is preset by the manufacturer by automated testing.
The determined voltage is stored in the AVS Class 0 registers and
cannot be modified (Table 18-26 of the AM572x TRM [6]). The
frequency-voltage relation in the DVFS process is then no longer
linear. For example, on our TI AM572x EVM board, the operating
voltage is preset to 0.98 V, 1.09 V, and 1.23 V respectively.

For our experiments, we set the CPU target voltage to 1.23 V for
the entire frequency range to observe the effect of frequency scaling
in isolation. Figure 3 depicts the Frequency/Voltage relationship
for the TI AM572x EVM, the assumed voltage data for [4] and the
voltage setting used in our experiments.

Finally, note that memory is clocked at a fixed, independent
frequency. For the compute-bound benchmarks used in our experi-
ments, the static energy consumption is hence proportional to the
CPU clock speed.

5.2 Execution Time Model Validation
Figure 4 shows the performance of the benchmarks, i.e., execution
time, depending on the CPU’s clock frequency on the TI AM572x

4



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Frequency (MHz)

0

100

200

300

400

500

600

700

E
x
ec

u
ti

o
n
 t

im
e 

(s
)

Gold-rader
Blowfish
SHA
Gold-rader (model)

Blowfish (model)

SHA (model)

Execution time vs Frequency

Figure 4: Performance of the benchmarks with varying
clock frequency on the TI AM572x platform.

EVM. The execution time decreases in a clear non-linear fashion
for our CPU-bound applications as the frequency increases. This is
hardly surprising and underlines the importance of frequency scal-
ing, including Dynamic Frequency Scaling, for performance. While
the energy consumption of the SoC, when running a benchmark,
also depends on the benchmark’s execution time (recall that leak-
age power and other factors that are independent of CPU load may
play a role here), the clock frequency may have a more significant
impact. Figure 4 also includes the non-linear least squares fit of the
execution time model (Equation 12) on our experimental data. It
can be seen that the curve fits the data points very well.

5.3 Power Model Validation
The power requirements change depending on the presence or
absence of a heatsink on the CPU die and on whether or not it has
been connected to a fan. In our experiments, the power values are
measured when the board under test has the heatsink attached with
no fan connected. Figure 5 shows that the time-averaged power
(using 1 ms time resolution) increases steadily with the frequency
for all three benchmarks (SHA, Blowfish and Gold-Rader) in an
almost-linear fashion. This accounts for the power of the entire
MPU subsystem, i.e., both ARM cores, where one core is running
the benchmark and the other is idle – but not powered off. Note that
the subsystem also includes the core’s private L1 caches, a shared L2
cache, and the necessary interconnect. These components cannot
be controlled separately in software, but may transition themselves
into low-power modes independently from the CPUs. Reducing the
clock frequency minimizes the average power, but this may not be
the best strategy, as the non-linear increase in execution time may
offset potential gains.

Figure 5 also includes a non-linear least squares fit of the power
model (Equation 10) on our experimental data. It can be seen that
the curve does not fit the data points very well. This is because,
for our experimental voltage setting, which is set to a constant
1.23 V, Equation 10 becomes linear. Hence, it does not neatly fit our
non-linear experimental curve.
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Figure 5: Average power of the benchmarks with varying
clock frequency on the TI AM572x platform
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Figure 6: Total energy vs. Frequency: energy consumption
of our three benchmarks with varying clock frequency on
the TI AM572x platform. The dotted lines represent the op-
timum frequency points for each benchmark.

5.4 Energy/Frequency Convexity Rule
Energy-management approaches often neglect that frequency scal-
ing is highly dependent on workload characteristics. Figure 6 com-
pares the accumulated total CPU energy consumption for each of
our three benchmarks with varying frequency on the TI AM572x
platform (accounting for the same subsystems as for Figure 5). The
energy consumption curves are clearly convex, each having an opti-
mal frequency point (fopt ) where the energy consumption is mini-
mized. Our experiments thus further support De Vogeleer et al. [4]’s
previous work revealing the existence of the Energy/Frequency
Convexity Rule for compute-intensive applications running on an
Exynos-based platform in a Samsung Galaxy S2 phone. Their con-
vexity curves can be seen in Figure 2.

The convexity of the energy curve is in part due to the processor’s
static power, which is independent of the core frequency. As the
processor runs with a faster clock, it requires less total time, and the
total static energy consumption is less in those cases. On the other
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Figure 7: Total energy consumption of our three bench-
marks with varying clock frequency on the TI AM572x plat-
form. The modelled energy curves do not fit the obtained
experimental measured data.

hand, our experimental data and Equation 12 show that the time
it takes to execute a workload increases more than linearly when
decreasing the CPU’s frequency, while leakage power continues to
be drawn during the time the CPU is active. This leakage contributes
to the convexity at the lower end of the frequency range, i.e., when
the operating frequency f is lower than the optimal frequency fopt .
For the region where the operating frequency is greater than the
optimal frequency (f > fopt ), the energy consumption is attributed
to the increase in frequency, which contributes to dynamic power.

5.5 Temperature Impact
The estimated experimental energy consumption values above were
obtained by multiplying the data in the power traces with those in
the execution time traces for each frequency. A similar computa-
tion was also performed with the fitted power and execution time
values. Figure 7 shows the energy consumption for all the three
benchmarks. Clearly, the energy consumption predictions obtained
from the model do not describe convex curves and also do not fit
the experimental data measured on the board. This is a direct con-
sequence of the linear relationship between frequency and power
in Equation 10 (recall that our experiments use a constant VDD ).

Since, having a constant voltage did not affect the Energy/Freq-
uency convexity property of our experimental data (see also [10]),
this shows that another parameter needs to be taken into account
in our model, which is not voltage but one which has a non-linear
relation with power. Interestingly, during our experiments, we have
noticed that the core temperature can increase by about 10◦C for
the SHA benchmark when run using Linux’s ondemand frequency
governor. This is a direct consequence of the long execution time,
in the order of several hundreds of seconds, and the high CPU de-
mand of this compute-bound kernel. Note that, on the contrary, the
Gold-Rader kernel has a short execution time. Hence, De Vogeleer
et al. have rightly assumed that the temperature can be deemed
constant during the entire execution cycle of their short benchmark,
thus not seeing the discrepancy between data and model that our
more advanced protocol put to light. Our own use of Gold-Rader,

which we are looping 1024 times in each run, induces significant
temperature changes along the way.

Hence, temperature variation cannot, in general, be totally ig-
nored in the energy modelling, as was done in Equation 13. We
conjecture that the most important missing variable in our power
model is thus more than likely temperature, and that a formal rela-
tionship between power and temperature needs to be established.
A first approach to this question is the work of Skadron et al. [9],
which shows that power is proportional to the square of the tem-
perature. Of course, simply inserting the temperature variable in
the model does not mean that the regression analysis will be able to
resolve the relationship between temperature and power. More re-
search is thus clearly warranted to tackle this issue, the importance
of which has been put into light by our experiments.

6 CONCLUSION AND FUTUREWORK
In this work, we evaluate the analytical model of the CPU energy
consumption introduced by De Vogeleer et al [4]. Based on a recon-
firmation of the Energy/Frequency Convexity Rule for CPU-bound
benchmarks using a highly accurate workbench, our results show
that the convexity persists despite the experimental voltage setting
being set to a constant value. We found that, when benchmarks
have longer execution time, their junction temperature of the CPU
is not constant, rendering the fit with energy consumption mod-
els more challenging. We propose to introduce the temperature
variable in the power consumption model to handle this issue.

Future work will address the temperature issues put into light
here. In particular, we intend to performmore accurate temperature-
dependent performance experiments, using an industry-grade tem-
perature control chamber. This would help assessing the impor-
tance of this parameter and provide food for thought to design a
temperature-aware formal model for energy consumption.
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