Meta-programming for Cross-Domain Tensor Optimizations

Adilla Susungi ${ }^{1}$, Norman A. Rink ${ }^{2}$, Albert Cohen ${ }^{3}$, Jerónimo Castrillón ${ }^{2}$, Claude Tadonki ${ }^{1}$
${ }^{1}$ MINES ParisTech, PSL Research University
${ }^{2}$ Chair for Compiler Construction, Technische Universität Dresden
${ }^{3}$ Inria, Ecole normale supérieure

17th International Conference on Generative Programming: Concepts \& Experiences (GPCE'18) Boston, USA
November 5, 2018

Tensor optimizations and frameworks

Tensors

- Fundamental algebraic structure with applications to many domains
- Operations on multi-dimensional and computationally intense loop nests
- Involves multiple optimization strategies: loop, data layout, algebraic transformations, mapping decisions, etc.

Existing optimizing frameworks

- Built-in strategies do not always generalize well
- Lack of flexibility in composing finely tuned, target-specific optimizations

Transformation meta-languages

Meta-languages offering transformation heuristics as first-class citizens

	permute([1,3,2])	
\# Double fusion of the three nests	tile(0,3,TK)	```Func blur_3x3(Func input) { Func blur_x, blur_y; Var x, y, xi, yi;```
motion (enclose (C2L1_2_1_2_1), TARGET 2 2 1 2 - 1)	split($0,2,[\mathrm{~d} 3 \geq \mathrm{d} 1+\mathrm{TK}])$	
motion (enclose (C1L1_2_1_2_1), C2L1_2_1_2_1)	tile(0,3,TI,2)	
motion (enclose (C3L1_2_1_2_1), C1L1_2_1_2_1)	tile(0,3,TJ,2)	
\# Register blocking and unrolling (factor 2)	datacopy ($0,3,2$)	// The algorithm - no storage or order blur_x $x, y)=(\operatorname{input}(x-1, y)+\operatorname{input}(x, y)+\operatorname{inp}$ blur_y $(x, y)=$ (blur_x $(x, y-1)+$ blur_x $(x, y)+$
time_stripmine (enclose(C3L1_2_1_2_1,2), 2, 2)	datacopy (0,4,3,[1])	
time_stripmine (enclose(C3L1_2_1_2_1,1), 4, 2)	unroll $\left(0,4, \mathrm{UJ}_{1}\right)$	
interchange (enclose (C3L1_2_1_2_1,2))	$\text { unroll }\left(0,5, \mathrm{UI}_{1}\right)$	// The schedule - defines order, locality; implie blur_y.tile(x, y, xi, yi, 256, 32)
time_peel (enclose (C3L1_2_1_2_1, 3) , 4, '2') time peel (enclose (C3L1_2_1_2_1_2,3),4, $\mathrm{N}-2^{\prime}$)	datacopy(1,2,3,[1])	
	unroll (1,2, UJ_{2})	$\begin{aligned} & \text {.vectorize(xi, 8).parallel(y); } \\ & \text { blur_x.compute_at(blur_y, x).vectorize(x, 8); } \end{aligned}$
time _peel (enclose (C L1_2_1_2_1_2_1_2,1),5,'M-2')	unroll (1,3, UI_{2})	
fullunroll (enclose (C3L1_2_1_2_1_2_1_2_1,2))	Unol(1,3, Ul_{2})	
fullunroll (enclose (C3L1_2_1_2_1_2_1_2_1,1))		return blur_y;
CHiLL (Chen et al., 2008)		

URUK (Cohen et al., ICS'05)

Halide (Ragan-Kelley et al., PLDI'14)

```
reorder((), (0,2,1,3,4,5,6))
fuse_next((0))
fuse_next((0))
fuse_next((0))
fuse_next((0, 2))
Clay (Bagnères et al., CGO'16)
```

```
partialDot(x: [float]N, y: [float]N ) = k = tvm.reduce_axis((0, K), 'k')
    (joinomapWrg}\mp@subsup{}{}{0}(\quadA=tvm.placeholder((M, K), name='A')
        joinotoGlobal(mapLcl }\mp@subsup{}{}{0}(\mathrm{ mapSeq(id))) osp B = tvm.placeholder((K,N), name='B')
        iterate ( }\mp@subsup{}{(}{\prime}\mathrm{ joino C = tvm.compute([M, N), - Ilambda x, y: A[x, k] * B
            mapLcl }\mp@subsup{}{}{0}\mathrm{ ( toLocal(mapSeq(id)) s = tvm.create_schedule(C.op)
                            reduceSeq(add, 0) ) func = tvm.build(s, [A, B, C], target=target, name
            split 2 ) o xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis
        joinomapLcl ( }\mp@subsup{}{}{0}\mathrm{ toLocal (mapSeq(id)) o k, = s[C].op.reduce_axis
            reduceSeq(multandSumUp, 0) ) ○ spl ko, ki = s[C].split(k, factor=4)
    )osplit }\mp@subsup{}{}{128})(zip(x,y) 
```

Lift (Steuwer et al., CGO'17)

Transformation meta-languages

We are interested in meta-languages for program transformation, because

- They help increasing expert productivity when hand-writing optimizations
- They ease the composition and cancellation of transformations
- They make the optimization paths explicit and future-proof

Strong allies for building adaptive, portable and efficient compiler infrastructures to face the complexity of parallel architectures

Contributions outline

Keys to

- Widen optimization search space
- Enhance the ability to flexibly compose optimization paths
- Formally characterize their semantics

Design and semantics of a tensor optimizations meta-language (TeML)

TeML overview

〈program＞	：：$=\langle$ stmt $\rangle\langle$ program \rangle
	｜ϵ
$\langle s t m t\rangle$	：：＝\langle id $\rangle=\langle$ expression \rangle
	$\mid\langle i d\rangle=$＠$\langle i d\rangle$ ：\langle expression \rangle
	｜codegen（ $\langle i d s\rangle$ ）
	｜init（．．．）
〈expression＞	：：＝＜Texpression＞
	｜〈Lexpression＞
〈Texpression＞	：：＝scalar（）
	｜tensor（［＜ints \rangle ）
	｜eq（ \langle id \rangle,\langle iters \rangle ？$\rightarrow\langle i t e r s\rangle)$
	｜vop（〈id \rangle,\langle id $\rangle,[\langle$ iters \rangle ？，\langle iters \rangle ？$]$ ）
	$\mid \mathrm{op}(\langle i d\rangle,\langle$ id $\rangle,[\langle$ iters \rangle ？，\langle iters \rangle ？］$\rightarrow\langle$ iters \rangle ）
〈Lexpression＞	：：＝build（＜id ${ }^{\text {）}}$
	｜stripmine（ $\langle i d\rangle,\langle i n t\rangle,\langle i n t\rangle)$
	｜interchange（ $\langle i d\rangle$ ，\langle int $\rangle,\langle i n t\rangle$ ）
	｜fuse（ $\langle i d\rangle,\langle i d\rangle,\langle i n t\rangle)$
	｜unroll（ \langle id \rangle,\langle int \rangle ）
〈iters＞	：：＝［＜ids ${ }^{\text {］}}$
$\langle i d s\rangle$	：：$=\langle i d\rangle(,\langle i d\rangle)^{*}$
〈ints）	：：$=\langle$ int $\rangle(\text { ，}\langle\text { int }\rangle)^{*}$

Every function returns either

－Tensors
－Loops

Operations on tensors

－Computation specification
－Layout transformations
－Data initialization，mapping

Operations on loops

－Expansion from tensor computation
－Transformation

TeML overview

Raising the level of abstraction

A contraction chain

$$
v_{i j k}=\sum_{l, m, n} A_{k n} \cdot A_{j m} \cdot A_{i l} \cdot u_{l m n}
$$

Control the evaluation order

$$
\begin{aligned}
& v_{i j k}=\sum_{l, m, n}\left(A_{k n} \cdot\left(A_{j m} \cdot\left(A_{i l} \cdot u_{l m n}\right)\right)\right. \\
& v_{i j k}=\sum_{l, m, n}\left(A_{k n} \cdot A_{j m}\right) \cdot\left(A_{i l} \cdot u_{l m n}\right) \\
& v_{i j k}=\sum_{l, m, n}\left(A_{k n} \cdot\left(\left(A_{j m} \cdot A_{i l}\right) \cdot u_{l m n}\right)\right)
\end{aligned}
$$

- The evaluation order may dramatically impact execution time
- May be combined with other transformation heuristics

TeML overview

Raising the level of abstraction

Tensor-algebraic transformations are essential some applications

- Out of the scope of polyhedral-based meta-languages
- Or requires additional analyses to (re)discover algebraic tensor properties

```
    # -- Begin program specification
    w = tensor(double, [13])
    u = tensor(double, [13, 13, 13])
    L = tensor(double, [13, 13])
    M_ = outerproduct([w, w, w])
    Lh = div(L, w, [[i1, i2], [i2]] ->
4[i1, i2])
    M = entrywise_mul(M_, u)
    r1 = contract(Lh, M, [[2, 1]])
    r2 = contract(Lh, M, [[2, 2]])
    r3 = contract(Lh, M, [[2, 3]])
    # -- End program specification
```

- We want such characterizations to be native to the language
- Provides room for encoding algebraic properties

TeML overview

By example: facilitating transformation composition

- Existing meta-languages are either fully imperative or mix a functional specification of the computation with an imperative transformation sequence
- We use a functional style for both program stages

```
    # -- Begin program specification
    w = tensor(double, [13])
    u = tensor(double, [13, 13, 13])
    L = tensor(double, [13, 13])
    M_ = outerproduct([w, w, w])
    Lh = div(L, w, [[i1, i2], [i2]] ->
@ [i1, i2])
    M = entrywise_mul(M_, u)
    r1 = contract(Lh, M, [[2, 1]])
    r2 = contract(Lh, M, [[2, 2]])
    r3 = contract(Lh, M, [[2, 3]])
    # -- End program specification
    # Generate loops
    l1 = build(M_)
    12 = build(Lh)
    13 = build(M)
    l4 = build(r1)
    15 = build(r2)
    l6 = build(r3)
```


Denotational semantics

Domains of trees for tensors (T) and loops (L)

State

- A state in a TEML meta-program maps identifiers to trees representing either tensors or loops

$$
\begin{array}{r}
\mathbf{S}=\text { identifier } \rightarrow(\mathbf{T}+\mathbf{L}) \\
\sigma: \text { identifier } \rightarrow(\mathbf{T}+\mathbf{L})
\end{array}
$$

Valuation functions

- Different manipulations of a state σ for each syntactic entity

$$
\begin{aligned}
& \mathcal{P}_{\text {prog }}: \text { program } \rightarrow(\mathbf{S} \rightarrow \mathbf{S}) \\
& \mathcal{P}_{\text {stmt }}: \text { stmt } \rightarrow(\mathbf{S} \rightarrow \mathbf{S}) \\
& \mathcal{E}_{t}: \text { Texpression } \rightarrow(\mathbf{S} \rightarrow \mathbf{T}) \\
& \mathcal{E}_{l}: \text { Lexpression } \rightarrow(\mathbf{S} \rightarrow \mathbf{L})
\end{aligned}
$$

Semantics of tensor expressions

Subtleties

```
for (int i1 = 0; i1 < (N-1); i1++)
    for (int i2 = 0; i2 < (N-1); i2++)
        E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
```

 \(\mathrm{A}=\operatorname{tensor}([\mathrm{N}, \mathrm{N}])\)
 \(B=\operatorname{tensor}([N, N])\)
 \(C=\) tensor \(([N, N])\)
 \(\mathrm{D}=\operatorname{vadd}(\mathrm{A}, \mathrm{B},[[\mathrm{i} 1, \mathrm{i} 2],[i 1, i 2]])\)
 \(E=\operatorname{mul}(C, D,[[i 1, i 2]]-,>[i 1, i 2])\)
 - We use virtual operators (vops) to compose beyond 3-address expressions
- Tensors returned by vops only hold subexpressions eventually expanded recursively at instances of ops
- Tensors returned by vops do not have shapes of their own
- Others have their shape inferred, as well as their loop domains

Semantics of tensor expressions

Low-level operations

```
Essential informations to capture
    - Shape
- Expression tree
- Associated list of iterators
```

```
A = tensor([N,N])
```

A = tensor([N,N])
B = tensor([N, N])
B = tensor([N, N])
C = tensor([N, N])
C = tensor([N, N])
D = vadd(A, B, [[i1, i2], [i1, i2]])
D = vadd(A, B, [[i1, i2], [i1, i2]])
E = mul(C, D, [[i1, i2],] -> [i1, i2])

```
E = mul(C, D, [[i1, i2], ] -> [i1, i2])
```


$$
\begin{aligned}
\sigma_{1} & =\mathcal{P}_{\text {stmt }} \llbracket A=\text { tensor }([N, N]) \rrbracket \emptyset \\
& =\{A \mapsto\langle(A,[N, N], \epsilon),[]\rangle\}
\end{aligned}
$$

$$
\sigma_{2}=\mathcal{P}_{\text {stmt }} \llbracket B=\operatorname{tensor}([N, N]) \rrbracket \sigma_{1}
$$

$$
=\{A \mapsto\langle(A,[N, N], \epsilon),[]\rangle, B \mapsto\langle(B,[N, N], \epsilon),[]\rangle\}
$$

$$
\sigma_{3}=\cdots
$$

Semantics of tensor expressions

High-level operations

The example of tensor contraction

$$
\begin{aligned}
\mathcal{P}_{\text {stmt }} \llbracket t^{\prime}=\operatorname{contract}\left(t_{0}, t_{1},\left[r_{0}, r_{1}\right]\right) \rrbracket= \\
\qquad \mathcal{P}_{\text {prog }} \llbracket \begin{array}{l}
t_{2}=\operatorname{vmul}\left(t_{0}, t_{1},[I, J]\right) \\
t^{\prime}=\operatorname{add}\left(t^{\prime}, t_{2},\left[I^{\prime}, \epsilon\right] \rightarrow I^{\prime}\right)
\end{array} \rrbracket
\end{aligned}
$$

where

$$
\begin{aligned}
& I=\left[\mathrm{i} 0, \ldots, \mathrm{i}\left(r_{0}-1\right), \mathrm{k}, \mathrm{i}\left(r_{0}+1\right), \ldots, \mathrm{i} s_{0}\right], \\
& J=\left[\mathrm{j} 0, \ldots, \mathrm{j}\left(r_{1}-1\right), \mathrm{k}, \mathrm{j}\left(r_{1}+1\right), \ldots, \mathrm{j} s_{1}\right], \\
& I^{\prime}=(I \backslash\{\mathrm{k}\}) \|(J \backslash\{\mathrm{k}\}) .
\end{aligned}
$$

Semantics of loop transformations

- Principles of loop transformations are quite well understood.
- The polyhedral model is a rich formalism to abstracts the effects of loop transformations
- The idea here is to formalize such principles in a meta-language context

Example

```
for (int i1 = 0; i1 <= (N-1); i1++) {
    C[i1] = A[i1] - B[i1]; // tC
    for (int i2 = 0; i2 <= (N-1); i2++) {
        E[i1][i2] = D[i2] * C[i1]; // tE
        F[i1][i2] = E[i1][i2]; // tF
    }
    for (int i3 = 0; i3 <= (N-1); i3++) {
        G[i1] = G[i1] + F[i1][i3] // tG
    }
}
```


Loop creation from tensor expressions

- The semantics of build

```
A = tensor([N, N])
B = tensor([N,N])
C = tensor([N, N])
D = vadd(A, B, [[i1, i2], [i1, i2]])
E = mul(C, D, [[i1, i2], ] -> [i1, i2])
\mathcal{E}l\llbracket\mp@code{build}(E)\rrbracket\mp@subsup{\sigma}{5}{}=\langle\textrm{i}1,[\langlei2,[\mp@subsup{\sigma}{5}{}(E)]\rangle]\rangle:
for (int i1 = 0; i1 <= (N-1); i1++)
    for (int i2 = 0; i2 <= (N-1); i2++)
    E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
```


Semantics of loop expressions

Stripmining

- Divides an iteration space into smaller blocks

```
A = tensor([N,N])
B = tensor([N,N])
C = tensor([N,N])
D = vadd(A, B, [[i1, i2], [i1, i2]])
E = mul(C, D, [[i1, i2], ] -> [i1, i2])
L = build(E)
S = stripmine(L, 1, 32)
\sigman}=\mp@subsup{\mathcal{P}}{\mathrm{ stmt }}{}\llbracketL=\operatorname{build}(E)\rrbracket\mp@subsup{\sigma}{n-1}{
    ={L\mapsto\langlei1,[\langlei2,[\mp@subsup{\sigma}{n-1}{}(E)]\rangle]\rangle}
\sigman+1}=\mp@subsup{\mathcal{P}}{\mathrm{ stmt }\llbracketS=\operatorname{stripmine}(L,1,32)\rrbracket\mp@subsup{\sigma}{n}{}}{
    = {L\mapsto\langlei1,[\langlei2,[\sigma泣(E)]\rangle]\rangle,S\mapsto\langle\textrm{t}1,[\langle\textrm{i}1,[\langle\textrm{i}2,[\mp@subsup{\sigma}{n}{}(E)]\rangle]\rangle]\rangle}
\mathcal{E}}|\llbracket\mathrm{ stripmine( }L,1,32)\rrbracket\mp@subsup{\sigma}{n}{}=\langle\textrm{t}1,[\langle\textrm{i}1,[\langle\textrm{i}2,[\mp@subsup{\sigma}{n}{}(E)]\rangle]\rangle]\rangle
for (int t1 = 0; t1 <= (N-1)/32; t1++)
    for (int i1 = 32* t1; i1 <= min((N-1), 32* t1 + 31); i1++)
        for (int i2 = 0; i2 <= (N-1); i2++)
            E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
```


Semantics of loop expressions

Interchange

- Swaps dimensions of a loop nest

```
A = tensor([N,N])
B = tensor([N,N])
C = tensor([N, N])
D = vadd(A, B, [[i1, i2], [i1, i2]])
E = mul(C, D, [[i1, i2], ] -> [i1, i2])
L = build(E)
I = interchange(L, [1, 2])
```

$$
\begin{aligned}
\sigma_{n} & =\mathcal{P}_{\text {stmt }} \llbracket L=\operatorname{build}(E) \rrbracket \sigma_{n-1} \\
& =\left\{L \mapsto\left\langle\mathrm{i} 1,\left[\left\langle\mathrm{i} 2,\left[\sigma_{n-1}(E)\right]\right\rangle\right]\right\rangle\right\}
\end{aligned}
$$

$$
\sigma_{n+1}=\mathcal{P}_{\text {stmt }} \llbracket I==\text { interchange }(L,[1,2]) \rrbracket \sigma_{n}
$$

$$
=\left\{L \mapsto\left\langle\mathrm{i} 1,\left[\left\langle\mathrm{i} 2,\left[\sigma_{n}(E)\right]\right\rangle\right]\right\rangle, I \mapsto\left\langle\mathrm{i} 2,\left[\left\langle\mathrm{i} 1,\left[\sigma_{n}(E)\right]\right\rangle\right]\right\rangle\right\}
$$

```
\(\mathcal{E}_{l} \llbracket\) interchange \((L,[1,2]) \rrbracket \sigma_{n}=\left\langle\mathrm{i} 2,\left[\left\langle\mathrm{i} 1,\left[\sigma_{n}(E)\right]\right\rangle\right]\right\rangle\) :
for (int i2 \(=0\); i2 \(<=(\mathrm{N}-1)\); i2++)
    for (int i1 = 0 ; i1 \(<=(\mathrm{N}-1)\); i1++)
        \(\mathrm{E}[\mathrm{i} 1][\mathrm{i} 2]=\mathrm{C}[\mathrm{i} 1][\mathrm{i} 2] *(\mathrm{~A}[\mathrm{i} 1][\mathrm{i} 2]+\mathrm{B}[\mathrm{i} 1][\mathrm{i} 2]) ;\)
```


Semantics of loop expressions

Loop tiling in denotational semantics

- Loop tiling is the composition of stripmining and interchange

```
for (int t1 = 0; t1 <= (N-1)/32; t1++)
    for (int t2 = 0; t2 <= (N-1)/32; t2++)
        for (int i1 = 32* t1; i1 <= min((N-1), 32* t1 + 31); i1++)
            for (int i2 = 32* t2; i2 <= min((N-1), 32* t2 + 31); i2++)
            E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);
```

 \(\mathcal{P}_{\text {stmt }} \llbracket l^{\prime}=\mathrm{tile}(l, v) \rrbracket=\)
 \(\mathcal{P}_{\text {prog }} \llbracket \begin{aligned} & l_{0}=\operatorname{stripmine_ } \mathrm{n}(l, d, v) \\ & l_{1}=\text { interchange } \mathrm{n}\left(l_{0}, 2,2 d-2\right) \\ & l_{2}=\text { interchange } \mathrm{n}\left(l_{1}, 3,2 d-3\right) \\ & \ldots \\ & \left.l_{d-1}=\text { interchange } \mathrm{n}\left(l_{d-2}, d, d\right)\right) \\ & l^{\prime}=\text { interchange } \mathrm{n}\left(l_{d-1}, d+1, d-1\right)\end{aligned} \|\)

Semantics of loop expressions

Loop tiling in denotational semantics

Initial loop nest

After triple application of interchange_n

TeML evaluation

Expressing tensor computations in comparison to TensorFlow

Application domains: Linear Algebra (LA), Deep Learning (DL), Machine Learning (ML), Data Analytics (DA), Fluid Dynamics (FD), Image Processing (IP).

	Name	Domain	TensorFlow		TeML	
			LOC	Constructs used	LOC	Constructs used
Matrix Multiplication	mm	LA	3	matmul	3	contract
transposed	tmm	DL	3	matmul:transpose=True	4	transpose, contract
batched	bmm		3	einsum	3	mul, add
Grouped Convolutions	gconv		N/A	Not implemented Incompatible with einsum	5	vmul, add
Matricized Tensor Times Khatri-Rao product	mttkrp	DA	4	einsum or tensordot, multiply	5	vcontract, contract
Sampled Dense-Dense Matrix Product	sddmm	ML	4	einsum or tensordot, multiply	6	vcontract, entrywise_mul
Interpolation	interp	FD	3	einsum or tensordot	5	contract
Helmholtz	helm		N/A	Required division not well supported	9	contract, outerproduct, div, entrywise_mul
Blur	blur	IP	N/A	No stencil support.	9	op, vop
Coarsity	coars		6	einsum or multiply, subtract	6	ventrywise_mul, entrywise_sub

TeML evaluation

Reproducing optimization paths of Pluto

Pluto

- Polyhedral automatic parallelizer
- Some flexibility in selecting optimizations and their parameters
- But quite rigid heuristics, mostly "black-box" optimizations

$\begin{aligned} & \text { mttkrp } \\ & (250 * 250 * 250) \end{aligned}$	$\begin{aligned} & \text { sddmm } \\ & (4096 * 4096) \end{aligned}$	$\begin{aligned} & \text { bmm } \\ & (8192 * 72 * 26) \end{aligned}$	$\begin{aligned} & \text { gconv } \\ & (32 * 32 * 32 * 32 * 7 * 7) \end{aligned}$	$\begin{aligned} & \text { interp } \\ & (50000 * 7 * 7 * 7) \end{aligned}$	$\begin{aligned} & \text { helm } \\ & \left(5000 * 13^{*} 13 * 13\right) \end{aligned}$	$\begin{aligned} & \text { coars } \\ & (4096 * 4096) \end{aligned}$
$\begin{aligned} & \text { parallelize(I, 1) } \\ & \text { interchange(I, 2, 3) } \end{aligned}$	```interchange(I, 2, 3), parallelize(I, 1), vectorize(l, 3)```	```tile(1, 32) interchange(l, 7,8) paralellize(I, 1) vectorize(l, 8)```	```interchange(I1, 4,5) interchange(I1, 5, 6) parallelize(I1, 1) vectorize(I1, 9) paralellize(12, 1) vectorize(I2,9)```	```interchange(11, 4, 5), vectorize(I1, 5), interchange(12, 4, 5), vectorize(12,5), parallelize(I1, 1), parallelize(I2,1), parallelize(I3, 1)```	```fuse_outer(14, 15, 5), fuse_outer(14, 16,5), parallelize(I1, 1), parallelize(I2, 1), parallelize(I3, 1), parallelize(I4, 1), vectorize(I1, 2), vectorize(12,3), vectorize(I3,4)```	tile (I, 32) parallelize(I, 1) vectorize(I, 4)

- Can we outperform Pluto?

TeML evaluation

Expressing transformations that outperform Pluto

- On Intel(R) Core(TM) i7-4910MQ CPU (2.90GHz, 8 hyperthreads, 8192KB of shared L3 cache), Ubuntu 16.04
- Generated C programs compiled with the Intel C compiler ICC 18.02 (flags: -O3 -xHost -qopenmp)
- TensorFlow version 1.6 with support for AVX, FMA, SSE, and multi-threading

TeML evaluation

Expressing transformations that outperform Pluto

- We are able to express more efficient transformation paths

Conclusion

TeML

- Program construction and transformation phases are both functional
- Higher-level of abstractions for tensor computations
- Formal specification of program construction and transformation

Future work

- Extensions for parallelism support
- Abstractions for memory virtualization and corresponding semantics
- Type system
- High-level abstractions for stencil patterns, general convolutions, sparse tensors

