Polarized Rewriting and Tableaux in B Set Theory SETS 2018

Olivier Hermant
CRI, MINES ParisTech, PSL Research University

June 5, 2018

Introduction

- Assumes familiarity with FOL
- Tableaux method
- Extension with rewriting : Tableaux Modulo Theory
- Implementation and benchmark : Zenon Modulo and B Set theory
- Proposed extension : polarized rewriting
- Discussions

Tableaux Method

$$
\begin{aligned}
& \stackrel{\perp}{\odot} \odot_{\perp} \quad \frac{F, \neg F}{\odot} \odot \quad \frac{\neg T}{\odot} \odot_{\neg T} \\
& \frac{\neg \neg F}{F} \alpha_{\neg\urcorner} \quad \frac{F \wedge G}{F, G} \alpha_{\wedge} \quad \frac{\neg(F \vee G)}{\neg F, \neg G} \alpha_{\neg \vee} \quad \frac{\neg(F \Rightarrow G)}{F, \neg G} \alpha_{\neg \Rightarrow} \\
& \frac{F \vee G}{F \mid G} \beta_{\vee} \quad \frac{\neg(F \wedge G)}{\neg F \mid \neg G} \beta_{\neg \wedge} \quad \frac{F \Rightarrow G}{\neg F \mid G} \beta_{\Rightarrow} \\
& \frac{\exists x F(x)}{F(c)} \delta_{\exists} \\
& \frac{\forall x F(x)}{F(t)} \gamma_{\forall} \\
& \frac{\neg \forall x F(x)}{\neg F(c)} \delta_{\neg \forall} \\
& \frac{\neg \exists x F(x)}{\neg F(t)} \gamma_{\neg \exists}
\end{aligned}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\begin{gathered}
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}} \\
(\forall z z \in A \Rightarrow z \in A) \Rightarrow A \subseteq A, A \subseteq A \Rightarrow(\forall z z \in A \Rightarrow z \in A)
\end{gathered}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\begin{gathered}
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}} \\
\alpha_{\wedge} \frac{(\forall z z \in A \Rightarrow z \in A) \Rightarrow A \subseteq A, A \subseteq A \Rightarrow(\forall z z \in A \Rightarrow z \in A)}{A \subseteq A \quad \mid \quad \neg \forall z(z \in A \Rightarrow z \in A)}
\end{gathered}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\begin{gathered}
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}} \\
\alpha_{\wedge} \frac{(\forall z z \in A \Rightarrow z \in A) \Rightarrow A \subseteq A, A \subseteq A \Rightarrow(\forall z z \in A \Rightarrow z \in A)}{\left(\left.\neg \frac{A \subseteq A}{\odot} \quad \right\rvert\, \quad \neg \forall z(z \in A \Rightarrow z \in A)\right.}
\end{gathered}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\begin{gathered}
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}} \\
\alpha_{\wedge} \frac{(\forall z z \in A \Rightarrow z \in A) \Rightarrow A \subseteq A, A \subseteq A \Rightarrow(\forall z z \in A \Rightarrow z \in A)}{\left(\frac{A \subseteq A}{\odot} \quad \left\lvert\, \quad \frac{\neg \forall z(z \in A \Rightarrow z \in A)}{\neg(c \in A \Rightarrow c \in A)} \delta_{\neg \forall}\right.\right.}
\end{gathered}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\begin{gathered}
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}} \\
\alpha_{\wedge} \frac{(\forall z z \in A \Rightarrow z \in A) \Rightarrow A \subseteq A, A \subseteq A \Rightarrow(\forall z z \in A \Rightarrow z \in A)}{\odot \frac{A \subseteq A}{\odot} \quad \left\lvert\, \quad \frac{\neg \forall z(z \in A \Rightarrow z \in A)}{\neg(c \in A \Rightarrow c \in A)} \delta_{\neg \forall}\right.} \alpha_{\neg \Rightarrow}^{c \in A, \neg(c \in A)}
\end{gathered}
$$

Example : Inclusion

- we want to show $A \subseteq A$, for a given set A
- axiomatization of inclusion is

$$
\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y)
$$

- we shall refute $\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)$
- the proof :

$$
\begin{gathered}
\gamma_{\forall} \frac{\forall X \forall Y X \subseteq Y \Leftrightarrow(\forall z z \in X \Rightarrow z \in Y), \neg(A \subseteq A)}{\gamma_{\forall} \frac{\forall y A \subseteq Y \Leftrightarrow(\forall z z \in A \Rightarrow z \in Y)}{A \subseteq A \Leftrightarrow(\forall z z \in A \Rightarrow z \in A)}} \\
\alpha_{\wedge} \frac{(\forall z z \in A \Rightarrow z \in A) \Rightarrow A \subseteq A, A \subseteq A \Rightarrow(\forall z z \in A \Rightarrow z \in A)}{\odot \frac{A \subseteq A}{\odot}} \left\lvert\, \frac{\neg \forall z(z \in A \Rightarrow z \in A)}{\frac{\neg(c \in A \Rightarrow c \in A)}{c \in A, \neg(c \in A)} \delta_{\neg \forall}} \alpha_{\neg \Rightarrow}^{\frac{\odot}{\odot}}\right.
\end{gathered}
$$

Deduction Modulo Theory

Rewrite Rule

A term (resp. proposition) rewrite rule is a pair of terms (resp. formulæ) $I \rightarrow r$, where $\mathcal{F} \mathcal{V}(I) \subseteq \mathcal{F} \mathcal{V}(r)$ and, in the propositiona case, I is atomic.

Examples:

- term rewrite rule :

$$
a \cup \emptyset \rightarrow a
$$

- proposition rewrite rule :

$$
a \subseteq b \rightarrow \forall x x \in a \Rightarrow x \in b
$$

Conversion modulo a Rewrite System

We consider the congruence \equiv generated by a set of proposition rewrite rules \mathcal{R} and a set of term rewrite rules \mathcal{E} (often implicit). Forward-only rewriting is denoted \rightarrow.

Example :

$$
A \cup \emptyset \subseteq A \equiv \forall x x \in A \Rightarrow x \in A
$$

Tableaux Modulo Theory

- two flavors, essentially equivalent
- add a conversion rule :

$$
\frac{F}{G}(\text { Conv }), \text { if } F \equiv G
$$

- or integrate conversion inside each rule :

$$
\frac{H}{F, G} \alpha_{\wedge}, \text { if } H \equiv F \wedge G
$$

Example : Inclusion

- delete the axiom $\forall X \forall Y(X \subseteq Y \Leftrightarrow \forall z z \in X \Rightarrow z \in Y)$
- replace with the rewrite rule $X \subseteq Y \rightarrow \forall z z \in X \Rightarrow z \in Y$
- we now refute only $\neg(A \subseteq A)$

Example : Inclusion

- delete the axiom $\forall X \forall Y(X \subseteq Y \Leftrightarrow \forall z z \in X \Rightarrow z \in Y)$
- replace with the rewrite rule $X \subseteq Y \rightarrow \forall z z \in X \Rightarrow z \in Y$
- we now refute only $\neg(A \subseteq A)$
- yields

$$
\begin{aligned}
(\text { Conv }) & \frac{\neg(A \subseteq A)}{\neg(\forall z z \in A \Rightarrow z \in A)} \\
\alpha_{\neg \forall} & \frac{\neg(c \in A \Rightarrow c \in A)}{\alpha_{\neg \Rightarrow}} \\
& \odot \frac{\neg(c \in A), c \in A}{\odot}
\end{aligned}
$$

Expressing B Set Theory with Rewriting

- for power set and comprehension

$$
\begin{aligned}
s \in \mathbb{P}(t) & \longrightarrow \forall x \cdot(x \in s \Rightarrow x \in t) \\
x \in\{z \mid P(z)\} & \longrightarrow P(x)
\end{aligned}
$$

- derived constructs
- with typing, too

$$
s \in_{\operatorname{set}(\alpha)} \mathbb{P}_{\alpha}(t) \longrightarrow \forall x: \alpha \cdot\left(x \in_{\alpha} s \Rightarrow x \in_{\alpha} t\right)
$$

Zenon

- Zenon : classical first-order tableaux-based ATP
- Extended to ML polymorphism
- Extended to Deduction Modulo Theory
- Extended to linear arithmetic
- Reads TPTP input format
- Dedukti certificates
- work of P. Halmagrand, G. Bury

Zenon

- Zenon : classical first-order tableaux-based ATP
- Extended to ML polymorphism
- Extended to Deduction Modulo Theory
- Extended to linear arithmetic
- Reads TPTP input format
- Dedukti certificates
- work of P. Halmagrand, G. Bury
- We propose to extend it to Polarized Deduction Modulo Theory

Benchmarks

A set of Proof Obligations

- Provided by Industrial Partners
- 12.876 PO
- Provable : proved in Atelier B (automatically or interactively)
- Wide spectrum
- Mild difficulty, large files

Zenon results

	All Tools $(98,9 \%)$					
12.876	mp	Zenon	Zenon Types Zenon Arith 58%	Zenon Modulo 80%	Zenon Mod+Ari 95%	
Time (s)	85%	2%	6,9	2,3	2,5	3,0
2,6						
Unique	329	0	0	0	34	946

Protocol

- Processor Intel Xeon E5-2660 v2
- Timeout 120 s
- Memory 1 GiB

Polarized Rewriting

- asymetry
« rewrite positive formulas a certain way
* rewrite negative formulas another way
\star interchangeable : $F \rightarrow_{-} G$ iff $\neg F \rightarrow_{+} \neg G$
- let \mathcal{R}_{+}and \mathcal{R}_{-}be two sets of rewrite rules

Polarized Rewriting

$F \rightarrow_{+} G$ is there exists a positive (resp. negative) occurrence H in F, a substitution σ, and a rule $I \rightarrow r \in \mathcal{R}^{+}\left(r e s p . \mathcal{R}^{-}\right)$, such that $H=I \sigma$ and G is F where H has been replaced with $r \sigma$.

Tableaux Modulo Polarized Theory

- tableaux is one-sided, we need only positive rewriting
- add to first-order tableau, the conversion rule

$$
\frac{F}{G} \rightarrow+\text {, if } F \rightarrow_{+} G
$$

- notice forward rewriting only

Example : Inclusion

- delete the axiom $\forall X \forall Y(X \subseteq Y \Leftrightarrow \forall z z \in X \Rightarrow z \in Y)$
- replace it with two rewrite rules
$\star X \subseteq Y \rightarrow_{+}(\forall z z \in X \Rightarrow z \in Y)$,
$\star X \subseteq Y \rightarrow_{-}(f(X, Y) \in X \Rightarrow f(X, Y) \in Y)$
- f is a fresh symbol (Skolem symbol)
\star negative \forall quantifiers can be Skolemized!
« impossible in Deduction Modulo Theory : unpolarized rewriting
* here positive rewriting applied in positive contexts, negative in negative contexts
\star "pre-apply" $\delta_{\neg \vee}$ and δ_{\exists} : Skolemize

Example : Inclusion

- delete the axiom $\forall X \forall Y(X \subseteq Y \Leftrightarrow \forall z z \in X \Rightarrow z \in Y)$
- replace it with two rewrite rules

$$
\begin{aligned}
& \star X \subseteq Y \rightarrow_{+}(\forall z z \in X \Rightarrow z \in Y), \\
& \star X \subseteq Y \rightarrow_{-}(f(X, Y) \in X \Rightarrow f(X, Y) \in Y)
\end{aligned}
$$

- f is a fresh symbol (Skolem symbol)
\star negative \forall quantifiers can be Skolemized!
\star impossible in Deduction Modulo Theory : unpolarized rewriting
* here positive rewriting applied in positive contexts, negative in negative contexts
* "pre-apply" $\delta_{\neg ४}$ and δ_{\exists} : Skolemize
- the proof becomes

$$
\frac{\neg(A \subseteq A)}{\frac{\neg(f(A, A) \in A \Rightarrow f(A, A) \in A)}{\neg(f(A, A) \in A), f(A, A) \in A}} \odot \alpha_{\neg}{ }^{\frac{\neg}{}} \rightarrow
$$

Advantages

- Skolemization of the rules = a single Skolem symbol
\star instead of a fresh one for each δ-rule, even if the formula is the same
\star fixable with ϵ-Hilbert operator?
- Skolemization at pre-processing, once and for all
- more axioms become rewrite rules
\star Deduction Modulo Theory, sole shape

$$
\forall \bar{x}(P \Leftrightarrow F)
$$

* Polarization allows two more shapes
$\star \forall \bar{x}(P \Rightarrow F)$ turned into $P \rightarrow_{+} F$
$\star \forall \bar{x}(F \Rightarrow P)$ turned into $P \rightarrow_{-} F$
$\star \forall \bar{x}(P \Leftrightarrow F)$ subsumed

Issues

- Deciding rewriting in Deduction Modulo Theory :
* strongly needs non confusion

$$
\text { if } F \equiv G \text {, then they have the same main connective }
$$

* needs confluence

$$
\text { if } F \equiv G \text {, then there is } H \text { such that } F \rightarrow H \leftrightarrow G
$$

* allows to have a simpler additional tableaux rule

$$
\frac{F}{G}(\text { Conv }) \text {, if } F \equiv G
$$

* termination of rewriting helps, too
- the more rules, the more potential troubles
\star needs proper study (and definitions!)
- Completeness
* not implied by confluence and termination
* e.g. requires narrowing
\star we do not care much, except for nice theoretical results
* performance is more important

Issues

- Deciding rewriting in Deduction Modulo Theory :
* strongly needs non confusion

$$
\text { if } F \equiv G \text {, then they have the same main connective }
$$

* needs confluence

$$
\text { if } F \equiv G \text {, then there is } H \text { such that } F \rightarrow H \leftrightarrow G
$$

* allows to have a simpler additional tableaux rule

$$
\frac{F}{G}(\text { Conv }) \text {, if } F \rightarrow G
$$

\star termination of rewriting helps, too

- the more rules, the more potential troubles
\star needs proper study (and definitions!)
- Completeness
* not implied by confluence and termination
* e.g. requires narrowing
\star we do not care much, except for nice theoretical results
* performance is more important

Conclusion

- implement and test
- theory can come later
* except soundness
^ develop proper notions of confluence, cut elimination, models, etc.
- which Skolemization?

