
High Performance Computing Landscape and Challenges Claude TADONKI

 1

HPC Landscape and Challenges

Claude, Tadonki

Mines ParisTech – PSL Research University

Paris, France

Email: claude.tadonki@mines-paristech.fr

Abstract
High Performance Computing (HPC) aims at providing reasonably fast computing
solutions to scientific and real life problems. Many efforts have been made on the way to
powerful supercomputers, including generic and customized configurations. The advent of
multicore architectures is noticeable in the HPC history, because it has brought the
underlying parallel programming concept into common considerations. At a larger scale,
there is a keen interest in building or hosting frontline supercomputers; the Top500 ranking
is a nice illustration of this (implicit) racing. Supercomputers, as well as ordinary computers,
have fallen in price for years while gaining processing power. We clearly see that, what
commonly springs up in mind when it comes to HPC is computer capability. However,
when going deeper into the topic, especially on large-scale problems, it appears that the
processing speed by itself is no longer sufficient. Indeed, the real concern of HPC users is
the time-to-output. Thus, we need to study each important aspect in the critical path between
inputs and outputs. The first step is clearly the method, which is a conjunction of modelling
with specific considerations (hypothesis, simplifications, constraints, to name a few) and a
corresponding algorithm, which could be numerical and/or non numerical. Then comes the
topic of programming, which should yield a skillful mapping of the algorithm onto HPC
machines. Based on multicore processors, probably enhanced with acceleration units,
current generation of supercomputers is rated to deliver an increasing peak performance,
the Exascale era being the current horizon. However, getting a high fraction of the available
peak performance is more and more difficult. The Design of an efficient code that scales well
on a supercomputer is a non-trivial task. Manycore processors are now common, and the
scalability issue in this context is crucial. Code optimization requires advanced
programming techniques, taking into account the specificities and constraints of the target
architecture. Many challenges are to be considered from the standpoint of efficiency and
expected performances. The present chapter will discuss the aforementioned points,
interleaved with commented contributions from the literature and our personal views.

Keywords: HPC, scalability, manycore, supercomputers, parallelism, computer architecture.

	

High Performance Computing Landscape and Challenges Claude TADONKI

 2

1. Introduction
High Performance Computing has been on the spotlight for about two decades, driven by
users clamor for more powerful systems and targeting more exciting applications.
Significant technical changes have occurred, and noteworthy improvements have been done
at various levels, thus pushing the limits of high performance computers. This phenomenon
has even changed the rules of scientific discovery. Indeed, large-scale computation is now
commonly considered in order to assess if a theory is consistent with experimental results,
to question a large collection of data, or to understand a given mechanism through high
precision simulations. HPC is thus going hand by hand with cutting-edge research.

At the processor level, the sequential von Neumann execution model has governed
the computing landscape for more than a half-century. Thus, the answer for more efficient
processing was either a more powerful single-thread processor or an aggregation of
cooperative computer systems. Hardware designers have really strived to increase
processor capabilities at different levels including clock speed (also referred to as frequency),
instruction level parallelism (ILP), vector processing, memory size and global latency, mass
storage capacity, and power consumption. Regarding parallel computers, they were mainly
built by aggregating many standard processors (or machines) with a specific interconnect,
thus expensive and very heavy to maintain. Thereby, and also due to the need of a
particular skill, parallel computing, which was so far the unique choice for high
performance computing, had a very limited effective consideration, despite intensive efforts
at the fundamental standpoint. Back to the processor level, chip designers have always
strived to stay ahead of Moore's Law, which prescribes that processor transistors count doubles
every two years (Figure 1). This was still possible by adding transistors and logic to the
standard CPU and increasing clock frequencies, until it becomes exceedingly impractical
because of the power wall associated to the increase of processor frequency. Therefore, the
idea of multicore processors came up, thus opening the door to the multicore era.

Figure 1: Microprocessor Transistor Counts 1970-2010 & Moore’s Law

High Performance Computing Landscape and Challenges Claude TADONKI

 3

 This inflexion point in the evolution of computer systems was the beginning of
important technical changes, including the emergence of new hardware devices. With the
advent of multicore processors, manufacturers have taken that opportunity to keep
providing increasingly powerful processors even to ordinary users, provided that they take
the step towards parallel computing. Thereby, the notion of parallelism is extending to a
wider audience, and will soon or later become a key item in computer science and
engineering curricula. Multicore processors are being actively investigated and
manufactured by major computer-processors vendors. At present, most contains between 4
to 16 cores, and a few contain as many as 64 to 80 cores (so-called many-core). In addition, a
multi-socket configuration allows getting more cores within the same motherboard. The
programmer, in addition to the requirement of an explicit multi-threaded implementation,
now has to face more complex memory systems. Indeed, the shared memory available on a
multicore processor is typically made of several levels, different packaging and various
management policies. Figure 2 displays a basic configuration with the Nehalem architecture.

Figure 2: Nehalem Quadcore memory hierarchy

 It is important to understand and keep in mind that all levels of parallelism need to
be skillfully exploited in order to get the highest performance of a given modern
(super)computer. The major part of the instruction level parallelism (ILP) is somehow
granted by native hardware mechanisms or derived from a suitable instructions scheduling
by the compiler. Vector processing, multi-thread computing and multi-process execution
need to be managed by the programmer, although some compilers are capable of
performing automatic vectorization whenever possible. The necessary skills for achieving an
implementation that efficiently combines these specialized programming concepts is likely
to stand beyond the reach of ordinary programmers. Valuable tools and libraries exist to
assist the programmer in this non-trivial task, but a certain level of expertise is still needed
to reach a successful implementation, both from the correctness and the efficiency
standpoints. Figure 3 gives an overview of the three aforementioned levels of parallelism.

High Performance Computing Landscape and Challenges Claude TADONKI

 4

Figure 3: The three main levels of parallelism

Figure 3 mentions GPU and FPGA, which are two major accelerators that can be
considered for co-processing beside traditional CPUs. Graphic processing unit (usually
referred to as GPU) is a specialized microprocessor that offloads and accelerates graphics
rendering from the central processor. It was primarily a graphics chip, acting as a fixed-
function graphics processor. Gradually, the chip became increasingly programmable and
computationally powerful, thereby leading to the GPU. Now, GPU is used jointly with the
CPU for general-purpose scientific and engineering applications. The first GPU was
designed by NVIDIA, who is still one the leaders of the GPU development, with other
companies like Intel and AMD/ATI. The highly parallel structure of modern GPUs makes
them very efficient than traditional CPUs for algorithms where processing of large blocks of
data can be done in parallel, in addition to classical stream processing applications. This has
pushed computer scientist to start thinking about an effective use of GPU to accelerate a
wider range of applications, thus leading to the advent of the so-called GPGP (General-
Purpose computation on Graphics Processing Units). In GPGPU, a GPU is viewed as a high-
performance many-core processor that can be used, under the management of a traditional
CPU, to achieve a wide range of computing tasks at a tremendous speed.

Indeed, technical efforts for HPC are noticeable. Advanced techniques are being
explored for solving large-scale problems and lot of progresses are made on the
programming side. However, number of technical and conceptual challenges remain, some
of them being exacerbated by the increasing complexity of current and future HPC systems.
Before describing key technical issues, let have a look at the global HPC landscape.

High Performance Computing Landscape and Challenges Claude TADONKI

 5

2 High-Performance Computing Landscape
Interconnecting a large number of powerful multicore processors (probably accelerated)
with a high-speed network is leading to impressive supercomputers. The current horizon is
the Exascale, which is expected by 2018 (likely 2020 by a linear projection). Supercomputers
are doing groundbreaking work that might not be possible without them, and this has
changed the rules of science and industry. With computing possibilities running up against
the far edge of current technology, researchers are looking for new ways to shrink
processors, combine their power, and gather enough energy to make them all work
efficiently. Computational capabilities are nowadays an essential part in cutting-edge
scientific and engineering experiments. The capability to analyze and predict from huge
amount data has incredibly improved with the use of supercomputers. Neuroscientists can
evaluate a large number of parameters in parallel to find good models for brain activity;
automobile manufacturers can perform more realistic crash simulation to improve safety;
astronomers can analyze different regions of the sky in parallel to search for supernovae;
nuclear and particle physics are moving beyond common belief with large-scale
simulations; search engines can launch parallel search across large-scale clusters of
machines and instantly aggregates the results, thus reducing the latency of each request
while improving relevance and accuracy; cryptography and computer systems security will
benefit from the computation of gigantic prime numbers; researchers in artificial intelligence
are trying to use large supercomputers to replicate (or surpass) a high-functioning human’s
ability to answer questions; social networking services are increasing their pervasiveness
through large-scale graph processing, text processing or data mining.

While keep striving to provide breathtaking faster computers, designers need to
contend with power and energy constraints. For decades, computers got faster by increasing
their (aggregated) central processor unit. However, high processor frequency means lot of
heat. Indeed, The Fujitsu K Computer, for example, has been using US$10 million of
electricity per annum to operate. This question of energy is more crucial as computing are
being reported to the “Cloud”, which is another innovative and affordable way to fulfill the
need of high-range computing facilities. Indeed, Cloud computing offers a great alternative
on mass storage, software and computing devices. Federating available computing
resources, assuming a fast network, is certainly a valuable way to offer a more powerful
computing system to the community. Energy, both dissipated and consumed, is also a
critical concern, which is subject to active investigation from both the hardware and
software standpoints.

 From the programming point of view, harvesting hardware advances to rich the
level of cutting-edge research expectations is more challenging. Indeed, beside the ambient
enthusiasm around the evolution of supercomputers, the way to peak performances is far
from straightforward. In addition to algorithmic efforts to express and quantify all levels of
parallelism, specific hardware and system considerations have to be taken into account
when trying to provide an efficient, robust, and scalable implementation on (heterogeneous)
multi-core processors. This has brought an unprecedented level of complexity in program

High Performance Computing Landscape and Challenges Claude TADONKI

 6

design. Adapting a code for a given architecture or optimize it accordingly requires a
complex set of program transformations, each of them addressing one or more aspects (e.g.
registers, cache, instruction pipeline, data exchanges) of the target architecture. When the
program is complex enough, or when the target architecture is a combination of different
processing units (hybrid or accelerated computing), devising highly efficient programs
becomes seriously hard. This is the price anyone should be aware of, when it comes to
current and future states of high performance computing.

The evolution of supercomputers performance is well depicted in the semi-annual
top500 ranking. This has triggered an exciting competition among manufacturers and
countries for fastest supercomputers. Being at the frontline in supercomputing
infrastructures stands as an evidence of technical and scientific leadership. Alongside the
ranking announcements, top500 reports provide a valuable collection of quantitative
information for global statistics and trend analysis. Figure 4, for instance, provides a view
on the performances evolution (aggregated and extremes) from the beginning of the top500
ranking until November 2017 with a linear extrapolation up to 2020.

Figure 4: Performance evolution overview from the top500

The petaflops shown up for the first time in June 2008 top500 with the IBM Roadrunner,
nearly ten years after the reach of the teraflops barrier in June 1997 by Intel ASCI Red. The

High Performance Computing Landscape and Challenges Claude TADONKI

 7

IBM press release (http://www-03.ibm.com/press/us/en/pressrelease/24405.wss) used a few
analogies to describe the power of Roadrunner, such as “The combined computing power of
100,000 of today's fastest laptop computers"; and, "It would take the entire population of the earth, -
about six billion - each of us working a handheld calculator at the rate of one second per calculation,
more than 46 years to do what Roadrunner can do in one day." From a linear extrapolation, a
sustained Exascale performance is expected from 2020. It is amazing to realize that Sunway
TaihuLight, the current world fastest supercomputer, is nearly 256 thousand times faster
than the top ranked machine of the 1993 top500 edition, the Thinking Machines CM-5/1024.
Figure 5 is a snapshot of the top10 machines from the top500 ranking of November 2017.

Figure 5: Top ten machines of the November 2012 top500

Sunway TaihuLight is based on the SW26010 many-core processor (256-core manycore).
Each core is clocked at 1.45 GHz and the machine was ranked 16th most energy-efficient
supercomputer in the latest Green500, with an efficiency of 6.051 GFlops/watt. This
achievement is particularly noticeable. Indeed, in addition of being the first to cross the
barrier of 100 PFlops, thus entertaining the hop of hitting the Exascale very soon, it was
possible to get a top-ranked performance from both processing and energy standpoints
without any accelerator. Nevertheless, the use of accelerators remains a good way to go
when it comes to processing-energy efficiency. A nice example was Titan-XK7, the world
fastest supercomputer in November 2012 (now 5th). Titan-XK7 is a hybrid supercomputer,
means made up by a combination of commodity processors with coprocessors or graphics
processing units (GPUs) to form heterogeneous high-performance computing systems.
Roadrunner was the world’s first hybrid supercomputer, made up with 6,562 dual-core
AMD Opteron® chips as well as 12,240 Cell chips (on IBM Model QS22 blade servers).
Accelerated computing is prevailing over the use of conventional CPU-based architectures,

High Performance Computing Landscape and Challenges Claude TADONKI

 8

and is certainly the way to power aware supercomputing. Indeed, as supercomputers are to
move beyond the Petascale and into the Exascale, energy efficiency is becoming a major
concern. Note that power consumption, as a metric, was not even mentioned in earlier
top500 editions. Now, this aspect has come to the spotlight, and there is a so-called Green500
project, which aims at providing a ranking of the most energy-efficient supercomputers in
the world. We now describe a selection of world-class computing systems.

A) SUNWAY TAIHULIGHT – SUNWAY MPP

Sunway TaihuLight, a system developed by China’s National Research Center of Parallel
Computer Engineering & Technology (NRCPC), and installed at the National
Supercomputing Center in Wuxi, is the current world fastest supercomputer, with a High
Performance Linpack (HPL) sustained performance of 93.01 petaflops (over its 125 petaflops
peak). Note that this supercomputer is top-ranked for the fourth consecutive time, with
more than two times the overall peak of the former number one Tianhe-2. The machine is
made up with 40 960 SW26010 many-core processor (256-core manycore), thus a total of 10
649 600 cores. The total amount of available memory is 1280 TB and the (bidirectional)
network bandwidth is 16 GB/s. Target applications include Oil prospecting, life sciences,
weather forecast, industrial design, computational cosmology and pharmaceutical research to name a
few. Figure 6 (from http://www.nsccwx.cn/wxcyw/) provides a view of Sunway.

Figure 6: Sunway TaihuLight Supercomputer

B) TIANHE-2 (MILKWAY-2) – TH-IVB-FEP

Tianhe-2 (Milky Way-2), current number two of the latest top500 after being number one
just before Sunway, is a system developed by China’s National University of Defense
Technology (NUDT) and deployed at the National Supercomputer Center in Guangzhou in
China. Next to Tianhe-1, Tianhe-2 supercomputer, which showed a High Performance
Linpack (HPL) sustained performance of 33.86 petaflops (over its 54.90 petaflops peak), is
made up with 16 000 compute nodes, each equipped with two Intel Ivy Bridge Xeon E5-2600
processors and three Xeon Phi coprocessor chips (6x2 + 61x3 = 195 cores), thus making a
total of 3 120 000 cores. The total amount of available memory is 1 PB and the (bidirectional)
network bandwidth is 10 GB/s. Target applications include scientific engineering, big data

High Performance Computing Landscape and Challenges Claude TADONKI

 9

processing, and high throughput computing to name a few. Figure 7 (from http://en.nscc-gz.cn/)
provides a view of Tianhe-2. More technical details about Tianhe-2 can be found in [16].

Figure 7: Tianhe-2 Supercomputer

C) PIZ DAINT – CRAY XC50

Piz Daint, a Cray XC50 system installed at the Swiss National Supercomputing Centre
(CSCS) in Lugano, Switzerland, is the current number three with a High Performance
Linpack (HPL) sustained performance of 19.59 petaflops (over its 25.33 petaflops peak),
reaffirming its status as the most powerful supercomputer in Europe. Piz Daint a hybrid
CPU/GPU supercomputer. Piz Daint supercomputer is made up with hybrid and multicore
nodes, Xeon E5-2690v3 12C 2.6GHz and NVIDIA Tesla P100, with a total of 361 760 cores.
The total amount of available memory is 437 TB and the average network bandwidth is
around 15 GB/s. Target applications include scientific engineering, big data processing, and high
throughput computing to name a few. Figure 8 (from https://www.cscs.ch/publications/photo-
gallery/) provides a view of Piz Daint.

Figure 8: Piz Daint Supercomputer

High Performance Computing Landscape and Challenges Claude TADONKI

 10

D) TITAN - CRAY XK7

Titan – Cray XK7, also a hybrid CPU/GPU supercomputer manufactured by the Cray
Company, was ranked world’s fastest supercomputer in the November 2012 top500 ranking.
The Cray XK7TM, installed at the Department of Energy’s Oak Ridge National Laboratory
(ORNL / USA), has showed an outstanding 17.59 HLP over a theoretical peak of 27.11
petaflops. The machine is made up with 299,008 16-cores AMD Opteron 6274. This
aggregation of CPUs is combined with 261,632 NVIDIA Tesla K20 GPUs. The total memory
space available is 710 TB, and the total power consumption is around 8.2 megawatts, which
yields a remarkable (rank 2) performance/power ratio of 2.14 MFlops/watts. The network is a
3D-torus topology based on the Gemini interconnect, which is capable of tens of millions of
MPI messages per second with 1.5 microsecond latency and a bandwidth of 20 GB/s for
point-to-point transmissions. Figure 9 displays an overview of TITAN.

Figure 9: TITAN Supercomputer

 Among the set of applications that can notably benefit from the tremendous processing
speed of Titan, Oak Ridge National Laboratory reported seismological simulations of the
entire Earth (suggested by researchers from Princeton University), direct numerical
simulation with complex chemistry to understand turbulent combustion, discrete radiation
transport calculation, molecular studies, climate change adaptation and mitigation scenario,
to name a few. We think that the presence of GPUs should somehow influence the range of
potential applications that can be efficiently ported on such machine. A typically suitable
application should allow a coarse grain task partitioning with locally interconnected stream
processing nodes.

E) IBM SEQUOIA

Sequoia is a world-class IBM BlueGene/Q computer, which was ranked second world’s
fastest supercomputer in the November 2012 top500 ranking, after being atop in the
previous edition. The Sequoia, hosted at the Department of Energy’s Lawrence Livermore
National Laboratory (LLNL / USA), has showed a distinguished 16.32 petaflops HLP over a
theoretical peak of 20.14 petaflops. The machine, as mentioned here, is made up with
1,572,864 1.6 GHz cores (16-cores CPUs), with a total memory of 1573 TB. Another attractive

High Performance Computing Landscape and Challenges Claude TADONKI

 11

strength of Sequoia is its power consumption, which is estimated at 7.9 megawatts, thus
making it a good candidate for high-performance computing and high-throughput
computing as well. The network is a 5D torus bidirectional optical network with a
bandwidth of 5 GB/s and a latency of 2.5 microseconds. Figure 10 illustrates the packaging
of Sequoia.

Figure 10: Sequoia packaging

The Sequoia is planned to be eventually devoted almost exclusively to simulations aimed at
extending the lifespan of nuclear weapons. However, it flexible interconnect makes it a good
choice for (block) stencil computation like the Lattice Quantum ChromoDynamics (LQCD) or
Discrete Partial Differential Equation (DPDE). More classical applications are also considered
like semiconductor and silicone design, financial modeling, climate and weather studies. The
modest clock rate of each individual core suggests that the machine could be considered for
large-scale memory bounded applications. Moreover, the noteworthy low power
consumption of the BlueGene/Q makes it clearly adapted for high-throughput computation,
with an affordable energy and maintenance cost.

F) Fujitsu K-COMPUTER

K-COMPUTER is a Fujitsu supercomputer, which was ranked third world’s fastest
supercomputer in the November 2012 top500 ranking, after being atop in the 2011 edition.
The K-Computer, hosted at RIKEN Advanced Institute for Computational Science (AICS /
Japan), has showed an impressive 10.5 petaflops HLP over a theoretical peak of 11.2
petaflops, thus an excellent processing efficiency. The heart of the K computer consists of

High Performance Computing Landscape and Challenges Claude TADONKI

 12

88,128 SPARC64™ VIIIfx 8-cores CPUs, thus a total of 705,024 cores. The overall global
memory sums up to 1410 TB. The power consumption is around 12.7 megawatts, which
yields a relatively high power per core compared to other machines of the top ten. However,
we think that this controversy power consumption is well compensated by the close gap
between sustained and peak performances. The K computer's network, called Tofu, uses an
innovative structure called "6-dimensional mesh/torus" topology with a total throughput of
about 5 GB/s and a microsecond latency for a point-to-point communication between two
neighbor nodes. Figure 11 provides a view of K-Computer.

Figure 11: K-Computer

The K-Computer has been used on number of successful case studies. First, the machine
took the first-place rankings in the 2011 HPC Challenge Awards, which considered various
benchmarks aiming at testing different hardware capabilities. In addition, astrophysical N-
body simulations of one trillion particles were performed on the full system of the K
computer and awarded the 2012 ACM Gordon Bell Prize. The 6-dimensional mesh/torus of
the K-computer provides an exceptional communication flexibility, which makes it globally
efficient on standard applications. As it uses to be with supercomputers, K-Computer is
now open for shared use.

3. Major HPC Bottlenecks and Challenges
Let start with some basic quantitative notions related to supercomputers.

a) Calculating the overall peak performance

The first thing that comes in mind with a supercomputer is its potential performance, also
known (and refers to) as theoretical peak performance. This is rough calculation of the overall
computing power that the considered computer can offer. The items that are mainly
considered are: the total number of cores (regardless of the packaging); the processor clock
rate; the length of vector registers (assuming floating point calculations from double
precision standpoint); and possibility (or not) of a multiply-add (thus, 2 FP calculations per
cycle)

High Performance Computing Landscape and Challenges Claude TADONKI

 13

Let consider the case of the IBM-Sequoia supercomputer for example. We have

• Total number of cores = 1,572,864

• Processor-core clock rate = 1.6 GHz (i.e. 1,6 x 106 Hz)

• Each core has Quad FPU (4-wide double precision vector registers)

• One cycle multiply-add feature available

This gives

1,572,864 × (1.6 × 106) × 4 × 2 = 20.132659 × 1015 ≈ 20.14 PFlops

We emphasize on the fact that the time from main memory to the computation units and
also the time for interprocessor exchanges are not taken into account. The reader should
kept it in mind and be aware that this is where comes the gap between peak and sustained
performances. However, intra and extra data routings can be (partially) overlapped with
calculations, at the expense of very skillful programming efforts.

b) Evaluating interprocessor communication

A supercomputer is composed of a large number or compute nodes that need to exchange
data (inputs or intermediate results) in order to achieve the global assigned task. As said
above, the time cost for interprocessor communication is roughly seen as an additional time
over the pure computing time. For a single data communication, there a setup latency and a
transmission time, which gives an estimation of the form Tc(L) = β + α×L. As multiple
transfers can occur at the same time, the inverse of the latency (i.e. 1/β) is sometimes
referred in the literature as the number of MPI communication that can be launched within
a second. The physical network topology and the current data traffic will determine the
effective cost. Indeed, a given point-to-point communication is unlikely to be direct because
the communicating nodes might not be directly linked. This is why the physical topology is
important, especially in the context of large-scale parallel computers.

3.1 About Memory Accesses and Data Transfers

Memory complexity remains a serious challenge both from hardware and software
standpoints. Indeed, the part due to memory accesses and data transfers in the sustained
performance with common applications is quite significant and even dominant in most
cases. At the processor level, this is due to irregular memory access patterns, concurrent accesses,
and non-uniform memory accesses. Applications that clearly illustrate this complexity are for
example those based on stencil computation (image processing, simulations based on
Cartesian space modeling, discrete iterations, computational fluid dynamics, to name a few).
In addition to optimizing memory traffic, the programmer now needs to care about cache
memories sharing, with a direct consequence on the performance scalability. In a distributed
memory context like with distributed memory parallel machines or cloud computing
systems, the main bottleneck is the cost of moving data. With accelerators, the main issue is
on data exchanges between the accelerator device and the host machine. We now comment
each of the aforementioned points.

High Performance Computing Landscape and Challenges Claude TADONKI

 14

3.1.1 Non-Uniform Memory Access Architectures

Modern CPUs are typically made up with an increasing number of cores in order to deliver
a higher peak performance. As the increase of the CPU clock frequency has been somehow
frozen because of circuit integration limits and the energy concerns [2], the trend is to
provide more and more cores within a single CPU, with a fully shared memory. Nowadays
and future supercomputers are just an interconnected aggregation of such nodes [3, 4, 5].
The packaging of a high number of cores within a single chip tends to look like a hardware-
connected block of conventional multicores, thus providing a global memory space with a
non-uniform access. This Non-Uniform Memory Access (NUMA) configuration is seamless
to an ordinary programmer, as there is a unique virtual addressing. Within a NUMA node,
the memory system is exactly the same as for an ordinary multicore. Between NUMA nodes,
specific links, like the Quick Path Interconnect (QPI), connect local memories together
following a specific topology. A memory access in a given NUMA node is said to be local
(resp. remote) if the request comes from a core within that (resp. another) NUMA node. This
looks like an on-chip distributed memory configuration. Figure 12 displays a typical single-
socket NUMA configuration with 4 nodes, while figure 13 (from [6]) illustrates multi-socket
cases.

Figure 12: Sample NUMA configurations with 4 nodes

Figure 13: Sample multi-socket NUMA configurations

NUMA configuration was designed to alleviate the bottleneck scenario where all
CPU-cores use the same unique bus to access the main shared memory, thereby keeping a

High Performance Computing Landscape and Challenges Claude TADONKI

 15

high probability of a good scalability over a large number of cores. Unfortunately, good
scalability can be obtained only if memory accesses are mostly local. Indeed, remote accesses
are more costly by nature and might incur more contention both on the QPI link and within
the targeted NUMA node (because local accesses might be carried on at the same time). This
potential memory controller saturation or QPI contention is the common culprit of speedup
stagnation on NUMA manycores.

Efficient data placement and threads management for better scalability on NUMA
systems is a hot topic. Stefan et al. propose a library for parallel programs on NUMA
machines, based on array abstraction and memory allocation routines, which allows
automatic tuning of data placement and accesses for better scalability [7]. Specific
contributions [8, 9, 10, 11, 12] suggest a way to optimize thread and data placement in a
NUMA system by combining data locality and thread binding, in order to reduce remote
accesses. Lin et al. [13] propose an efficient stencil computation using many-core NUMA
architectures, targeting higher performance and portability. Interesting specific cases are
studied and reported by C. Tadonki in [14, 15].

3.1.2 Data motion in a distributed memory context

3.1.2.1 The Case of Distributed Memory Parallel Machines

 We have so far focused on the global processing speed that supercomputers can
offer to end-users, with an emphasis on the local efficiency of the computing node and how
much is there on the machine. Indeed, a supercomputer is made up with several
independent computing nodes, but they need to cooperate and exchange data in order to
execute a macroscopic task. What we get from there is the so-called sustained performance,
which is most of times far from the theoretical peak. In addition to the gap between
sustained and peak performances on a node, there is an additional overhead coming from
data exchanges between nodes, which is the main concern of the interconnect efficiency.
First note that this aspect is not counted when estimating the peak performance, nor
external I/O operations. However, depending on the application, data communication can
yield a significant impact on the overall performance, thus breaking the scalability on large-
scale supercomputers. The special case of applications involving stencil computation is
noteworthy. The Lattice Quantum ChromoDynamics (LQCD), the lattice discretized theory
of the strong nuclear force, is a nice example with a gigantic number of sites, each of them
having 8 neighbors [16]. When two computing nodes have to exchange data, it is well
known that this is better done with a direct communication whenever possible; otherwise a
slower multi-hop transfer will take place. The concern here is the mismatch between the
virtual topology (from the scheduling) and the physical one (from the target machine). The
interconnect of a supercomputer should offer a good flexibility for internode
communication. The underlying topology should exhibit either high local degrees or shorter
internode distances. Figure 14 outlines a classical interconnect available on supercomputers.

High Performance Computing Landscape and Challenges Claude TADONKI

 16

Figure 14: Typical supercomputer interconnect

Alongside network topology and bandwidth, communication latency is crucial. The state-of-
the-art is around a microsecond, which is acceptable for a point-to-point communication,
but less for a multi-hop transfer. Depending on the physical topology and traffic,
interprocessor communication might suffer from network congestion, resulting in a
significant increase of the sustained latency. Overlapping computation and communication
will certainly remain a key ingredient for scalability.

3.1.2.2 The Case of Cloud Computing Systems with Distant Datacenters

In the Cloud Computing ecosystem [17, 18], it is common to operate with several
distant datacenters, each of them offering different storage capacity and processing speed.
This distributed computation, both from task and data standpoints, needs to be skillfully
scheduled to achieve an acceptable efficiency, especially in the context where non-locality
and heterogeneity apply. The most critical point here is data migration [19, 20]. To achieve
good performance and scalability in a Cloud environment with geographically distributed
datacenters, data migration should be prevented at the best (through tasks migration instead,
processing-migration overlap, dataflow optimization, …) together with an efficient load
balancing strategy. Considering a given scheduling methodology, the input workflow might
be partitioned into subtasks that are assigned to different datacenters following some of the
aforementioned efficiency concerns. Afterwards, processing a subtask might require data
migration or replication, which can yield a significant slowdown, especially with a huge
amount of data (the case with big data applications for instance). An efficient data placement
strategy is thus needed in order to yield a more scalable system. This is important for the
users as they are under the pay-as-you-go rule, and for the providers too who need to
optimize their services and resources pooling.

3.1.3 Data Exchanges with Accelerators

In addition to the absolute performance and scalability issues with conventional
(multicore) processors, power consumption has quickly become another critical point. The
concern is still to compute quite quickly, so as to save energy by reducing the overall

High Performance Computing Landscape and Challenges Claude TADONKI

 17

running time. The idea that has come in mind to tackle this is the use of accelerators. An
accelerator is a specialized unit dedicated to a specific kind of tasks that will be executed
with an unbeatable performance. The Graphic Processing Unit (GPU) is one of such devices.
At the earlier stage of GPGPU, the main concern was how to efficiently exchange data
between the CPU and the GPU. This CPU-to-GPU bottleneck [20], often shirked in some
very optimistic reports, has been one of the main hurdles on the GPGPU ascent. Another
critical point was the severe slowdown on double precision processing, which is essential in
cutting-edge numerical studies. These two issues have been seriously addressed in current
generation GPUs, thus making them an effective general purpose computing alternative. In
certain applications requiring massive vector operations, this can yield several orders of
magnitude higher performance than a conventional CPU. Figure 15 displays an example of
processing time improvement of a GPU over a traditional CPU. This example, taken from
the NDVIDIA website, reports a benchmark about solving Navier-Stokes equations on
various grid sizes. Other reported success stories are: a 12x speedup on an orthorectification
algorithm and a 41x speedup on the pan sharpening process by Digital Globe; a 3x (resp. 5x)
speedup on solving a linear system and a 8x speedup on solving second-order wave
equation in MATLAB [21, 22]; a 8x speedup on basic linear algebra subroutines (cuBLAS)
[23]; to name a few.

Figure 15: Illustrative GPU speedups

The use of GPUs to faster the computation is really coming to the vogue, with the
hope of saving energy through shorten execution times. This has motivated the
consideration of hybrid CPU/GPU supercomputers and the use of GPU a key device in
Cloud computing [24]. Another important point when it comes to parallelism among GPUs
is data exchanges, which still need to transit via the referent CPU. This problem is also
addressed in current and future generations of GPU, with the aim of having a direct
cooperation between the GPUs. Figure 16 illustrates one aspect of the concept via the so-
called dynamic parallelism [25].

High Performance Computing Landscape and Challenges Claude TADONKI

 18

Figure 16: Dynamic parallelism with GPUs

3.3 Conceptual and Technical Factors Related to Scalability

Processor manufacturers are constantly improving their products by tweaking CPU
components and implementing new hardware concepts. The aim is to keep providing
increasingly powerful computers for basic issues and large-scale supercomputers for
cutting-edge research and engineering. There is a kind of game between progresses and
needs, where we iteratively push the limits and try to go beyond. Harvesting computing
cycles for science will certainly change the landscape of experimental research and shorten
the path to scientific discovery and technical insights.

As we have so far explained, increasing the (aggregated) processor speed raises
number of technical challenges that need to be addressed carefully in order to make their
benefit clear to the community. Indeed, the gap between the peak performance and the
sustained performance is a genuine concern. This is like gross salary and net salary from the
employee viewpoint. Users expect supercomputers to be powerful enough for their
applications, not in absolute. Thus, getting close to the maximum performance will be a
crucial request. From the hardware point of view, this means number of improvement:
memory latency at all hierarchy levels should be reduced; opportunity should be given to
the programmer to manage memory features as desired; data exchanges between different
memory levels should be improved by adding additional buses; the penalty for accessing
distant parts of a NUMA memory should be revisited; the set of vector instructions should
be soundly extended; network capability should be improved (topology, bandwidth, and
latency) in order to lower enough the communication overhead.

The question of heat dissipation and power consumption will sit on top of major
concerns. It is possible that, at some points, performance will be sacrificed because of the

High Performance Computing Landscape and Challenges Claude TADONKI

 19

energy constraint. A typical node of a supercomputer will be made of a traditional multicore
processor with several moderate cores, coupled with high-speed accelerator units (mainly
GPUs). The idea behind relying on accelerators is that they will be fast enough to
significantly reduce the overall execution time, thereby reducing the corresponding heat
dissipation. It is important to understand this is a local reasoning, the case of high
throughput computation remaining problematic. Indeed, we cannot expect to always
compute by spots. Certain kinds of application like simulations, tracking, data assimilation,
to name a few, require continuous heavy calculations. The question will be how to keep the
benefit of acceleration over a long period of computing time without the punishment of an
unacceptable power consumption or hardware failure. Thus, research investigations on the
energy efficiency of computing systems will be of a particular interest, both from the
hardware side and the programming standpoint. Alongside these efforts, researches on
efficient and affordable cooling systems will be also crucial.

Another trend for future innovation, a part from increasing processors horsepower,
is the ability to leverage distant power with an increasingly diverse collection of devices.
Cloud computing offers a great alternative on mass storage, software and computing
devices. Federating available computing resources, assuming sufficiently fast network, is
certainly a valuable way to offer a more powerful computing system to the community. The
main advantage is that the maintenance cost is mutualized and the users pay only for what
they have really consumed. In addition, more related to the Software as a Service (SaaS)
feature, users instantly benefit from updates, new releases, and new software. There is also
an opportunity to share data and key parameters. This approach of federating available
resources can be also seen as a way to save power consumption, as it prevents wastage. The
topic of cloud computing is coming to the vogue and will probably be adopted for major
large-scale scientific experiments, assuming non-sensitive data. The challenge for computer
scientist is how to efficiently schedule a given set of tasks on the available set of resources in
order to serve the request at the user convenience, while taking care of energy.

From the programming point of view, there are number of serious challenges that
need to be addressed or remain under deeper investigations. The heterogeneity of current
and upcoming supercomputers requires the use of hybrid codes, which is another level of
programming complexity. One might think of using (semi-)automatic code generators, thus
concentrate on a higher-level abstraction. Programmers will, at certain point, rely on the
output of those code generation frameworks, which is not always easy to accept, and
otherwise raises a number of practical issues related to debugging, maintenance, adaptability,
tuning, and refactoring. Figure 17 displays an example of a complex code design framework
[3].

High Performance Computing Landscape and Challenges Claude TADONKI

 20

Figure 17: Sample hybrid HPC programming chain

As the number of cores is increasing, with various packaging models, scalability
will be an important issue for programmers. Some of the considerations that suited for
single-threaded code have to be revised when it comes to multi-threaded version. Data
locality is one of them, since the so-called false sharing is also caused by an inappropriate
locality. Mixing distributed memory model and shared memory model should become a
standard.

2. Conclusion
High Performance Computing currently stands as a hot topic both for computer

scientists and end users. The level of expectations is increasing, motivated by the noticeable
technical advances and what is announced at the horizon. Harvesting a high fraction of the
available processing power to solve real life problems is a central goal to achieve, as the gap
between the theoretical performance and the sustained efficiency is more and more
perceptible on modern supercomputers. From the scientific viewpoint, there are number of
challenging achievements that are expected in order to come up with efficient and scalable
computing solutions. Each involved topic is subject to intensive researches, with significant
discoveries that are already effective. However, the connection among these individual
advances need to be more investigated. This should be one of the major concerns of future
HPC investigations.

Solving large-scale problems in a short period of time using heterogeneous
supercomputers is the main concern the high performance computing. We found that
combining the advances in continuous optimization with suitable mathematical programming
formulation of combinatorial problems remains the major approach in operation research.

High Performance Computing Landscape and Challenges Claude TADONKI

 21

However, there is lack of studies on implementing state-of-the-art optimization methods on
modern supercomputers. This is great technical challenge that I want to keep investigating.
The branch-and-bound, for instance, is quite irregular and is likely to exhibit an elusive
memory access pattern. Providing the right response to the load balancing issue that will
certainly show up from a standard scheduling is a challenging task, but very important for
efficiency and scalability. From a fundamental point of view, there is a need to reformulate
problems accordingly, with a strong collaboration with people directly involved with real-
life applications.

Another interesting topic we which to consider is automatic code generation for HPC.
Programming current and future supercomputers is becoming more and more difficult,
mainly because of their heterogeneity. In addition, obtaining a high fraction of the
increasing peak performance is technically hard. One way to obtain an efficient code is to
locally optimize each of its critical parts. Another way is to act at the code generation level.
Tailoring a code to adapt or achieve the best possible performance on given architecture
requires a complex set of program transformations, each designed to satisfy or optimize for
one or more aspects (e.g. registers, cache, TLB, and instruction pipeline, data exchanges) of
the target system. When the processing code is becoming complex, or when the target
architecture is a combination of different processing units (hybrid or accelerated), it becomes
very hard to handle the task by hand. Thus, it is highly expected to be able to achieve the
necessary code transformations in a systematic way. We plan to keep investigation this
topic, which involves compilation techniques, hardware comprehension, and performance
prediction.

References
[1] Xiang-Ke Liao, Liquan Xiao, Canqun Yang, Yutong Lu, MilkyWay-2 supercomputer:
System and application, Frontiers of Computer Science 8(3): 345-356, DOI10.1007/s11704-
014-3501-3, 2014.

[2] A. Leite, C. Tadonki, C. Eisenbeis, and A. De Melo, A fine-grained approach for power
consumption analysis and prediction, Procedia Computer Science (Elsevier), vol. 29, pp. 2260–
2271, 2014.

[3] C. Tadonki, High Performance Computing as a Combination of Machines and Methods and
Programming, Habilitation Thesis, University Paris-Sud, May 2013.

[4] P. Kogge et al., ExaScale Computing Study: Technology Challenges in Achieving Exascale
Systems, DARPA report, 2008.

[5] E. W. Nagel, D. B. Krner, and M. M. Resch (Eds.), High Performance Computing in Science
and Engineering, Springer Book Archives, 2013.

[6] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman, NUMA-aware algorithms: the case of
data shuffling, http://www.pandis.net/resources/cidr13numashuffling.pdf, 2013.

High Performance Computing Landscape and Challenges Claude TADONKI

 22

[7] S. Kaestle, R. Achermann, T. Roscoe, T. Harris, Shoal: smart allocation and replication of
memory for parallel programs, USENIX Annual Technical Conference, July 8–10, 2015, Santa
Clara, CA, USA ISBN 978-1-931971-225,2015.

[8] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, M. Roth,
Traffic Management: A Holistic Approach to Memory Placement on NUMA Systems, ASPLOS’13,
March 16–20, 2013, Houston, Texas, USA 2013 ACM 978-1-4503-1870-9/13/03.

[9] B. Lepers, V. Quéma, and A. Fedorova, Thread and memory placement on NUMA systems:
asymmetry matters, In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’15). USENIX Association, Berkeley, CA, USA, 277-289

[10] R. Lachaize, B. Lepers, and V. Quéma, MemProf: A memory Profiler for NUMA Multicore
Systems, In USENIX ATC, 2012

[11] A. Collins, T. Harris, M. Cole, C. Fensch, LIRA: Adaptive Contention-Aware Thread
Placement for Parallel Runtime Systems, In ROSS, 2015

[12] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman, NUMA-aware algorithms: the case
of data shuffling, http://www.pandis.net/resources/cidr13numashuffling.pdf, 2013.

[13] P. Lin, Q. Yi, D. Quinlan, C. Liao, Y. Yan, Automatically Optimizing Stencil Computations
on Many-core NUMA Architectures, International Workshop on Languages and Compilers for
Parallel Computing Rochester, NY, United States September 28, 2016 through September 30,
2016.

[14] O. Haggui, C. Tadonki, L. Lacassagne, F. Sayadi, B. Ounid , Harris Corner Detection on a
NUMA Manycore, Future Generation Computer Systems (DOI: 10.1016/j.future.2018.01.048),
2018.

[15] C. Tadonki, Scalable NUMA-Aware Wilson-Dirac on Supercomputers, International
Conference on High Performance Computing & Simulation (HPCS 2017), Genoa, Italy, July
17-21, 2017.

[16] Frank Wilczek, What QCD Tells Us About Nature and Why We Should Listen, Nuc. Phys. A
663, 320, 2000.

[17] A. Ferreira Leite, A. Boukerche, A. C. Magalhaes Alves de Melo, C. Eisenbeis, C.
Tadonki, and C. Ghedini Ralha, Power-Aware Server Consolidation for Federated Clouds,
Concurrency and Computation: Practice and Experience (CCPE), ISSN: 1532-0626, Wiley
Press, New York, USA., 2016

[18] A. Ferreira Leite, V. Alves, G. Nunes Rodrigues, C. Tadonki, C. Eisenbeis, A. C.
Magalhaes Alves de Melo, Dohko: An Autonomic System for Provision, Configuration, and
Management of Inter-Cloud Environments based on a Software Product Line Engineering Method,
Cluster Computing Special, 2017.

High Performance Computing Landscape and Challenges Claude TADONKI

 23

[19] Y. Samadi, M. Zbakh, and C. Tadonki, Graph-based Model and Algorithm for Minimizing
Big Data Movement in a Cloud Environment, Int. J. High Performance Computing and
Networking, 2018.

[20] Luan Teylo, Ubiratam de Paula, Yuri Frota, Daniel de Oliveira, Lúcia M.A.Drummond,
A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific
workflows on clouds, Future Generation Computer Systems vol. 17, pp. 1-17, November 2017.

[20] Chris Gregg and Kim Hazelwood, Where is the Data? Why You Cannot Debate CPU vs.
GPU Performance Without the Answer, International Symposium on Performance Analysis of
Systems and Software (ISPASS), Austin, TX. April 2011.
http://www.cs.virginia.edu/kim/docs/ispass11.pdf

[21] http://www.mathworks.fr/products/demos/shipping/distcomp/paralleldemo_gpu_backslash.html

[22] http://www.mathworks.fr/company/newsletters/articles/gpu-programming-in-matlab.html

[23] https://developer.nvidia.com/cublas

[24] G. Giunta, R. Montella, G. Agrillo, G. Coviello, A GPGPU Transparent Virtualization
Component for High Performance Computing Clouds, 16th International Euro-Par Conference,
Ischia, Italia, August 31 - September 3, 2010.

[25] Stephen Jones, Inside the Kepler Architecture, Supercomputing (SC12), Salt Lake City,
USA, November 10-16, 2012.

