Towards Compositional and Generative Tensor Optimizations

Adilla Susungi ${ }^{1}$, Norman A. Rink ${ }^{2}$, Jerónimo Castrillón ${ }^{2}$, Immo Huismann ${ }^{3}$, Albert Cohen ${ }^{4}$, Claude Tadonki ${ }^{1}$, Jörg Stiller ${ }^{3}$ and Jochen Fröhlich ${ }^{3}$
${ }^{1}$ MINES ParisTech, PSL Research University
${ }^{2}$ Chair for Compiler Construction, Technische Universität Dresden
${ }^{3}$ Chair of Fluid Mechanics, Technische Universität Dresden
${ }^{4}$ Inria, Ecole normale supérieure

16th International Conference on Generative Programming: Concepts \& Experiences
(GPCE'17)
Vancouver, Canada, October 24, 2017

PSL \star

Tensor Computations

- Underlying data structure: N-dimensional array

Applications in numerical applications

- Quantum chemistry
- Machine learning
- Big data
- Computational fluid dynamics

Frameworks for Optimizations for Tensor Computations

Domain-specific expressivity

Flexible/Adaptive optimization heuristics

Tensors in Computational Fluid Dynamics

Characteristics

- 3 to 4 dimensions nesting
- Few iterations per dimension (e.g., 13 iterations)
- Tensor contractions, outer products, entrywise multiplications
- Same computation for each element of a mesh

Inverse Helmholtz [7]

$$
\begin{aligned}
t_{i j k} & =\sum_{l, m, n} A_{k n}^{T} \cdot A_{j m}^{T} \cdot A_{i l}^{T} \cdot u_{l m n} \\
p_{i j k} & =D_{i j k} \cdot t_{i j k} \\
v_{i j k} & =\sum_{l, m, n} A_{k n} \cdot A_{j m} \cdot A_{i l} \cdot p_{l m n}
\end{aligned}
$$

Tensors in Computational Fluid Dynamics

Characteristics

- 3 to 4 dimensions nesting
- Few iterations per dimension (e.g., 13 iterations)
- Tensor contractions, outer products, entrywise multiplications
- Same computation for each element of a mesh

Inverse Helmholtz [7]

$$
\begin{aligned}
& t_{i j k}=\sum_{l, m, n} A_{k n}^{T} \cdot A_{j m}^{T} \cdot A_{i l}^{T} \cdot u_{l m n} \\
& p_{i j k}=D_{i j k} \cdot t_{i j k} \\
& v_{i j k}=\sum_{l, m, n} A_{k n} \cdot A_{j m} \cdot A_{i l} \cdot p_{l m n}
\end{aligned}
$$

Search space for optimizations may include

- Evaluation order of tensor contractions
- Fusions
- Interchanges
- Transpositions
- Vectorization
- Collapsing
- Unrolling

Implementing CFD Kernels in Existing Frameworks

Chill $\bullet[6]$
Pluto $\bullet[5]$
TensorFlow $\bullet[3]$
TVM • [2]
Tensor Contraction Engine • [4]

Numpy - [1]
Tensor Algebra Compiler • [8]

Implementing CFD Kernels in Existing Frameworks

We encounter different levels of limitations

Our contribution

An intermediate language with building blocks for declaring:

- Tensor computations
- Optimization heuristics

Arrays, tensor operators, iterators and loop transformations as first class citizens.

Meta-programming

Our contribution

An intermediate language with building blocks for declaring:

- Tensor computations
- Optimization heuristics

Arrays, tensor operators, iterators and loop transformations as first class citizens.

Meta-programming

CFD kernels share common tensor operations with other domains

- We want enough flexibility and genericity (at least for tensor-based applications) to be reused in other domains.

Inverse Helmholtz by Example

$$
\begin{aligned}
& \text { Step 1: Declaring tensor compu- } \\
& \text { tations }
\end{aligned}
$$

Inverse Helmholtz by Example

Step 2: Associating iterators to computations

```
i1 = iterator(0, N, 1)
i2 = iterator(0, N, 1)
# ... other iterator declarations
build(D, [td1, td2, td3])
build(tmp1, [i1, i2, i3, i4])
## Also applies to tmp2, ...., tmp6
build(v, [k12, k22, k32, k42])
```


Inverse Helmholtz by Example

Step 3: Applying transformations

interchange(i4, i3)
interchange(i4, i2)
interchange (j2, j1)
interchange(j1, j4)

Inverse Helmholtz by Example

Example of results from different heuristics

- Mesh size: 750; data size: 33.
- Baseline: sequential execution.
- Machine: 24-core Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz (Haswell)
- Variant L1: Loop interchanges only + parallelization;
- Variant L2: Loop interchanges + data transpositions of tensor A + parallelization;
- Variant L3: Loop interchanges + data transpositions of tensors tmp1, ..., tmp6 + parallelization.
- Pluto1: Loop interchanges + parallelization + vectorization;
- Pluto2: Loop interchanges + partial fusions + vectorization;
- Pluto3: Loop interchanges + maximum fusions + vectorization;

Conclusion

- Cross-domain building-blocks
\rightarrow One intermediate language to rule them all flexibly
- Possibility to assess different variants
\rightarrow Through meta-programming or auto-tuning techniques

Ongoing work

- Syntax refinement
- Formal semantics
- Applications to other domains

References I

B
NumPy, package for scientific computing with Python.
http://www.numpy.org/, 2017.
TVM: An End to End IR Stack for Deploying Deep Learning Workloads on Hardware Platforms.
https://www.tvmlang.org, 2017.
家
Abadi, M., and et al., A. A.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
http://download.tensorflow.org/paper/whitepaper2015.pdf, 2015.
易
Baumgartner, G., Auer, A., Bernholdt, D. E., Bibireata, A., Choppella, V., Cociorva, D., Gao, X., Harrison, R. J., Hirata, S., Krishnamoorthy, S., Krishnan, S., chung Lam, C., Lu, Q., Nooijen, M., Pitzer, R. M., Ramanujam, J., Sadayappan, P., and Sibiryakov, A. Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models.
Proceedings of the IEEE 93, 2 (Feb 2005), 276-292.

References II

Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayappan, P.
A practical automatic polyhedral program optimization system.
In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) (2008).

Chen, C., Chame, J., and Hall, M.
Chill: A framework for composing high-level loop transformations.
Tech. rep., Technical Report 08-897, University of Southern California, 2008.

Huismann, I., Stiller, J., and Fröhlich, J.
Factorizing the factorization - a spectral-element solver for elliptic equations with linear operation count.
Journal of Computational Physics 346 (2017), 437-448.
囯 Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Amarasinghe, S.
The tensor algebra compiler.
In Proceedings of ACM Program. Lang (October 2017), OOPSLA' 17.

