Not Incompatible Logics

Olivier Hermant

MINES ParisTech, PSL Research University
Inria
October, $18^{\text {th }}$

Two Incompatible Logics

- Constructivism (BHK)
* first-order approximation: intuitionistic logic
- Classicism
* first-order classical logic
- in particuliar, arithmetic:
* Peano and Heyting versions
* same axioms, differents inference rules

Two Incompatible Logics

- Constructivism (BHK)
* first-order approximation: intuitionistic logic
- Classicism

夫 first-order classical logic

- in particuliar, arithmetic:
* Peano and Heyting versions
* same axioms, differents inference rules
- very pernicious conflict:
* same syntax, different semantic
* at least, sound
- two confronting schools for a long time:
« incompatible properties
\star incompatible persons
- how can we conciliate them ?

The Root of the Problem

Disjunction Property

A proof of $\vdash_{i} A \vee B$ can be turned into a proof of $\vdash_{i} A$ or a proof of $\vdash_{i} B$.

- in classical logic $\vdash_{c} A \vee \neg A$ provable whatever is A
- another formulation: $\vdash_{c} \neg \neg A \Rightarrow A$
- similarly for the \exists quantifier:
\star witness property
* Drinker's paradox
- lot of solutions
* depends of what we are expecting
* as discussed yesterday
\star and may be today

Double Negation Translations

© Kolmogorov (1925)

$$
\begin{aligned}
B^{K o} & =\neg \neg B \\
(B \wedge C)^{K o} & =\neg \neg\left(B^{K o} \wedge C^{K o}\right) \quad \text { (atoms) } \\
(B \vee C)^{K o} & =\neg \neg\left(B^{K o} \vee C^{K o}\right) \\
(B \Rightarrow C)^{K o} & =\neg \neg\left(B^{K o} \Rightarrow C^{K o}\right) \\
(\forall x A)^{K o} & =\neg \neg\left(\forall x A^{K o}\right) \\
(\exists x A)^{K o} & =\neg \neg\left(\exists x A^{K o}\right)
\end{aligned}
$$

Theorem

$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{K o}, \neg \Delta^{K o} \vdash$ intuitionistically provable.

Double Negation Translations

- Kolmogorov (1925)
(2) Gödel and Gentzen (1931)
$\star \vee$ and \exists, are the conflicting connective/quantifiers
\star leave the rest unchanged

$$
\begin{aligned}
B^{g g} & =\neg \neg B \\
(A \wedge B)^{g g} & =A^{g g} \wedge B^{g g} \\
(A \vee B)^{g g} & =\neg\left(\neg A^{g g} \wedge \neg B^{g g}\right) \\
(A \Rightarrow B)^{g g} & =A^{g g} \Rightarrow B^{g g} \\
(\forall x A)^{g g} & =\forall x A^{g g} \\
(\exists x A)^{g g} & =\neg \forall x \neg A^{g g}
\end{aligned}
$$

Theorem

$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{g g}, \neg \Delta^{g g} \vdash$ intuitionistically provable.

Double Negation Translations

- Kolmogorov (1925)
(2) Gödel and Gentzen (1931)
$\star \vee$ and \exists, are the conflicting connective/quantifiers
\star leave the rest unchanged
(3) Glivenko (1929): head negation enough in the propositional case
(4) Kuroda (1951): extension to FO: reset after each \forall quantifier

$$
\begin{array}{rlr}
B^{K u} & =B & B \\
(A \wedge B)^{K u} & =A^{K u} \wedge B^{K u} \\
(A \vee B)^{K u} & =A^{K u} \vee B^{K u} \\
(A \Rightarrow B)^{K u} & =A^{K u} \Rightarrow B^{K u} \\
(\forall x A)^{K u} & =\forall x \neg \neg A^{K u} \\
(\exists x A)^{K u} & =\forall x A^{K u}
\end{array}
$$

Theorem

$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{K u}, \neg \Delta^{K u} \vdash$ intuitionistically provable.

More Refinments

- left intuitionstic and classical sequent rules identical:
\star no need to translate anything on LHS of $\Gamma \vdash_{c} \Delta$
\star applies to cut-free calculus. Most of the time enough

$$
\begin{aligned}
& \text { LHS } \\
& B^{K o}=B \\
& (B \wedge C)^{K o}=\left(\neg \neg B^{K o} \wedge \neg \neg C^{K o}\right) \\
& (B \vee C)^{K o}=\left(\neg \neg B^{K o} \vee \neg \neg C^{K o}\right) \\
& (B \Rightarrow C)^{K o}=\left(\neg \neg B^{K o} \Rightarrow \neg \neg C^{K o}\right) \\
& (\forall x A)^{K o}=\forall x \neg \neg A^{K o} \\
& (\exists x A)^{K o}=\exists x \neg \neg A^{K o} \\
& \text { RHS } \\
& B^{K o}=B \\
& (B \wedge C)^{K o}=\left(\neg \neg B^{K o} \wedge \neg \neg C^{K o}\right) \\
& (B \vee C)^{K o}=\left(\neg \neg B^{K o} \vee \neg \neg C^{K o}\right) \\
& (B \Rightarrow C)^{K o}=\left(\neg \neg B^{K o} \Rightarrow \neg \neg C^{K o}\right) \\
& (\forall x A)^{K o}=\forall x \neg \neg A^{K o} \\
& (\exists x A)^{K o}=\exists x \neg \neg A^{K o}
\end{aligned}
$$

More Refinments

- left intuitionstic and classical sequent rules identical:
\star no need to translate anything on LHS of $\Gamma \vdash_{c} \Delta$
\star applies to cut-free calculus. Most of the time enough

$$
\begin{aligned}
& \text { LHS } \\
& B^{K+}=B \\
& \text { RHS } \\
& B^{K-}=B \\
& (B \wedge C)^{K+}=\left(\begin{array}{cc}
B^{K+} \wedge & C^{K+}
\end{array}\right) \\
& (B \wedge C)^{K-}=\left(\neg \neg B^{K-} \wedge \neg \neg C^{K-}\right) \\
& (B \vee C)^{K+}=\left(\begin{array}{ll}
B^{K+} \vee & C^{K+}
\end{array}\right) \\
& (B \Rightarrow C)^{K+}=\left(\neg \neg B^{K-} \Rightarrow \quad C^{K+}\right) \\
& (\forall x A)^{K+}=\forall x A^{K+} \\
& (\exists x A)^{K+}=\exists x A^{K+} \\
& (B \vee C)^{K-}=\left(\neg \neg B^{K-} \vee \neg \neg C^{K-}\right) \\
& (B \Rightarrow C)^{K-}=\left(\quad B^{K+} \Rightarrow \neg \neg C^{K-}\right) \\
& (\forall x A)^{K-}=\forall x \neg \neg A^{K-} \\
& (\exists x A)^{K-}=\exists x \neg \neg A^{K-}
\end{aligned}
$$

More Refinments

- left intuitionstic and classical sequent rules identical:
\star no need to translate anything on LHS of $\Gamma \vdash_{c} \Delta$
\star applies to cut-free calculus. Most of the time enough
- Gilbert: left/right + Kuroda + Gödel-Gentzen.
\star Minimal. End of Story ?

$$
\begin{aligned}
& \text { RHS (gg) } \\
& \text { LHS } \\
& \text { RHS (Ku) } \\
& \varphi(P)=\neg \neg P \\
& \chi(P)=P \\
& \psi(P)=P \\
& \varphi(B \wedge C)=\varphi(B) \wedge \varphi(C) \\
& \chi(B \wedge C)=\chi(B) \wedge \chi(C) \\
& \text { (C) } \psi(B \wedge C)=\psi(B) \wedge \psi(C) \\
& \varphi(B \vee C)=\neg \neg(\psi(B) \vee \psi(C)) \quad \chi(B \vee C)=\chi(B) \vee \chi(C) \quad \psi(B \vee C)=\psi(B) \vee \psi(C) \\
& \varphi(B \Rightarrow C)=\chi(B) \Rightarrow \varphi(C) \\
& \varphi(\neg B)=\neg \chi(B) \\
& \varphi(\forall \times A)=\forall \times \varphi(A) \\
& \chi(\neg B)=\neg \psi(B) \\
& \psi(\neg B)=\neg \chi(B) \\
& \varphi(\exists x A)=\neg \neg \exists x \psi(A) \\
& \chi(\forall \times A)=\forall x \chi(A) \\
& \psi(\forall \times A)=\forall \times \varphi(A) \\
& \chi(\exists x A)=\exists x \chi(A) \\
& \psi(\exists x A)=\exists x \psi(A)
\end{aligned}
$$

Theorem

$\Gamma \vdash C$ classically iff $\chi(\Gamma) \vdash \varphi(C)$ intuitionistically.

More Insights

- Chaudhuri, Clerc, llik, Miller:
\star bijections between proofs of focused calculi
* generating a particular translation by choosing a polarity
- Friedman:
* generalize: replace " \neg " with " $\Rightarrow A$ " in translations
* theorem:

Theorem
$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{K u}, \neg \Delta^{K u} \vdash \perp$ provable.

More Insights

- Chaudhuri, Clerc, llik, Miller:
\star bijections between proofs of focused calculi
* generating a particular translation by choosing a polarity
- Friedman:
* generalize: replace " \neg " with " $\Rightarrow A$ " in translations
* theorem:

Theorem
$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{A}, \Delta^{A} \Rightarrow A \vdash A$ provable.

More Insights

- Chaudhuri, Clerc, llik, Miller:
* bijections between proofs of focused calculi
* generating a particular translation by choosing a polarity
- Friedman:
* generalize: replace " \neg " with " $\Rightarrow A$ " in translations
* theorem:

Theorem

$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{A}, \Delta^{A} \Rightarrow A \vdash A$ provable.
\star equiprovability of certain statements $\left(\Pi_{2}^{0}\right)$
\star require decidability of some class of formulas
« "Friedman's trick": take as A the statement itself.

Mixed Logics

- "On the Unity of Logic", Girard (1993)
- not the logic is classical/intuitionistic/...
- ... but the connectives
- problem:
\star usual translations negate atoms (no connective here)

$$
\begin{align*}
B^{K o} & =\neg \neg B \tag{atoms}\\
(B \wedge C)^{K o} & =\neg \neg\left(B^{K o} \wedge C^{K o}\right) \\
(B \vee C)^{K o} & =\neg \neg\left(B^{K o} \vee C^{K o}\right) \\
(B \Rightarrow C)^{K o} & =\neg \neg\left(B^{K o} \Rightarrow C^{K o}\right) \\
(\forall x A)^{K o} & =\neg \neg\left(\forall x A^{K o}\right) \\
(\exists x A)^{K o} & =\neg \neg\left(\exists x A^{K o}\right)
\end{align*}
$$

Theorem

$\Gamma \vdash \Delta$ classical provable iff $\left.\Gamma^{K o},\right\lrcorner \backslash \Delta^{K o} \vdash$ provable.

Mixed Logics

- "On the Unity of Logic", Girard (1993)
- not the logic is classical/intuitionistic/...
- ... but the connectives
- problem:
* usual translations negate atoms (no connective here)
* "light" translations negate the whole (no connective there either)

$$
\begin{aligned}
B^{K o} & =B \\
(B \wedge C)^{K o} & =\left(\neg \neg B^{K o} \wedge \neg \neg C^{K o}\right) \\
(B \vee C)^{K o} & =\left(\neg \neg B^{K o} \vee \neg \neg C^{K o}\right) \\
(B \Rightarrow C)^{K o} & =\left(\neg \neg B^{K o} \Rightarrow \neg \neg C^{K o}\right) \\
(\forall x A)^{K o} & =\forall x \neg \neg A^{K o} \\
(\exists x A)^{K o} & =\exists x \neg \neg A^{K o}
\end{aligned}
$$

Theorem

$\Gamma \vdash \Delta$ classical provable iff $\Gamma^{K o}, \neg \Delta^{K o} \vdash$ provable.

Mixing Logics

- Dowek's translation goes double

$$
\begin{aligned}
B^{D o} & =B \\
(B \wedge C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \wedge \neg \neg C^{D o}\right) \\
(B \vee C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \vee \neg \neg C^{D o}\right) \\
(B \Rightarrow C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \Rightarrow \neg \neg C^{D o}\right) \\
(\forall x A)^{D o} & =\neg \neg \forall x \neg \neg A^{D o} \\
(\exists x A)^{D o} & =\neg \neg \exists x \neg \neg A^{D o}
\end{aligned}
$$

Mixing Logics

- Dowek's translation goes double

$$
\begin{aligned}
B^{D o} & =B \\
(B \wedge C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \wedge \neg \neg C^{D o}\right) \\
(B \vee C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \vee \neg \neg C^{D o}\right) \\
(B \Rightarrow C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \Rightarrow \neg \neg C^{D o}\right) \\
(\forall x A)^{D o} & =\neg \neg \forall x \neg \neg A^{D o} \\
(\exists x A)^{D o} & =\neg \neg \exists x \neg \neg A^{D o}
\end{aligned}
$$

- gain: no negated atoms, no negated formulas
- definition of classical connectives and quantifiers

$$
\begin{aligned}
\left(B \wedge_{c} C\right) & =\neg \neg\left(\neg \neg B \wedge_{i} \neg \neg C\right) \\
\left(B \vee_{c} C\right) & =\neg \neg\left(\neg \neg B \vee_{i} \neg \neg C\right) \\
\left(B \Rightarrow_{c} C\right) & =\neg \neg\left(\neg \neg B \Rightarrow_{i} \neg \neg C\right) \\
\left(\forall_{c} x A\right) & =\neg \neg \forall_{i} x \neg \neg A \\
\left(\exists_{c} x A\right) & =\neg \neg \exists_{i} x \neg \neg A
\end{aligned}
$$

- intuitionistic calculus as a basis

Mixing Logics

- Dowek's translation goes double

$$
\begin{aligned}
B^{D o} & =B \\
(B \wedge C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \wedge \neg \neg C^{D o}\right) \\
(B \vee C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \vee \neg \neg C^{D o}\right) \\
(B \Rightarrow C)^{D o} & =\neg \neg\left(\neg \neg B^{D o} \Rightarrow \neg \neg C^{D o}\right) \\
(\forall x A)^{D o} & =\neg \neg \forall x \neg \neg A^{D o} \\
(\exists x A)^{D o} & =\neg \neg \exists x \neg \neg A^{D o}
\end{aligned}
$$

- gain: no negated atoms, no negated formulas
- definition of classical connectives and quantifiers

$$
\begin{aligned}
\left(B \wedge_{c} C\right) & =\neg \neg\left(\neg \neg B \wedge_{i} \neg \neg C\right) \\
\left(B \vee_{c} C\right) & =\neg \neg\left(\neg \neg B \vee_{i} \neg \neg C\right) \\
\left(B \Rightarrow{ }_{c} C\right) & =\neg \neg\left(\neg \neg B \Rightarrow_{i} \neg \neg C\right) \\
\left(\forall_{c} x A\right) & =\neg \neg \forall_{i} x \neg \neg A \\
\left(\exists_{c} x A\right) & =\neg \neg \exists_{i} x \neg \neg A
\end{aligned}
$$

- intuitionistic calculus as a basis
- can be made lighter (De Morgan + Gödel-Gentzen ideas)

We don't care about theorems

We care about proofs!

- naïve translations look at inference steps
- less naïve translations permute/gather inference rules (cf. focusing)
- ee also Friedman's translation
- that apply to all proofs
- Reverse Mathematics

We don't care about theorems

We care about proofs!

- naïve translations look at inference steps
- less naïve translations permute/gather inference rules (cf. focusing)
- ee also Friedman's translation
- that apply to all proofs
- Reverse Mathematics
- Gilbert's work
* analyse every proof, encode in Dedukti
$\star 54 \%$ of Zenon's proofs are constructive
- Cauderlier's work
\star encode in Dedukti, rewrite proofs terms with higher-order rewrite rules
* 62% of Zenon's proofs

We don't care about theorems

We care about proofs!

- naïve translations look at inference steps
- less naïve translations permute/gather inference rules (cf. focusing)
- ee also Friedman's translation
- that apply to all proofs
- Reverse Mathematics
- Gilbert's work
* analyse every proof, encode in Dedukti
$\star 54 \%$ of Zenon's proofs are constructive
- Cauderlier's work
» encode in Dedukti, rewrite proofs terms with higher-order rewrite rules
* 62% of Zenon's proofs
- both combined: 82\%

Still Unsatisfied?

- if we cannot be shallow, go deeper!
- express provability in logic X as a first-order theory, reason about it in a constructively

Still Unsatisfied?

- if we cannot be shallow, go deeper!
- express provability in logic X as a first-order theory, reason about it in a constructively
- Or change the rules of the game!

Definition

A constructive proof is a proof from which we can extract a program.

- Control operators and classical realizability
- Classical logic is a constructive logic:
* but can change mind
\star "I say $\neg A / A(0)$ and I defy you to show that I am wrong"

