Not Incompatible Logics

Olivier Hermant

MINES ParisTech, PSL Research University

Inria

October, 18th

O. Hermant

Not Incompatible

October, 18th 1 / 10

Two Incompatible Logics

- Constructivism (BHK)
 - first-order approximation: intuitionistic logic
- Classicism
 - ★ first-order classical logic
- in particuliar, arithmetic:
 - * Peano and Heyting versions
 - * same axioms, differents inference rules

Two Incompatible Logics

- Constructivism (BHK)
 - first-order approximation: intuitionistic logic
- Classicism
 - ★ first-order classical logic
- in particuliar, arithmetic:
 - * Peano and Heyting versions
 - same axioms, differents inference rules
- very pernicious conflict:
 - * same syntax, different semantic
 - at least, sound
- two confronting schools for a long time:
 - incompatible properties
 - incompatible persons
- how can we conciliate them ?

The Root of the Problem

Disjunction Property

A proof of $\vdash_i A \lor B$ can be turned into a proof of $\vdash_i A$ or a proof of $\vdash_i B$.

- in classical logic $\vdash_c A \lor \neg A$ provable whatever is A
- another formulation: $\vdash_c \neg \neg A \Rightarrow A$
- similarly for the ∃ quantifier:
 - witness property
 - Drinker's paradox
- Iot of solutions
 - depends of what we are expecting
 - as discussed yesterday
 - and may be today

Double Negation Translations

Kolmogorov (1925)

$$B^{Ko} = \neg \neg B \qquad (atoms)$$

$$(B \land C)^{Ko} = \neg \neg (B^{Ko} \land C^{Ko})$$

$$(B \lor C)^{Ko} = \neg \neg (B^{Ko} \lor C^{Ko})$$

$$(B \Rightarrow C)^{Ko} = \neg \neg (B^{Ko} \Rightarrow C^{Ko})$$

$$(\forall xA)^{Ko} = \neg \neg (\forall xA^{Ko})$$

$$(\exists xA)^{Ko} = \neg \neg (\exists xA^{Ko})$$

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^{Ko} , $\neg \Delta^{Ko} \vdash$ intuitionistically provable.

Double Negation Translations

- Kolmogorov (1925)
- Ø Gödel and Gentzen (1931)
 - \star \lor and \exists , are the conflicting connective/quantifiers
 - leave the rest unchanged

$$B^{gg} = \neg \neg B \qquad (atoms)$$

$$(A \land B)^{gg} = A^{gg} \land B^{gg}$$

$$(A \lor B)^{gg} = \neg (\neg A^{gg} \land \neg B^{gg})$$

$$(A \Rightarrow B)^{gg} = A^{gg} \Rightarrow B^{gg}$$

$$(\forall xA)^{gg} = \forall xA^{gg}$$

$$(\exists xA)^{gg} = \neg \forall x \neg A^{gg}$$

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^{gg} , $\neg \Delta^{gg} \vdash$ intuitionistically provable.

Double Negation Translations

- Kolmogorov (1925)
- Ø Gödel and Gentzen (1931)
 - \star \lor and \exists , are the conflicting connective/quantifiers
 - leave the rest unchanged
- Glivenko (1929): head negation enough in the propositional case
- Suroda (1951): extension to FO: reset after each ∀ quantifier

$$B^{Ku} = B \qquad (atoms)$$

$$(A \land B)^{Ku} = A^{Ku} \land B^{Ku}$$

$$(A \lor B)^{Ku} = A^{Ku} \lor B^{Ku}$$

$$(A \Rightarrow B)^{Ku} = A^{Ku} \Rightarrow B^{Ku}$$

$$(\forall xA)^{Ku} = \forall x \neg \neg A^{Ku}$$

$$(\exists xA)^{Ku} = \forall x \land A^{Ku}$$

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^{Ku} , $\neg \Delta^{Ku} \vdash$ intuitionistically provable.

More Refinments

- Ieft intuitionstic and classical sequent rules identical:
 - * no need to translate anything on LHS of $\Gamma \vdash_c \Delta$
 - applies to cut-free calculus. Most of the time enough

More Refinments

- Ieft intuitionstic and classical sequent rules identical:
 - * no need to translate anything on LHS of $\Gamma \vdash_c \Delta$
 - applies to cut-free calculus. Most of the time enough

More Refinments

- Ieft intuitionstic and classical sequent rules identical:
 - ★ no need to translate anything on LHS of $\Gamma \vdash_{c} \Delta$
 - applies to cut-free calculus. Most of the time enough
- Gilbert: left/right + Kuroda + Gödel-Gentzen.
 - Minimal. End of Story ?

$$\begin{array}{cccc} \mathsf{RHS}(\mathsf{gg}) & \mathsf{LHS} & \mathsf{RHS}(\mathsf{Ku}) \\ \varphi(P) = \neg \neg P & \chi(P) = P & \psi(P) = P \\ \varphi(B \land C) = \varphi(B) \land \varphi(C) & \chi(B \land C) = \chi(B) \land \chi(C) & \psi(B \land C) = \psi(B) \land \psi(C) \\ \varphi(B \lor C) = \neg \neg (\psi(B) \lor \psi(C)) & \chi(B \lor C) = \chi(B) \lor \chi(C) & \psi(B \lor C) = \psi(B) \lor \psi(C) \\ \varphi(B \Rightarrow C) = \chi(B) \Rightarrow \varphi(C) & \chi(B \Rightarrow C) = \psi(B) \Rightarrow \chi(C) & \psi(B \Rightarrow C) = \chi(B) \Rightarrow \psi(C) \\ \varphi(\neg B) = \neg \chi(B) & \chi(\neg B) = \neg \psi(B) & \psi(\neg B) = \neg \chi(B) \\ \varphi(\forall xA) = \forall x\varphi(A) & \chi(\forall xA) = \forall x\chi(A) & \psi(\forall xA) = \forall x\varphi(A) \\ \varphi(\exists xA) = \neg \neg \exists x\psi(A) & \chi(\exists xA) = \exists x\chi(A) & \psi(\exists xA) = \exists x\psi(A) \end{array}$$

Theorem

 $\Gamma \vdash C$ classically iff $\chi(\Gamma) \vdash \varphi(C)$ intuitionistically.

More Insights

- Chaudhuri, Clerc, Ilik, Miller:
 - * bijections between proofs of focused calculi
 - generating a particular translation by choosing a polarity
- Friedman:
 - ★ generalize: replace "¬" with " \Rightarrow A" in translations
 - ★ theorem:

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^{Ku} , $\neg \Delta^{Ku} \vdash \bot$ provable.

More Insights

- Chaudhuri, Clerc, Ilik, Miller:
 - * bijections between proofs of focused calculi
 - generating a particular translation by choosing a polarity
- Friedman:
 - ★ generalize: replace "¬" with " \Rightarrow A" in translations
 - ★ theorem:

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^A , $\Delta^A \Rightarrow A \vdash A$ provable.

More Insights

- Chaudhuri, Clerc, Ilik, Miller:
 - * bijections between proofs of focused calculi
 - generating a particular translation by choosing a polarity
- Friedman:
 - ★ generalize: replace "¬" with " \Rightarrow A" in translations
 - ★ theorem:

Theorem

- $\Gamma \vdash \Delta$ classical provable iff $\Gamma^A, \Delta^A \Rightarrow A \vdash A$ provable.
 - * equiprovability of certain statements (Π_2^0)
 - ★ require decidability of some class of formulas
 - * "Friedman's trick": take as A the statement itself.

Mixed Logics

- "On the Unity of Logic", Girard (1993)
- not the *logic* is classical/intuitionistic/...
- ... but the connectives
- problem:
 - usual translations negate atoms (no connective here)

$$B^{Ko} = \neg \neg B \qquad (atoms)$$

$$(B \land C)^{Ko} = \neg \neg (B^{Ko} \land C^{Ko})$$

$$(B \lor C)^{Ko} = \neg \neg (B^{Ko} \lor C^{Ko})$$

$$(B \Rightarrow C)^{Ko} = \neg \neg (B^{Ko} \Rightarrow C^{Ko})$$

$$(\forall xA)^{Ko} = \neg \neg (\forall xA^{Ko})$$

$$(\exists xA)^{Ko} = \neg \neg (\exists xA^{Ko})$$

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^{K_0} , $\Box \setminus \Delta^{K_0} \vdash$ provable.

Mixed Logics

- "On the Unity of Logic", Girard (1993)
- not the *logic* is classical/intuitionistic/...
- ... but the connectives
- problem:
 - usual translations negate atoms (no connective here)
 - * "light" translations negate the whole (no connective there either)

$$B^{Ko} = B$$
(atoms)

$$(B \land C)^{Ko} = (\neg \neg B^{Ko} \land \neg \neg C^{Ko})
(B \lor C)^{Ko} = (\neg \neg B^{Ko} \lor \neg \neg C^{Ko})
(B \Rightarrow C)^{Ko} = (\neg \neg B^{Ko} \Rightarrow \neg \neg C^{Ko})
(\forall xA)^{Ko} = \forall x \neg \neg A^{Ko}
(\exists xA)^{Ko} = \exists x \neg \neg A^{Ko}$$

Theorem

 $\Gamma \vdash \Delta$ classical provable iff Γ^{Ko} , $\neg \Delta^{Ko} \vdash$ provable.

Mixing Logics

Dowek's translation goes double

$$B^{Do} = B$$
(atoms)

$$(B \land C)^{Do} = \neg \neg (\neg \neg B^{Do} \land \neg \neg C^{Do})$$

$$(B \lor C)^{Do} = \neg \neg (\neg \neg B^{Do} \lor \neg \neg C^{Do})$$

$$(B \Rightarrow C)^{Do} = \neg \neg (\neg \neg B^{Do} \Rightarrow \neg \neg C^{Do})$$

$$(\forall xA)^{Do} = \neg \neg \forall x \neg A^{Do}$$

$$(\exists xA)^{Do} = \neg \neg \exists x \neg A^{Do}$$

∃ ▶ э

Mixing Logics

Dowek's translation goes double

$$B^{Do} = B$$
(atoms)

$$(B \land C)^{Do} = \neg \neg (\neg \neg B^{Do} \land \neg \neg C^{Do})
(B \lor C)^{Do} = \neg \neg (\neg \neg B^{Do} \lor \neg \neg C^{Do})
(B \Rightarrow C)^{Do} = \neg \neg (\neg \neg B^{Do} \Rightarrow \neg \neg C^{Do})
(\forall xA)^{Do} = \neg \neg \forall x \neg A^{Do}
(\exists xA)^{Do} = \neg \neg \exists x \neg A^{Do}$$

- gain: no negated atoms, no negated formulas
- definition of classical connectives and quantifiers

$$(B \wedge_{c} C) = \neg \neg (\neg \neg B \wedge_{i} \neg \neg C)$$

$$(B \vee_{c} C) = \neg \neg (\neg \neg B \vee_{i} \neg \neg C)$$

$$(B \Rightarrow_{c} C) = \neg \neg (\neg \neg B \Rightarrow_{i} \neg \neg C)$$

$$(\forall_{c} xA) = \neg \neg \forall_{i} x \neg \neg A$$

$$(\exists_{c} xA) = \neg \neg \exists_{i} x \neg A$$

intuitionistic calculus as a basis

Mixing Logics

Dowek's translation goes double

$$B^{Do} = B$$
(atoms)

$$(B \land C)^{Do} = \neg \neg (\neg \neg B^{Do} \land \neg \neg C^{Do})
(B \lor C)^{Do} = \neg \neg (\neg \neg B^{Do} \lor \neg \neg C^{Do})
(B \Rightarrow C)^{Do} = \neg \neg (\neg \neg B^{Do} \Rightarrow \neg \neg C^{Do})
(\forall xA)^{Do} = \neg \neg \forall x \neg A^{Do}
(\exists xA)^{Do} = \neg \neg \exists x \neg A^{Do}$$

- gain: no negated atoms, no negated formulas
- definition of classical connectives and quantifiers

$$(B \wedge_{c} C) = \neg \neg (\neg \neg B \wedge_{i} \neg \neg C)$$

$$(B \vee_{c} C) = \neg \neg (\neg \neg B \vee_{i} \neg \neg C)$$

$$(B \Rightarrow_{c} C) = \neg \neg (\neg \neg B \Rightarrow_{i} \neg \neg C)$$

$$(\forall_{c} xA) = \neg \neg \forall_{i} x \neg \neg A$$

$$(\exists_{c} xA) = \neg \neg \exists_{i} x \neg A$$

- intuitionistic calculus as a basis
- can be made lighter (De Morgan + Gödel-Gentzen ideas)

We don't care about theorems

We care about proofs!

- naïve translations look at inference steps
- less naïve translations permute/gather inference rules (cf. focusing)
- ee also Friedman's translation
- that apply to all proofs
- Reverse Mathematics

We don't care about theorems

We care about proofs!

- naïve translations look at inference steps
- less naïve translations permute/gather inference rules (cf. focusing)
- ee also Friedman's translation
- that apply to all proofs
- Reverse Mathematics
- Gilbert's work
 - * analyse every proof, encode in Dedukti
 - 54% of Zenon's proofs are constructive
- Cauderlier's work
 - encode in Dedukti, rewrite proofs terms with higher-order rewrite rules
 - ★ 62% of Zenon's proofs

We don't care about theorems

We care about proofs!

- naïve translations look at inference steps
- less naïve translations permute/gather inference rules (cf. focusing)
- ee also Friedman's translation
- that apply to all proofs
- Reverse Mathematics
- Gilbert's work
 - * analyse every proof, encode in Dedukti
 - ★ 54% of Zenon's proofs are constructive
- Cauderlier's work
 - * encode in Dedukti, rewrite proofs terms with higher-order rewrite rules
 - ★ 62% of Zenon's proofs
- both combined: 82%

Still Unsatisfied ?

- if we cannot be shallow, go deeper!
- express provability in logic X as a first-order theory, reason about it in a constructively

Still Unsatisfied ?

- if we cannot be shallow, go deeper!
- express provability in logic X as a first-order theory, reason about it in a constructively
- Or change the rules of the game!

Definition

A constructive proof is a proof from which we can extract a program.

- Control operators and classical realizability
- Classical logic is a constructive logic:
 - * but can change mind
 - * "I say $\neg A/A(0)$ and I defy you to show that I am wrong"