Automatic Code Generation of
Distributed Parallel Tasks

CSE 2016

Nelson Lossing Corinne Ancourt Francois Irigoin
firstname.lastname@mines-paristech.fr

2

MINES
Par I\TeCh

MINES ParisTech,
PSL Research University

Paris, August 24th, 2016

firstname.lastname@mines-paristech.fr

Motivation

Scientific Program

Signal Processing

Context

Tools
o Automatic task parallelization (OpenModelica®)
o Automatic distributed parallelization (Pluto+?)
e Black box

But no automatic distributed parallelization task tool

IMahder Gebremedhin and Peter Fritzson. Automatic Task Based Analysis and
Parallelization in the Context of Equation Based Languages”. In: Proceedings of the
6th International Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools. EOOLT '14. Berlin, Germany: ACM, 2014, pp. 49-52.

2Uday Bondhugula. “Compiling Affine Loop Nests for Distributed-memory Parallel
Architectures”. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. SC '13. Denver, Colorado: ACM, 2013.

2/24

Source-to-Source Transformations

@ Fortran code

@ C code

@ Scientific
Program

@ Image
Processing

Source-to-Source
Compiler

Static analyses

Instrumentation/
Dynamic analyses

Transformations
Source code generation
Code modelling
Prettyprint

—| output files

@ Fortran code

@ C code

@ Distributed
Parallel Code

3/24

Compilation Process

Gnitial Sequential Code)

Code Preparation
v

| Code Generation |

Case Example

Harris&Stephens algorithm3

3Chris Harris and Mike Stephens. “A combined corner and edge detector”. In: In
Proc. of Fourth Alvey Vision Conference. 1988, pp. 147-151
5/24

Compilation Process

Gnitial Sequential Code)

Code Preparation
v

| Code Generation |

Mapping

Can be done

o Automatically with a task scheduler*

@ Manually

Pragma directive

@ New pragma distributed

@ On sequence of instructions, loop, test, etc.
@ Not inside loop or condition

@ on_cluster to define the process to use

°

No data dependence information needed °

o’

4Dounia Khaldi, Pierre Jouvelot, and Corinne Ancourt. “Parallelizing with BDSC, a
Resource-constrained Scheduling Algorithm for Shared and Distributed Memory
Systems”. In: Parallel Comput. 41.C (Jan. 2015), pp. 66-89

5Martin Tillenius et al. “Resource-Aware Task Scheduling”. |n: ACM Trans.

Embed. Comput. Syst. 14.1 (Jan. 2015), 5:1-5:25
7/24

@@i R 1

RVAVAY.
— %% ¥

Compilation Process

Gnitial Sequential Code)

Code Preparation
v

| Code Generation |

Code Preparation

Task on process

@ Add declaration for each variable on each process
@ Add copy/communication for written variables
© Substitute “original variables” by “local variables”

@ Remove “original variables” declarations

10/24

Code Preparation

Task on process

© Add declaration for each variable on each process
@ Add copy/communication for written variables
© Substitute “original variables” by “local variables”

@ Remove “original variables” declarations

int x
int x
int x; = int x
int x

10/24

Code Preparation

Task on process

© Add declaration for each variable on each process
@ Add copy/communication for written variables
© Substitute “original variables” by “local variables”

@ Remove “original variables” declarations

Copy/Communication

@ inside the task @ between the tasks
e More precise o No dynamic cases
o Issue for code generation o Less precise

on dynamic cases

10/24

Code Preparation

Task on process

© Add declaration for each variable on each process
@ Add copy/communication for written variables
© Substitute “original variables” by “local variables”

@ Remove “original variables” declarations

#pragma distributed on_cluster O

10/24

Code Preparation

Task on process

© Add declaration for each variable on each process
@ Add copy/communication for written variables
© Substitute “original variables” by “local variables”

@ Remove “original variables” declarations

int x;

int x_0; int x_0;
int x_1; = int x_1;
int x_2;

10/24

After Code Preparation

Proc 0 in S Gxg mlxxo /é\Sxxo /\oth

\\ﬁ/»@a@% A

Proc 1 Gy1 /I_/Ig%'/—;;:

Task Graph

Proc 0 @ @ @ @

Proc 2 @ @

Proc 1 @ @ @

12/24

Compilation Process

Gnitial Sequential Code)

Code Preparation
v

| Code Generation |

13/24

Optimizations

Reduce Copy/Communication

@ Dead-code Elimination

@ Dead-iteration Elimination

Reduce Memory Footprint
@ Array Resizing

14 /24

Reduce Copy/Communication

o Dead-code Elimination

@ Dead-iteration Elimination

case 1 case 2 case 3
write x_P write x_P write a_P[0. .n]
x_R==x-P Xx_Q=x_P a—ffo—=nt=a—Pfo—m}
task on P a_Q[0..n/2]=a_P[0..n/2]

Xx_R=2x_P x—R==%x-P a-Rto—nf=a-Pf0—mn}
a_R[n/2..nl=a_P[n/2..n]

read x_Q read a_Q[0..n/2]
task on Q . write x_Q
Q#P x_P=x_0Q
x_R=x_Q
task on R read x_R read x_R read a_R[n/2..n]

R#£{P,Q}

15/24

Reduce Memory Footprint

@ Array Resizing
o Compute new array size
o Resize array declarations
o Shift array cells access

int al[20]; int a[10];

int ij; int ij;

for (i=5; i<15; i++) for (i=5; i<15; i++)
ali] = ix*i; a[i-5] = ixi;

16 /24

Before Optimizations

Proc 0 in S Gxo mlxxo /é\Sxxo /\oth

\\ﬁ/»@a@% A

Proc 1 Gy1 /I_/Ig%'/—;;:

After Optimizations

Proc 0 i-;sx G fmxxo faSXXo fc\wt&

-\ 5o ¥

Proc 1 Sy Gy1 ‘M‘/yy1 GSyy

18 /24

Compilation Process

Gnitial Sequential Code)

Code Preparation
v

| Code Generation |

19/24

Parallel Code Generation

MPI Code Generation

e Configure MPI Environment

@ Replace pragma block by test on process rank
@ Replace copy by

o Send message for rhs on rhs process to |hs process
o Receive message for lhs on |hs process from rhs process

20/24

Parallel Code Generation

MPI Code Generation

o Configure MPI Environment
@ Replace pragma block by test on process rank

@ Replace copy by
o Send message for rhs on rhs process to |hs process
o Receive message for lhs on lhs process from rhs process

MPI_Status status;
int size, rank;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (size<REQUIRE_PROC_NUMBER) {
printf ()
MPI_Finalize ();
return O;

}

MPI_Finalize ();
return O;
20 /24

Parallel Code Generation

MPI Code Generation

@ Configure MPI Environment
@ Replace pragma block by test on process rank

@ Replace copy by

o Send message for rhs on rhs process to |hs process
o Receive message for lhs on lhs process from rhs process

#pragma distributed on_cluster 0 if (rank==0)
{ = {
} }

20/24

Parallel Code Generation

MPI| Code Generation

e Configure MPI Environment

@ Replace pragma block by test on process rank
o Replace copy by

e Send message for rhs on rhs process to lhs process
o Receive message for lhs on lhs process from rhs process

o’

if (rank==0)
MPI_Send (%x_0, 1, MPI_DOUBLE, 1, O,
MPI_COMM_WORLD) ;
if (rank==1)
MPI_Recv(&x_1, 1, MPI_DOUBLE, 0, O,
MPI_COMM_WORLD);

x_1 = x_0; =

20/ 24

After Parallel Code Generation

21 /24

Experimental Results

Speed up

8

7

6

5 M sequential
M 2 procs

4 4 procs
M 8 procs

3

2

: ‘ L ‘ Rifidim I

0

gemm gemver gesummv symm syr2k syrk trmm

Benchmark: BLAS in Polybench
size: ~3000x4000
type: double

22 /24

Limitations

General Limitations

@ Number of processes known at the beginning
@ No dynamic parallelism

e Communication overestimation in case of dynamic
communications

Experimental Limitations

@ Strongly mapping dependent

23 /24

Conclusion

@ Automatic source-to-source transformations
@ Succession of simple transformations

@ Basic communication functions

@ Provable transformations
°

Good efficiency

y

@ Improvement of the initial mapping by loop rescheduling

@ Asynchronous communications instead of synchronous
communications

N

24 /24

Automatic Code Generation of
Distributed Parallel Tasks

CSE 2016

Nelson Lossing Corinne Ancourt Francois Irigoin
firstname.lastname@mines-paristech.fr

2

MINES
Par I\TeCh

MINES ParisTech,
PSL Research University

Paris, August 24th, 2016

firstname.lastname@mines-paristech.fr

	Compilation Process

