Automatic Code Generation of Distributed Parallel Tasks

CSE 2016

Nelson Lossing Corinne Ancourt François Irigoin firstname.lastname@mines-paristech.fr

MINES ParisTech, PSL Research University

Paris, August 24th, 2016

Motivation

Scientific Program

Signal Processing

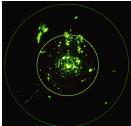
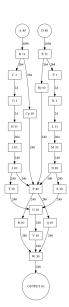
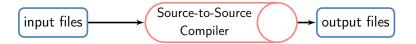



Image Processing

Context

Tools

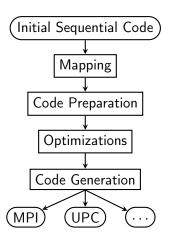

- Automatic task parallelization (OpenModelica¹)
- Automatic distributed parallelization (Pluto+2)
- Black box

But no automatic distributed parallelization task tool

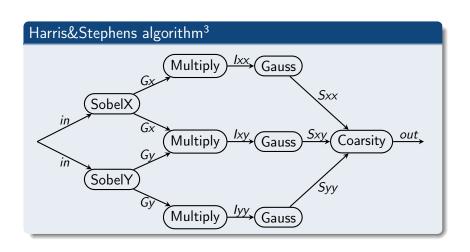
¹Mahder Gebremedhin and Peter Fritzson. "Automatic Task Based Analysis and Parallelization in the Context of Equation Based Languages". In: *Proceedings of the 6th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools.* EOOLT '14. Berlin, Germany: ACM, 2014, pp. 49–52.

²Uday Bondhugula. "Compiling Affine Loop Nests for Distributed-memory Parallel Architectures". In: *Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis.* SC '13. Denver, Colorado: ACM, 2013.

Source-to-Source Transformations

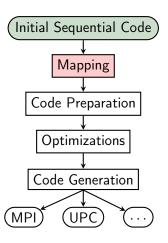


- Fortran code
- C code
- Scientific Program
- Image Processing


- Static analyses
- Instrumentation/ Dynamic analyses
- Transformations
- Source code generation
- Code modelling
- Prettyprint

- Fortran code
- C code
- Distributed Parallel Code

Compilation Process



Case Example

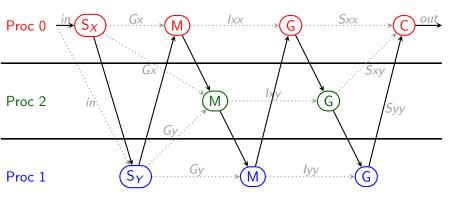
³Chris Harris and Mike Stephens. "A combined corner and edge detector". In: *In Proc. of Fourth Alvey Vision Conference*. 1988, pp. 147–151

Compilation Process

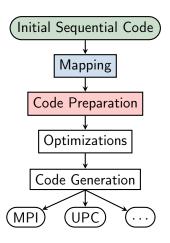
Mapping

Can be done

- Automatically with a task scheduler⁴
- Manually


Pragma directive

- New pragma distributed
- On sequence of instructions, loop, test, etc.
- Not inside loop or condition
- on_cluster to define the process to use
- No data dependence information needed ⁵


⁴Dounia Khaldi, Pierre Jouvelot, and Corinne Ancourt. "Parallelizing with BDSC, a Resource-constrained Scheduling Algorithm for Shared and Distributed Memory Systems". In: *Parallel Comput.* 41.C (Jan. 2015), pp. 66–89

⁵Martin Tillenius et al. "Resource-Aware Task Scheduling". In: *ACM Trans. Embed. Comput. Syst.* 14.1 (Jan. 2015), 5:1–5:25

After Mapping

Compilation Process

Task on process

- Add declaration for each variable on each process
- Add copy/communication for written variables
- 3 Substitute "original variables" by "local variables"
- Remove "original variables" declarations

Task on process

- 4 Add declaration for each variable on each process
- 2 Add copy/communication for written variables
- 3 Substitute "original variables" by "local variables"
- Remove "original variables" declarations

```
\begin{array}{c} \text{int } x;\\ \text{int } x_{-}0;\\ \text{int } x;\\ \Rightarrow \text{int } x_{-}1;\\ \text{int } x_{-}2;\\ \dots\end{array}
```

Task on process

- Add declaration for each variable on each process
- Add copy/communication for written variables
- 3 Substitute "original variables" by "local variables"
- Remove "original variables" declarations

Copy/Communication

- inside the task
 - More precise
 - Issue for code generation on dynamic cases
- between the tasks
 - No dynamic cases
 - Less precise

Task on process

- Add declaration for each variable on each process
- Add copy/communication for written variables
- Substitute "original variables" by "local variables"
- Remove "original variables" declarations

Task on process

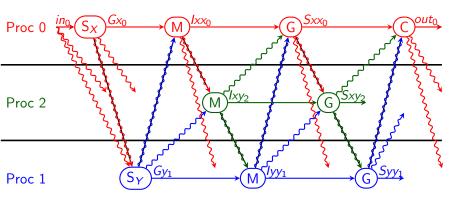
- Add declaration for each variable on each process
- Add copy/communication for written variables
- Substitute "original variables" by "local variables"
- Remove "original variables" declarations

```
int x;

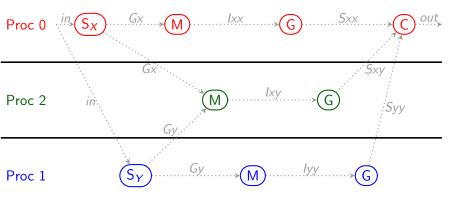
int x_0;

int x_1;

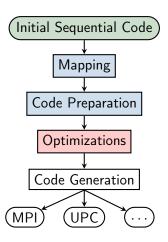
int x_2;


int x_2;

int x_2;


int x_2;

int x_2;
```


After Code Preparation

Task Graph

Compilation Process

Optimizations

Reduce Copy/Communication

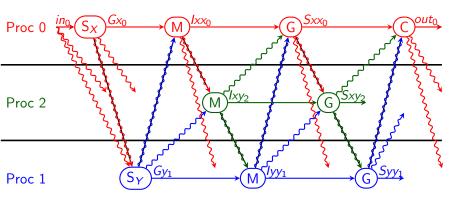
- Dead-code Elimination
- Dead-iteration Elimination

Reduce Memory Footprint

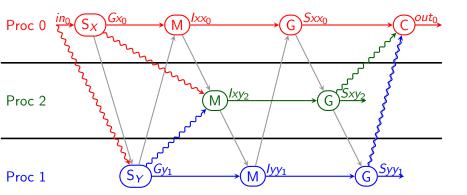
Array Resizing

Reduce Copy/Communication

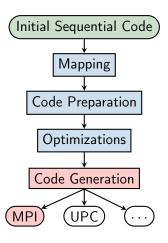
- Dead-code Elimination
- Dead-iteration Elimination


	case 1	case 2	case 3
task on P	write x_P $x_Q = x_P$ $x_R = x_P$	write x_P $x_Q = x_P$ $x_R = x_P$	write $a_P[0n]$ $a_Q[0n] = a_P[0n]$ $a_Q[0n/2] = a_P[0n/2]$ $a_R[0n] = a_P[0n]$ $a_R[n/2n] = a_P[n/2n]$
task on Q Q≠P		read x_Q write x_Q $x_P = x_Q$ $x_R = x_Q$	read a_Q[0n/2]
task on R R≠{P,Q}	read x_R	read x_R	read a_R[n/2n]

Reduce Memory Footprint


- Array Resizing
 - Compute new array size
 - Resize array declarations
 - Shift array cells access

```
int a[20];
int i;
for (i=5; i<15; i++)
   a[i] = i*i;</pre>
int a[10];
int i;
for (i=5; i<15; i++)
   a[i-5] = i*i;
```


Before Optimizations

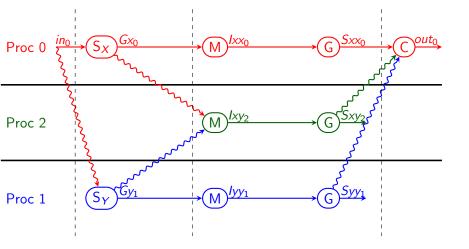
After Optimizations

Compilation Process

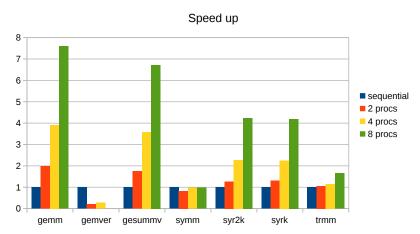
- Configure MPI Environment
- Replace pragma block by test on process rank
- Replace copy by
 - Send message for rhs on rhs process to lhs process
 - Receive message for lhs on lhs process from rhs process

- Configure MPI Environment
- Replace pragma block by test on process rank
- Replace copy by
 - Send message for rhs on rhs process to lhs process
 - Receive message for lhs on lhs process from rhs process

```
MPI_Status status;
int size, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (size<REQUIRE_PROC_NUMBER) {
   printf("Not_enough_processes_launched!");
   MPI_Finalize();
   return 0;
}
...
MPI_Finalize();
return 0;</pre>
```


- Configure MPI Environment
- Replace pragma block by test on process rank
- Replace copy by
 - Send message for rhs on rhs process to lhs process
 - Receive message for lhs on lhs process from rhs process

```
#pragma distributed on_cluster 0 if (rank==0) 


\{ \Rightarrow \{ \dots \}
```

- Configure MPI Environment
- Replace pragma block by test on process rank
- Replace copy by
 - Send message for rhs on rhs process to lhs process
 - Receive message for lhs on lhs process from rhs process

After Parallel Code Generation

Experimental Results

Benchmark: BLAS in Polybench

size: \sim 3000x4000 type: double

Limitations

General Limitations

- Number of processes known at the beginning
- No dynamic parallelism
- Communication overestimation in case of dynamic communications

Experimental Limitations

Strongly mapping dependent

Conclusion

Achievement

- Automatic source-to-source transformations
- Succession of simple transformations
- Basic communication functions
- Provable transformations
- Good efficiency

Future Work

- Improvement of the initial mapping by loop rescheduling
- Asynchronous communications instead of synchronous communications

Automatic Code Generation of Distributed Parallel Tasks

CSE 2016

Nelson Lossing Corinne Ancourt François Irigoin firstname.lastname@mines-paristech.fr

MINES ParisTech, PSL Research University

Paris, August 24th, 2016