High Performance Computing

Synopsis of Technical and Programming Concepts

Claude TADONKI
MINES ParisTech — PSL Research

Paris - France

Universidade Federal de Rio de Janeiro(R] - Brasil) — April 28,2016

I N T E L B RO A DW E L L Intel® Xeon® Processor E5-2699 v4
Released in April 2016

o 22x2 =44 cores Hardware
o 2.2 Ghz/core CPU Name: Intel Xeon E5-2699 v4
CPU Characteristics: Intel Turbo Boost Technology up to 3.60 GHz
o 3.6 GHzBoost | cpuU MHz: 2700
R : FPU: Integrated
Hyperthreading CPU(s) enabled: 44 cores, 2 chips, 22 cores/chip, 2 threads/core
o 256-bit vectors || CPU(s) orderable: 1,2 chip
Primary Cache: 32 KB I+ 32 KB D on chip per core
* 256 Gb RAM Secondary Cache: 256 KB I+D on chip per core
e 76.8Gb/s L3 Cache: 55 MB I+D on chip per chip
' Other Cache: None
o 500 Gb disk Memory: 256 GB (16 x 16 GB 2Rx4 PC4-2400T)
Disk Subsystem: 1 x SATA, 500 GB, 7200 RPM
 1.54Tflops SP | Other Hardware: None

o 0.78 Tflops DP
o Tflops is 1000 000 000 000 (1 billion) floating point operations per seconds

High Performance Computing %
Claude TADONKI - UFRJ - RJ — April 27, 2016 oA Toch

NVIDIA DGX' gellezaZeS%%erﬁszom

* NVDIA supercomputing solution PASCAL 10X MAXWELL
e 8TeslaP100 GPUs (Pascal GPU based)

» Dual Intel Xheon processors (host) “ _ NVIDIA DGX 1

« 170 Tflops FP16 peak perf e DEEP LEAmy

« 7 Tb of SSD Storage ' $129,000
» Aggregate bandwidth 768 Gb/s

o Perf throughput 250 x86 servers :
« Pascal GPU: 3584 CUDA Cores; 1480 MHz; 16 GB RAM at 720 Gb/s sthcen

 We should understand that GPU is specialized for specific tasks where
itis likely to show up noticeable performances

NVIDIA DGX-1 NVIDIA DGX-1
cpu || Bofurs cpu |l atrLops
10X 20X 30X 40X 50X &0X 70X 80K 0 10 50 100 150 170
Relative Performance (Based on Time to Train) Performance in teraFLOPS
CPU is dual socket Intel Xeon EG-2697 v3 CPU is dual socket Intel Xeon E5-2697 v3
High Performance Computing ;j

Claude TADONKI - UFRJ - RJ — April 27, 2016 MINES

N®1 SUPERCOMPUTER ' rosseo-tov 215

TIANHE-2 (MILKYWAY-2)

Site: National Super Computer Center in Guangzhou

e InChina

» Intel Xneon E5
e 260, 000 nodes
o 3 million cores
» 54 PFlops peak

o 33 PFlops (61%) MPI: MPICH2 with a customized GLEX channel

High Performance Computing %
Claude TADONKI - UFRJ - RJ — April 27, 2016 oA Toch

Performances Evolution

Performance Development Vendors System Share
10 EF/s Country System Share
1EF/s
100 PF/s o*® @ nited
aahaadad States
10 PF/s A _
. ® China
o 1 PF/s , A Japan
100TF/s / @ German \
g y
§ 10 TF/s vy @ United K... \ 39.8%
a 1TF/s & MMM ® France Vk
100 GF/s @ India
10 GF/s ® Korea, S...
1GF/s @ Russia 21:8%
100 ME/s @ SaudiAr...
1995 2000 2005 2010 2015 @ Others

Lists

¢ Sum A #1 | #500

* We are moving toward ExaFlops ¢=-gaq-=109

High Performance Computing %
Claude TADONKI - UFRJ - RJ — April 27, 2016 oA Toch

TOP500

RANK SITE

1 National Super Computer
Center in Guangzhou
China

2 DOE/SC/0Oak Ridge National
Laboratory

United States

3 DOE/NNSA/LLNL
United States

4 RIKEN Advanced Institute for
Computational Science (AICS)
Japan

5 DOE/SC/Argonne National
Laboratory

United States

High Performance Computing

SYSTEM CORES

Tianhe-2 (MilkyWay-2) -
TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz,
TH Express-2, Intel Xeon Phi
31S1P

NUDT

3,120,000

Titan - Cray XK7, Opteron
6274 16C 2.200GHz, Cray
Gemini interconnect, NVIDIA
K20x

Cray Inc.

560,640

Sequoia - BlueGene/Q,
Power BQC 16C 1.60 GHz,
Custom

IBM

1,572,864

K computer, SPARCé4 VIlIfx
2.0GHz, Tofu interconnect
Fujitsu

705,024

Mira - BlueGene/Q, Power
BQC 16C 1.60GHz, Custom
IBM

786,432

Claude TADONKI - UFRJ - RJ — April 27, 2016

Top 5 sites - Topd00 - Nov 2015

RMAX
(TFLOP/S)

33,862.7

17,590.0

17,173.2

10,510.0

8,586.6

RPEAK
(TFLOP/S)

54,902.4

27,112.5

20,132.7

11,280.4

10,066.3

POWER
(KW)

17,808

8,209

7,890

12,660

3,945

pos

MINES
ParisTech

Peak Performance Evaluation

RMAX RPEAK POWER

RANK SITE SYSTEM CORES (TFLOP/S) [TFLOP/S) (KW)
1 National Super Computer Tianhe-2 (MilkyWay-2] - 3,120,000 33,862.7 54,902.4 17,808
Center in Guangzhou TH-IVB-FEP Cluster, Intel
China Xeon E5-2692 12C 2.200GHz,
TH Express-2, Intel Xeon Phi
3151P
NUDT
Getting Tianhe-2 RPEAK:

o CPU-core frequency: 2.2 Ghz = 2.2 GFlops

» Considering the vector capability (256-bit wide - 4 DP): 4 x 2.2 = 8.8 GFlops

» Given the CPU can do ADD and MUL in one cycle (FMA): 2 x 8.8 = 17.6 GFlops
« Finally the total number of cpu-cores: 3,120,000 x 17.6 Ghz = 54.912 PFlops

Clearly, we should exploit all levels of parallelism, if we need
to harvest an acceptable fraction of the peak performance.

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 MINES

ParisTech

Peak vs Systai_necl_

Not counted in peak performance:

e Memory accesses

* Interprocessor communications
Curie Fat performance (weak scaling)

We got here a sustained
performance per core of
500 Mflops over 9 GFlops

A~ N

B n

Porformance per core (MFlops)

200

Fig 501: Curic Scaling Study

1

With Halfspinoe ——
NO Halfspinog - <%« -

-
- o 3

h .
.
.
. .
. .
.~ .
=R T o
“em .
.. .
. -1 W,
. .
ey g
.. 0
., o
Lo 0

G.Grosdidier, « Scaling stories », PetaQCD Final Review Meeting, Orsay, Sept. 27t — 28t 2012 500 Mflops/core

High Performance Computing

Claude TADONKI - UFRJ - RJ — April 27, 2016

T

MINES
ParisTech

How to Program a Supercomputer

o Message passing between nodes (MPI, ...) [1]
e Shared memory between cores (Pthreads, OpenMP, ...) [2]
o Vector computing inside a core (SSE,AVX, ...) [3]

Main (shared) Memory [2]

core core core

scalar & vector i scalar & vector i scalar & vect
units [3] units units

Main (shared) Memory [2] Main (shared) Memory [2]

core core core core core core

scalar & vector ff scalar & vector f§ scalar & vector scalar & vector fi scalar & vector f§ scalar & vector
units units units [3] units [3] units units

High Performance Computing ///j
Claude TADONKI - UFRJ - RJ - April 27, 2016 oA Toch

Message Passing Programming

» This is the typical way to execute across several independent compute nodes

» The whole program is decomposed at runtime into several processes

» Processes exchange data among themselves using message passing routines

 The standard programming model is SPMD (Single Program Multiple Data)
[ssonse e oo /1 DET St Srae dgined there +/

Declarations, prototypes, etc. #include <mpi.h> /* all MPI-2 functions defined there */

Program Begins
: int main(argc, argv)

int argc;

char *argv[];

Serial code

'Iniﬁalize MPI environment Parallel code begins

int rank, size, length;
. char name[BUFSIZ];
'Do work & make message passing calls

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM WORLD, &rank);
: MPI_Comm_size(MPI_COMM WORLD, &size);

' Terminate MPI environment parallel code ends MPI_Get_ processor_name(name, &length);

Serlal code printf("%s: hello world from process %d of %d\n", name, rank, size);

Program Ends
MPI_Finalize();

exit(0);
}

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 ,MINES

ParisTech

Message Passing Programming

» MPI code is compiled with mpicc -0 myprogram myprogram.c
» Our MPI program is launched with the command mpirun myprogram —np 8
» The value passed through “-np” is the number of processes

» The number of processes can be higher or lower than the number of processors.

» The scalability of your MPI code will mainly depends on data exchanges overhead

$ mpiexec -n 8 hellow?2

bc89:
bc31:
bc29:
bc33:
bc34:
bc30:
bc35:
bc32:

hello
hello
hello
hello
hello
hello
hello
hello

world
world
world
world
world
world
world
world

from
from
from
from
from
from
from
from

process
process
process
process
process
process
process
process

 Every MP| command starts with the prefix “MPI_"

SN o 0lwERENO

of
of
of
of
of
of
of
of

0O 0O 0O 0O 00 0O 00 0

» There several implementations and versions of MPI, but portability is preserved

High Performance Computing

Claude TADONKI - UFRJ - RJ — April 27, 2016

pos

~MINES
ParisTech

Message Passing Programming

» MPI commands can be roughly grouped into three categories wei.comworwo

Environment Management Routines © © o
Communication Routines (point-to-point — collective - synchronization) @ L AP o €]
: : @
Group Communicator Management Routines @
(2] (¢}
Processor 1 Processor 2 © C o group1 grour? oy o:

process A process B

C
© © Cc c
~— network — Qgﬁ Q‘_’;
= 38 o (3%
&/ cccccccccccccc &9/

system buffer

Path of a message buffered at the receiving process

» From here you just need to delve into MPI documentation for details & specific needs

» The global performance of your program will depend on both the parallel algorithm
behind and the quality of the corresponding parallel program ™= 2 skills involved!!!

High Performance Computing %
Claude TADONKI - UFRJ - RJ — April 27, 2016 oA Toch

Multithreaded Programming

AMD

Ath\oni'l

Although we can still use the message passing approach for multicore machines,
it is important to know that there is a specific paradigm for this context.

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 oA Toch

Multithreaded Programming

HISTORICAL CONTEXT AND TREND Each Year We Get

or More Processors

’s Historia“y:
P = faw Boost single-stream
Intel CPU Trends ‘ N performance via more
ssaos0 b | complex chips.
. o ow
[Pentium SRV Deliver more cores per
100 ol ‘ - chip (+ GPU, NIC, SoC).
- B =R The free lunch is over
. Y for today’s sequential
/ b W apps and many
o e i concurrent apps. We
=l need killer apps with

lots of latent parallelism.

1970 1875 1980 1985 1530 1998 2000 2005 2010

» We observe a stagnation of the processor frequency (tends to decreases)

» We need to keep following the trend of Moore’s Law (transistors count)
» In order to scale up with processor speed, we need more cores per chip

» The number of cores per chip is increasing, but with complex memory system

High Performance Computing %
Claude TADONKI - UFRJ - RJ — April 27, 2016 oA Toch

Multithreaded Programming

PACKAGING & HIERARCHICAL MEMORY

L2 Cache| |L2 Cache L2 Cache |_2 Cache ‘LZ Cache

Separated Caches Shared Cache L3 caChe ___________
« AND CPUs « Core Duc
« Pantium D « Cote 2 Due K10-based dual-core CPU
L2 Cache ‘ L2 Cache| |L2 Cache\ L2 Cache
Current Intel Quad-Core CPUS — L Cache |
* Cote 2 Quad
+ Core 2 Extreme QX K10-based quad-core CPL

» The cores always share the main memory and there are different cache levels

p» Cache memories are distributed among the cores depending on the packaging
» A given core might be able to get data from non-local unshared caches

p Cache coherency is guarantee by the hardware and associated protocols

High Performance Computing ///j
Claude TADONKI - UFRJ - RJ - April 27, 2016 oA Toch

Multithreaded Programming

PACKAGING AND NUMA CONSIDERATION Shared Memory Architecture —- NUMA
[Memj [Memj
I | Scalable Network
UMA

| Busl Intercomlectltlnl [T @_| @_‘ @—|
DO O O O © ©

NUMA Node 1 NUMA Node 2

2-socket 4-socket (a)

>

Yinan Li et al.
P Serious source of scalability issues

High Performance Computing //f
Claude TADONKI - UFRJ - RJ - April 27, 2016 oA Toch

NUMA Node 3 NUMA Node 4

Multithreaded Programming
THREAD -

& In a program, an independent section or
a routine can be executed as a thread.

User Address Space

Thread 2 routine
stack

ot A multi-threaded program is a program
that contains several concurrent threads, |thead | =ostice

stack

& Athread can be seen as a lightweight
process (memory is shared among threads).ex

& Athread is a child of a (OS) process.Thus it
uses the main resources of the process e
(shared between all running threads),
while keeping its own

v Stack pointer

v Registers

v" Scheduling properties (policy ,priority)
v Set of pending and blocked signals

v Thread specific data.

High Performance Computing %
Claude TADONKI - UFRJ - RJ — April 27, 2016 oA Toch

heap

Multithreaded Programming

A threaded program is built from a classical program by
embedding the execution of some of its subroutines

within the framework of associated threads.

» Typical scenario to design a threaded program implies

@ calls to a specialized library (thread implementation)
a.out

T1 T2

@ programming directives for threads creation
@ appropriate compiler directives

aw)y

A 2

» There are several (incompatible) implementations of threads depending on
the target architecture (vendors) or the operating system.
This impacts on programs portability.

» Two standard implementations of threads are: POSIX Threads and OpenMP.
High Performance Computing %

MINES

Claude TADONKI - UFRJ - RJ — April 27, 2016 PariSTech

Multithreaded Programming
OpenMP) B o

» Directives oriented compiler for multithreaded programming

#include <iostream>
#include "omp.h”
PROGRAM HELLO int main() {
ISOMP PARALLEL pragma omp parallel
PRINT *"Hello {
'$ OMP END PA std::cout << "Hello World\n”
STOP }
END return O;
}
OMP COMPILER DIRECTIVES
intel: ifort -openmp -0 hi.x hello.f intel: icc -openmp -0 hi.x hello.f
pgi: pgfortran -mp -o hi.x hello.f pgi: pgcpp -mp -0 hi.x hello.f
gnu: gfortran -fopenmp -o hi.x hello.f gnu: g++ -fopenmp -o hi.x hello.f
Export OMP_NUM_THREADS=4
Jhix /
OMP ENVIRONMENTAL VARIABLE NOTE: example hello.f90
High Performance Computing %

Claude TADONKI - UFRJ - RJ — April 27, 2016 P eoh

Multithreaded Programming
Pthread -

Pthread library contains hundred of routines that can be grouped into 4 categories:

» Thread management: Routines to create, terminate, and manage the threads.
» Mutexes: Routines for synchronization (through a “mutex” ~ mutual exclusion).

» Condition variables: Routines for communications between threads that share a mutex.

» Synchronization: Routines for the management of read/write locks and barriers.

@)’ All identifiers of the Pthreads routines and data types are prefixed with « pthread_ »
Example: pthread_create, thread_join, pthread._t, ...

@)’ For portability, the pthread.h header file should be included in each source file

,
© The generic compile command is
« cc -lpthread » or « cc -pthread »,
cc = compiler

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 o eeh

Multithreaded Programming

#include <pthread.h>
#include <stdio.h>
fidefine NUM_THREADS 5

In main: creating thread 0

In main: creating thread 1
Hello World! It's me, thread #0!

{ In main: creating thread 2
ey el Hello World! It's me, thread #1!
s L Hello World! It's me, thread #2!

S W ERE e e In main: creating thread 3

void *PrintHello(void *threadid)

3 r] 1 2. 1 r 1 -
printf(He}lo World! It's me, thread #%1ld!''n", tid): In main: creating thread 4
pthread_exit (NULL) ; Hello World! It's me, thread #3!
H Hello World! It's me, thread #4!

int mwain (int argc, char *argv[])
{
pthread t threads[NUM THREADS] ;
int rc:
long t;
for (t=0; t<NUM _THREADS; t++){
printf("In main: creating thread %1ld\n", t):
rc = pthread create(&threads(t], NULL, PrintHello, (wvoid *)t):;
if (re){
printf ("ERROR; return code from pthread create() is sdyn", rcj;
exiti(-1);

/* Last thing that main() should do */
pthread exit (NULL);

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 S MINES

VVVvVvVy VVY

Vector Programming

——————

&
’0. <><><> ’0’ <><<>><>?><> (2] o
<> LT—’ E\ Scalars
[+]
- I FRIE]E
m M 1 1m [2] [4] s [e] > Vectors
ISI[;'le;sttaructlons |3|T]5]T|4|T[

B Results

A SIMD machine simultaneously operates on tuples of atomic data (one instruction).
SIMD is opposed to SCALAR (the traditional mechanism).

SIMD is about exploiting parallelism in the data stream (DLP) , while superscalar SISD is
about exploiting parallelism in the instruction stream (ILP).

SIMD is usually referred as VECTOR COMPUTING, since its basic unit is the vector.
Vectors are represented in what is called packed data format stored into vector registers.

On a given machine, the length/number of the vector registers are fixed

SIMD can be implemented on using specific extensions MMX, SSE, AVX, ...

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 MINES

ParisTech

Vector Programming

SIMD Implementation
SIMD: Continuous Evolution

1999 2000 2004 2006 2007 2008 2009 2010\11

SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 AES-NI AVX

32 instr 47 instr 8 instr 7 instr ~100 new
instr.
Decode Video String/XML Encryption HISEE
processing and ~300 legacy

Graphics .)
building poP-Count || Decryption Jf sseinett

blocks Key
CRC Generation 256-bit

144 instr 13 instr

Double- Complex
precision Data
Vectors

70 instr

Single-

Precision
Vectors

8/16/32

Streaming
operations

64/128-bit
vector
integer

Advanced vector

vector instr
3 and 4-
operand
instructions

» ThenAVX2, MIC, ...
» Vector instructions can be used from their native form or through intrinsics

High Performance Computing //f
Claude TADONKI - UFRJ - RJ - April 27, 2016 oA Toch

Vector Programming

4

MMX™

Vector size: 64bit

Data types: 8, 16 and 32 bit integers
VL: 2,4,8

For sample on the left: Xi, Yi 16 bit
X4opY4 X3opY3 X20pY2 XlopY1l integers

Intel® SSE
Vector size: 128bit
Data types:
8,16,32,64 bit integers
32 and 64bit floats
X4opY4 X30pY3 X20pY2 XlopY1 VL: 2,4,8,16

Sample: Xi, Yi bit 32 int / float
255 128 127

Y8

MMX = MultiMedia eXtension

SSE = Streaming SIMD Extension
AVX = Advanced Vector Extensions
MIC = Many Integrated Core

Intel® AVX

- - - - - - - Vector size: 256bit
\ Y4

Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float

X8opY! X7opY' X6opY! X50pY5 X4opY: X3opY. X2o0pY! XlopY

0 Intel®MIC

. X9 x8|x7 ! x6!X5! x4 X3! X2 X1 Vector size: 512bit
IIIIIII Ll L]l oatetypes

w ' YOlY8lYZ Y6 YS! Y4lY3 Y2 V1 32 and 64 bit integers
32 and 64bit floats
(some support for

16 bits floats)

.| x90pY8 X8opY& .| ... | oo | | VL: 8,16
Sample: 32 bit float

X160p

High Performance Computing
Claude TADONKI - UFRJ - RJ - April 27, 2016

T

MINES
ParisTech

Vector Programming

» SSE = Streaming SIMD Extensions

» SEE programming can be done either through (inline) assembly or
from a high-level language (C and C++) using intrinsics.

» The {x,e,pymmintrin.h header file contains the declarations for the SSEx instructions intrinsics.
xmmintrin.h -> SSE
emmintrin.h -> SSE2
pmmintrin.h -> SSE3

P> SSE instruction sets can be enabled or disabled. If disabled, SSE instructions will not be possible.
|t is ecommended to leave this BIOS feature enabled by default.
In any case MMX (MultiMedia eXtensions) will still available.

» Compile your SSE code with "gcc -0 vector vector.c -msse -msse2 -msse3*
» SSE intrinsics use types __m128 (float) , __m128i (int, short, char), and __m128d (double)

P> Variable of type __m128, __m128i, and __m128d (exclusive use)
maps to the XMM[0-7] registers (128 bits), and automatically aligned on 16-byte boundaries.

» Vector registers are xmm0, xmm1, ..., xmm?7. Initially, they could only be used for single
precision computation. Since SSE2, they can be used for any primitive data type.

High Performance Computing f//j
Claude TADONKI - UFRJ - RJ - April 27, 2016 MINES

ParisTech

Vector Programming

SSE (Connecting vectors to scalar data)

»> Vector variables can be connected to scalar variables (arrays) using one of the following ways

float a[N] __attribute__((aligned(16)));
_m128 *ptr = (__m128%)a;

prt[i] or *(ptr+i) represents the vector
{a[4i], a[4i+1], a[4i+2], a[4i+3]}

float a[N] __attribute__((aligned(16)));
__m128 mm_a;
mm_a =_mm_load_pd(&a[4i]); // here we explicitly load data into the vector

mm_a represents the vector
{a[4i], a[4i+1], a[4i+2], a[4i+3]}

>Using the above connections, we can now use SSE instruction to process our data.
This can be done through
(inline) assembly

intrinsics (interface to keep using high-level instructions to perform vector operations

)
High Performance Computing Z/j
Claude TADONKI - UFRJ - RJ - April 27, 2016 MINES

Vector Programming

SSE (illustrations)

void scalar sqgrt(float *a){
int i;
for(i = 0; 1 < N; i++)
a[i] = sqrt(a[i]);
}

Scalar version
void sse sqrt(float *a){

// We assume N % 4 == 0.
int nb_iters = N / 4;
__ml128 *ptr = (__ml28*)a;
int i;

_mm_store_ps(a, _mm_sqrt_ps(*ptr));

}

for(i = @; i < nb_iters; i++, ptr++, a += 4)

Vector version (SSE)

~/vector
$./test

Running time of the scalar code: 0.286017
Running time of the SSE code: 0.031001

High Performance Computing
Claude TADONKI - UFRJ - RJ - April 27, 2016

pos

Conclusion

HPC is making noticeable progresses, but we still need to skillfully use
its elements and concepts in order to reach our performance expectations.

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 S MINES

End

Thanks for your attention

High Performance Computing %
Claude TADONKI - UFRJ - RJ - April 27, 2016 S MINES

