Double Dose of Double-Negation Translations

Olivier Hermant
CRI, MINES ParisTech
June 2, 2014

Double-Negation Translation: Five Ws

The theory:

- automatic theorem proving: classical logic
- other logics existing: need for translations
- in particular: proof-assistants
- related to the grounds:
\star cut-elimination for sequent calculus
^ extensions to Deduction Modulo

The practice:

- a shallow encoding of classical into intuitionistic logic
- Zenon modulo's backend for Dedukti

- existing translations: Kolmogorov's (1925), Gentzen-Gödel's (1933), Kuroda's (1951), Krivine's (1990), …

Double-Negation Translation: Five Ws

Objective, minimization:

- turns more formulæ into themselves;
- shifts a classical proof into an intuitionistic proof of the same formula.

Today:

- first-order (classical) logic
- the principle of excluded-middle
- intuitionistic logic
- double-negation translations
- minimization
- if you're still alive:
* extension to Deduction modulo
* semantic Double-Negation translations
* cut elimination

Theorem Proving
 What do we prove?

[Definition] Formula in Propositional Logic
atomic formula: P, Q, \cdots
special constants: \perp, T
assume A, B are formulæ: $A \wedge B, A \vee B, A \Rightarrow B, \neg A$
Example: $P \Rightarrow Q, P \wedge Q, Q \vee \neg Q, \perp \Rightarrow(\neg \perp), \cdots$

Theorem Proving

What do we prove?
[Definition] Formula in Propositional Logic
atomic formula: P, Q, \cdots
special constants: \perp, T
assume A, B are formulæ: $A \wedge B, A \vee B, A \Rightarrow B, \neg A$
Example: $P \Rightarrow Q, P \wedge Q, Q \vee \neg Q, \perp \Rightarrow(\neg \perp), \cdots$

[Definition] Formula in First-order Logic

atomic formula: $P(t), Q(t, u), \cdots$
connectives $\wedge, \vee, \Rightarrow, \neg, \perp, \top$
quantifiers \forall and \exists. Assume A is a formula and x a variable: $\forall x A$, $\exists x A$

- new category: terms (denoted $a, b, c, t, u)$ and variables (x, y).

Example: $f(x), \quad g(f(c), g(a, c))$,

- Example: $(\forall x P(x)) \Rightarrow P(f(a)), \quad \exists y(D(y) \Rightarrow \forall x D(x))$

Theorem Proving

What do we prove ? - Part 2

- a theorem/specification is usually formulated as: assume A, B and C. Then D follows.

Theorem Proving

What do we prove ? - Part 2

- a theorem/specification is usually formulated as: assume A, B and C. Then D follows.
[Definition] Sequent
A sequent is a set of formulæ A_{1}, \cdots, A_{n} (the assumptions) denoted Γ, together with a formula B (the conclusion). Notation: $\Gamma \vdash B$

Theorem Proving

What do we prove ? - Part 2

- a theorem/specification is usually formulated as: assume A, B and C. Then D follows.
[Definition] Sequent
A sequent is a set of formulæ A_{1}, \cdots, A_{n} (the assumptions) denoted Γ, together with a formula B (the conclusion). Notation: $\Gamma \vdash B$
- examples:
$\star A \vdash A$ is a (hopefully provable) sequent
$\star P(a)+\forall x P(x)$ is a (hopefully unprovable) sequent
$\star A, B \vdash A \wedge B, A \vdash, A \vdash \perp$

Theorem Proving

What do we prove ? - Part 2

- a theorem/specification is usually formulated as: assume A, B and C. Then D follows.
[Definition] Sequent
A sequent is a set of formulæ A_{1}, \cdots, A_{n} (the assumptions) denoted Γ, together with a formula B (the conclusion). Notation: $\Gamma \vdash B$
- examples:
$\star A \vdash A$ is a (hopefully provable) sequent
$\star P(a) \vdash \forall x P(x)$ is a (hopefully unprovable) sequent
$\star A, B \vdash A \wedge B, A \vdash, A \vdash \perp$
- classical logic needs multiconclusion sequent

[Definition] Classical Sequent

A classical sequent is a pair of sets of formulæ, denoted $\Gamma \vdash \Delta$
\star the sequent $A, B \vdash C, D$ must be understood as: Assume A and B. Then C or D

Theorem Proving

How do we prove ?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

Theorem Proving

 How do we prove?- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

- in order for the consequent to hold ...
- ... we must show that the antecedent(s) hold Endless process?

Theorem Proving

 How do we prove?- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

- in order for the consequent to hold ...
- ... we must show that the antecedent(s) hold

Endless process?

The axiom rule	The \Rightarrow_{R} rule
$\frac{A+B}{A+A}$ ax	$\frac{A+B}{+A \Rightarrow B} \Rightarrow_{R}$

Theorem Proving

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

- in order for the consequent to hold ...
- ... we must show that the antecedent(s) hold

Endless process ?

The axiom rule	The \Rightarrow_{R} rule
$\frac{A+B}{A+A}$ ax	$\frac{A+B}{+A \Rightarrow B} \Rightarrow_{R}$

- First example of proof: $\frac{\overline{A \vdash A}_{\vdash A \Rightarrow A}^{\vdash A}}{} \Rightarrow_{R}$

Theorem Proving

How do we prove?

- we have the formulæ and the statements (sequents), let's prove them
- many proof systems (even for classical FOL)
- today: sequent calculus (Gentzen (1933))

The shape of rules:

- in order for the consequent to hold ...
- ... we must show that the antecedent(s) hold

Endless process ?

The real axiom rule	The real \Rightarrow_{R} rule
$\frac{\Gamma, A \vdash B, \Delta}{\Gamma, A \vdash A, \Delta}$ ax	$\frac{\Gamma+A \Rightarrow B, \Delta}{\Gamma \vdash} \Rightarrow_{R}$

- First example of proof: $\frac{\overline{A \vdash A}_{\vdash A \Rightarrow A}^{\vdash A}}{} \Rightarrow_{R}$

The Classical Sequent Calculus (LK)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A, \Delta} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge_{R} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee_{R} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow\llcorner \\
& \frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta} \exists_{R} \\
& \frac{\Gamma, A[t / x]+\Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R} \\
& \frac{\Gamma \vdash A[c / x], \Delta}{\Gamma \vdash \forall x A, \Delta} \forall_{R}
\end{aligned}
$$

Basic Examples

- commutativity of the conjunction:

$$
A \wedge B \vdash B \wedge A
$$

Basic Examples

- commutativity of the conjunction:

$$
\frac{A, B \vdash B \wedge A}{A \wedge B \vdash B \wedge A} \wedge L
$$

Basic Examples

- commutativity of the conjunction:

$$
\frac{A, B \vdash B \quad A, B \vdash A}{\frac{A, B \vdash B \wedge A}{A \wedge B \vdash B \wedge A} \wedge_{L}} \wedge_{R}
$$

Basic Examples

- commutativity of the conjunction:

$$
\operatorname{ax} \frac{\overline{A, B \vdash B} \quad A, B+A}{\frac{A, B+B \wedge A}{A \wedge B+B \wedge A} \wedge_{L}} \wedge_{R}
$$

Basic Examples

- commutativity of the conjunction:

$$
\frac{\mathrm{ax} \frac{\overline{A, B+B} \overline{A, B+A}}{\frac{A, B+B \wedge A}{A \wedge B+B \wedge A}} \wedge_{L}}{\wedge_{R}}
$$

Basic Examples

- commutativity of the conjunction:

$$
\operatorname{ax} \frac{\overline{A, B+B} \overline{A, B+A}}{\frac{A, B+B \wedge A}{A \wedge B+B \wedge A} \wedge_{L}} \wedge_{R}
$$

- an alternative proof:

$$
\frac{A \wedge B \vdash A}{A \wedge B \vdash B \wedge A} \wedge_{R}
$$

Basic Examples

- commutativity of the conjunction:

$$
\operatorname{ax} \frac{\overline{A, B+B} \overline{A, B+A}}{\frac{A, B+B \wedge A}{A \wedge B+B \wedge A} \wedge_{L}} \wedge_{R}
$$

- an alternative proof:

$$
\frac{\frac{\overline{A, B \vdash A}}{A \wedge B \vdash A}}{a^{\prime}} \wedge_{L}
$$

Basic Examples

- commutativity of the conjunction:

$$
\operatorname{ax} \frac{\overline{A, B+B} \overline{A, B \vdash A}}{\frac{A, B \vdash B \wedge A}{A \wedge B \vdash B \wedge A} \wedge_{L}} \wedge_{R}
$$

- an alternative proof:

$$
\wedge_{L} \frac{\overline{\frac{A, B+B}{A \wedge B+B}} \frac{\overline{A, B+A}}{a \wedge} \wedge_{L}}{A \wedge B+B \wedge A+A} \wedge_{R}
$$

Basic Examples

- commutativity of the conjunction:

$$
\operatorname{ax} \frac{\overline{A, B+B} \overline{A, B+A}}{\frac{A, B+B \wedge A}{A \wedge B+B \wedge A} \wedge_{L}} \wedge_{R}
$$

- an alternative proof:

$$
\wedge_{L} \frac{\frac{\overline{A, B \vdash B}}{A \wedge B+B}}{A \wedge B+B \wedge A} \frac{\overline{A, B+A}}{A \wedge B+A} \wedge_{L}
$$

- this is an example of the liberty allowed by Sequent Calculus

Basic Examples

- commutativity of the conjunction:

$$
\operatorname{ax} \frac{\overline{A, B+B} \overline{A, B+A}}{\frac{A, B+B \wedge A}{A \wedge B \vdash B \wedge A} \wedge_{L}} \wedge_{R}
$$

- an alternative proof:

$$
\wedge_{L} \frac{\frac{\overline{A, B+B}}{A \wedge B+B}}{A \wedge B+B \wedge A} \frac{\overline{A, B+A}}{A \wedge B+A} \wedge_{L}
$$

- this is an example of the liberty allowed by Sequent Calculus
- excluded-middle:

$$
\frac{\overline{A \vdash A}}{\frac{\frac{\overline{1}}{\vdash A, \neg A}}{\vdash A \vee \neg A}} \vee_{R}
$$

More interesting examples

- uniform continuity implies continuity:
- the converse is fortunately not provable:

$$
\frac{\frac{\text { stuck }}{\exists y P(x, y) \vdash \forall x P(x, y)}}{\frac{\exists y P(x, y) \vdash \exists y \forall x P(x, y)}{\forall x \exists y P(x, y) \vdash \exists y \forall x P(x, y)} \exists_{R}(\text { with } y)} \forall_{L}(\text { with } x)
$$

The Excluded Middle

[Theorem] Drinker's Principle

In every bar, there is a person that, if $\mathrm{s} /$ he drinks, then everybody drinks.

- paradoxical ? let's prove it:

The Excluded Middle

[Theorem] Drinker's Principle

In every bar, there is a person that, if $\mathrm{s} /$ he drinks, then everybody drinks.

- paradoxical ? let's prove it:
- basically: either someone does not drink or everybody drinks.

The Excluded Middle

[Theorem] Drinker's Principle

In every bar, there is a person that, if $\mathrm{s} /$ he drinks, then everybody drinks.

- paradoxical ? let's prove it:
- basically: either someone does not drink or everybody drinks.
- not informative:
^ no constructive witness (the "best man")
« "Fermat's theorem is true" or not "Fermat's theorem is true"

The Excluded Middle

[Theorem] Drinker's Principle

In every bar, there is a person that, if $\mathrm{s} /$ he drinks, then everybody drinks.

- paradoxical ? let's prove it:
- basically: either someone does not drink or everybody drinks.
- not informative:
^ no constructive witness (the "best man")
\star "Fermat's theorem is true" or not "Fermat's theorem is true"
- PEM ($A \vee \neg A$ for free) rejected by Brouwer, Heyting, Kolmogorov (and all the constructivists).
* bad also for the "proof-as-program" correpondence (Curry-Howard correspondence) until very recent advances (controfoperatiofs)

The Classical Sequent Calculus (LK)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A, \Delta} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge_{R} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee_{R} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow\llcorner \\
& \frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta} \exists_{R} \\
& \frac{\Gamma, A[t / x]+\Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R} \\
& \frac{\Gamma \vdash A[c / x], \Delta}{\Gamma \vdash \forall x A, \Delta} \forall_{R}
\end{aligned}
$$

The Intuitionistic Sequent Calculus (LJ)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow L \\
& \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma, A[t / x] \vdash \Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \vee \vee_{R 1} \frac{\Gamma \vdash B}{\Gamma+A \vee B} \vee_{R 2} \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow_{R} \\
& \frac{\Gamma, A \vdash}{\Gamma \vdash \neg A} \neg R \\
& \frac{\Gamma+A[t / x]}{\Gamma \vdash \exists x A} \exists_{R} \\
& \frac{\Gamma+A[c / x]}{\Gamma+\forall x A} \forall_{R}
\end{aligned}
$$

Example of Proof

- commutativity of the disjunction. Attempt \#1:

$$
A \vee B \vdash B \vee A
$$

Example of Proof

- commutativity of the disjunction. Attempt \#1:

$$
\frac{A \vee B \vdash B}{A \vee B \vdash B \vee A} \vee_{R 1}
$$

Example of Proof

- commutativity of the disjunction. Attempt \#1:

$$
\frac{\frac{? ? ?}{A \vdash B} \quad \overline{B \vdash B}}{\frac{A \vee B+B}{A \vee B \vdash B \vee A}} \vee_{L}
$$

Example of Proof

- commutativity of the disjunction. Attempt \#2:

$$
A \vee B \vdash B \vee A
$$

Example of Proof

- commutativity of the disjunction. Attempt \#2:

$$
\frac{A \vee B \vdash A}{A \vee B \vdash B \vee A} \vee R 2
$$

Example of Proof

- commutativity of the disjunction. Attempt \#2:

Example of Proof

- commutativity of the disjunction. Attempt \#3:

$$
A \vee B \vdash B \vee A
$$

Example of Proof

- commutativity of the disjunction. Attempt \#3:

$$
\frac{A \vdash B \vee A \quad B \vdash B \vee A}{A \vee B \vdash B \vee A} \vee_{L}
$$

Example of Proof

- commutativity of the disjunction. Attempt \#3:

$$
\vee_{R 2} \frac{a x \frac{\overline{A \vdash A}}{A+B \vee A}}{\frac{\frac{\overline{B \vdash B}}{B \vdash B \vee A}}{A \vee B \vdash B \vee A} \vee_{R 1}} \vee_{L}
$$

Example of Proof

- commutativity of the disjunction. Attempt \#3:

$$
\vee_{R 2} \frac{a x \frac{\overline{A+A}}{A \vdash B \vee A} \frac{\frac{\overline{B+B}}{B+B \vee A}}{A \vee B+B \vee A} \vee_{R 1}}{\frac{B}{B}}
$$

- compare with proofs in classical logic:

$$
\vee_{R} \frac{\overline{B+B, A}}{\frac{B+B \vee A}{A+B, A}} \vee_{L} \frac{\overline{A+B \vee A}}{A \vee B+B \vee A} \vee_{R} \quad a x \frac{\overline{A+B, A} \overline{B+B, A}}{\frac{A \vee B+B, A}{A \vee B+B \vee A} \vee_{R}} \vee_{L}
$$

- in particular, no intuitionistic proof of $\vdash A \vee \neg A$: does it begins with $\vee_{R 1}$, or with $\vee_{R 2}$?

Weakening the statements

The excluded-middle $(A \vee \neg A)$:

- is not universal: the world is not Manichean ! ("with us, or against us")

Weakening the statements

The excluded-middle $(A \vee \neg A)$:

- is not universal: the world is not Manichean ! ("with us, or against us")
- Equivalent to double-negation principle: $\neg \neg A \Rightarrow A$.

Double-Negation Principle

$\neg \neg A$ ("A is not inconsistent") is equivalent to A

Weakening the statements

The excluded-middle $(A \vee \neg A)$:

- is not universal: the world is not Manichean ! ("with us, or against us")
- Equivalent to double-negation principle: $\neg \neg A \Rightarrow A$.

Double-Negation Principle

$\neg \neg A$ (" A is not inconsistent") is equivalent to A

* Still controversial: "If you are not innocent, then you are guilty"
\star Exercises: Show, in classical logic, that $\vdash A \Rightarrow(\neg \neg A)$ and $\vdash(\neg \neg A) \Rightarrow A$. Harder: show $\vdash A \vee \neg A$ in intuitionistic logic +DN principle.

Weakening the statements

The excluded-middle $(A \vee \neg A)$:

- is not universal: the world is not Manichean ! ("with us, or against us")
- Equivalent to double-negation principle: $\neg \neg A \Rightarrow A$.

Double-Negation Principle

$\neg \neg A$ ("A is not inconsistent") is equivalent to A

* Still controversial: "If you are not innocent, then you are guilty"
\star Exercises: Show, in classical logic, that $\vdash A \Rightarrow(\neg \neg A)$ and $\vdash(\neg \neg A) \Rightarrow A$. Harder: show $\vdash A \vee \neg A$ in intuitionistic logic +DN principle.
- from an intuitionistic point of view, $\neg \neg B$ is weaker than B :

$$
\begin{aligned}
& \frac{\frac{A_{1}+A}{A \vdash A \vee \neg A} \vee_{R 1}}{\neg(A \vee \neg A), A \vdash} \neg L \\
& \frac{\frac{\neg(A \vee \neg A) \vdash \neg A}{\neg R}}{\neg(A \vee \neg A)+A \vee \neg A} \vee_{R 2} \\
& \frac{\neg(A \vee \neg A), \neg(A \vee \neg A) \vdash}{\neg(A \vee \neg A) \vdash} \text { } \\
& \vdash \neg \neg(A \vee \neg A) \\
& \\
& \text { structural rule }
\end{aligned}
$$

Double-Negation Translations

This drives us to try to systematically "weaken" classical formulæ to turn them into intuitionistically provable formulæ: Kolmogorov’s Translation

$$
\begin{aligned}
P^{K o} & =\neg \neg P \\
(B \wedge C)^{K o} & =\neg \neg\left(B^{K o} \wedge C^{K o}\right) \quad \text { (atoms) } \\
(B \vee C)^{K o} & =\neg \neg\left(B^{K o} \vee C^{K o}\right) \\
(B \Rightarrow C)^{K o} & =\neg \neg\left(B^{K o} \Rightarrow C^{K o}\right) \\
(\forall x A)^{K o} & =\neg \neg\left(\forall x A^{K o}\right) \\
(\exists x A)^{K o} & =\neg \neg\left(\exists x A^{K o}\right)
\end{aligned}
$$

Theorem

$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{K o},\right\lrcorner \Delta^{K o} \vdash$ is provable in LJ.

Antinegation

\lrcorner is an operator, such that:

$$
\begin{aligned}
& \lrcorner \neg A=A \\
& \lrcorner B=\neg B \text { otherwise. }
\end{aligned}
$$

How does it work?

Let us turn a (classical) proof of into a proof of its translation:

Negation is bouncing:

- systematically: go from left to right, apply the same rule, and go from right to left

How does it work?

Let us turn a (classical) proof of into a proof of its translation:

Negation is bouncing:

- systematically: go from left to right, apply the same rule, and go from right to left
- many double negations are superflous: in the previous case, almost each of them (not hard to see that $\vdash A \Rightarrow A$ has an intuitionistic proof)

How does it work?

Let us turn a (classical) proof of into a proof of its translation:

Negation is bouncing:

- systematically: go from left to right, apply the same rule, and go from right to left
- many double negations are superflous: in the previous case, almost each of them (not hard to see that $\vdash A \Rightarrow A$ has an intuitionistic proof)
- Congratulations! This is the topic of this talk

The Problem

Have the least possible $\neg \neg$ in the translated formula.

- what do we gain ? We preserve the strength of theorems.

Remarks on LK and LJ

- left-rules seem very similar in both cases
- so, Ihs formulæ can be translated by themselves
- this accounts for polarizing the translations

Positive and Negative occurrences

An occurrence of A in B is positive if:

$$
B=A
$$

$B=C \star D[\star=\wedge, \vee]$ and the occurrence of A is in C or in D and positive
$B=C \Rightarrow D$ and the occurrence of A is in C (resp. in D) and negative (resp. positive)
$B=Q \times C[Q=\forall, \exists]$ and the occurrence of A is in C and is positive
Dually for negative occurrences.

The Classical Sequent Calculus (LK)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A, \Delta} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge_{R} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee_{R} \\
& \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow L \\
& \frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta} \exists_{R} \\
& \frac{\Gamma, A[t / x]+\Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta} \Rightarrow_{R} \\
& \frac{\Gamma \vdash A[c / x], \Delta}{\Gamma \vdash \forall x A, \Delta} \forall_{R}
\end{aligned}
$$

The Intuitionistic Sequent Calculus (LJ)

$$
\begin{aligned}
& \overline{\Gamma, A \vdash A} \mathrm{ax} \\
& \frac{\Gamma, A, B+\Delta}{\Gamma, A \wedge B+\Delta} \wedge_{L} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A \quad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow L \\
& \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash \Delta} \neg\llcorner \\
& \frac{\Gamma, A[c / x]+\Delta}{\Gamma, \exists x A+\Delta} \exists_{L} \\
& \frac{\Gamma, A[t / x]+\Delta}{\Gamma, \forall x A+\Delta} \forall_{L} \\
& \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \vee \vee_{R 1} \frac{\Gamma \vdash B}{\Gamma+A \vee B} \vee_{R 2} \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \Rightarrow_{R} \\
& \frac{\Gamma, A \vdash}{\Gamma \vdash \neg A} \neg R \\
& \frac{\Gamma+A[t / x]}{\Gamma \vdash \exists x A} \exists_{R} \\
& \frac{\Gamma+A[c / x]}{\Gamma+\forall x A} \forall_{R}
\end{aligned}
$$

Light Kolmogorov's Translation

Moving negation from connectives to formulæ [DowekWerner]:

$$
\begin{aligned}
B^{K} & =B \\
(B \wedge C)^{K} & =\left(\neg \neg B^{K} \wedge \neg \neg C^{K}\right) \quad \text { (atoms) } \\
(B \vee C)^{K} & =\left(\neg \neg B^{K} \vee \neg C^{K}\right) \\
(B \Rightarrow C)^{K} & =\left(\neg \neg B^{K} \Rightarrow \neg \neg C^{K}\right) \\
(\forall x A)^{K} & =\forall x \neg \neg A^{K} \\
(\exists x A)^{K} & =\exists x \neg \neg A^{K}
\end{aligned}
$$

Theorem
$\Gamma \vdash \Delta$ is provable in $L K$ iff $\Gamma^{K}, \neg \Delta^{K} \vdash$ is provable in $L J$.

Correspondence

$A^{K o}=\neg \neg A^{K}$

Polarizing Light Kolmogorov's translation

Warming-up. Consider left-hand and right-hand side formulæ:

	LHS	RHS	
B^{K}	$=B$	B^{K}	$=B$
$(B \wedge C)^{K}$	$=\left(\neg \neg B^{K} \wedge \neg \neg C^{K}\right)$	$(B \wedge C)^{K}$	$=\left(\neg \neg B^{K} \wedge \neg \neg C^{K}\right)$
$(B \vee C)^{K}$	$=\left(\neg \neg B^{K} \vee \neg \neg C^{K}\right)$	$(B \vee C)^{K}$	$=\left(\neg \neg B^{K} \vee \neg \neg C^{K}\right)$
$(B \Rightarrow C)^{K}$	$=\left(\neg \neg B^{K} \Rightarrow \neg \neg C^{K}\right)$	$(B \Rightarrow C)^{K}$	$=\left(\neg \neg B^{K} \Rightarrow \neg \neg C^{K}\right)$
$(\forall x A)^{K}$	$=\forall x \neg \neg A^{K}$	$(\forall x A)^{K}$	$=\forall x \neg \neg A^{K}$
$(\exists x A)^{K}$	$=\exists x \neg \neg A^{K}$	$(\exists x A)^{K}$	$=\exists x \neg \neg A^{K}$

Example of translation

$((A \vee B) \Rightarrow C)^{K}$ is $\neg \neg(\neg \neg A \vee \neg \neg B) \Rightarrow \neg \neg C$ $((A \vee B) \Rightarrow C)^{K}$ is $\neg \neg(\neg \neg A \vee \neg \neg B) \Rightarrow \neg \neg C$

Polarizing Light Kolmogorov's Translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS		RHS
$B^{K+}=B$		$B^{K-}=B$
$(B \wedge C){ }^{K+}=\left(B^{K+} \wedge\right.$	$\left.C^{K+}\right)$	$(B \wedge C)^{K-}=\left(\neg \neg B^{K-} \wedge \neg \neg C^{K-}\right)$
$(B \vee C){ }^{K+}=\left(B^{K+} \vee\right.$	$\left.C^{K+}\right)$	$(B \vee C){ }^{K-}=\left(\neg \neg B^{K-} \vee \neg \neg C^{K-}\right)$
$(B \Rightarrow C)^{K+}=\left(\neg \neg B^{K-} \Rightarrow\right.$	$\left.C^{K+}\right)$	$(B \Rightarrow C)^{K-}=\left(\quad B^{K+} \Rightarrow \neg \neg C^{K-}\right)$
$(\forall x A)^{K+}=\forall x A^{K+}$		$(\forall x A)^{K-}=\forall x \neg \neg A^{K-}$
$(\exists x A)^{K+}=\exists x A^{K+}$		$(\exists x A)^{K-}=\exists x \neg \neg A^{K-}$

Example of translation

$((A \vee B) \Rightarrow C)^{K+}$ is $\neg \neg(\neg \neg A \vee \neg \neg B) \Rightarrow C$
$((A \vee B) \Rightarrow C)^{K-}$ is $(A \vee B) \Rightarrow \neg \neg C$

Results on Polarized Kolmogorov's Translation

Theorem
If $\Gamma+\Delta$ is provable in LK, then $\Gamma^{K+}, \neg \Delta^{K-}+$ is provable in LJ.
Proof: by induction. Negation is still bouncing. Example:

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} \\
\wedge_{R} \stackrel{============}{\Gamma \vdash A \wedge B, \Delta}
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \frac{\pi_{1}^{\prime}}{\Gamma^{K+}, \neg A^{K-}, \neg \Delta^{K-}+} \frac{\pi_{2}^{\prime}}{\Gamma^{K+}, \neg B^{K-}, \neg \Delta^{K-} \vdash} \\
& =============================\wedge_{R} \\
& \\
& \\
& \Gamma^{K+}, \neg\left(\neg \neg A^{K-} \wedge \neg \neg B^{K-}\right), \neg \Delta^{K-}+
\end{aligned}
$$

Results on Polarized Kolmogorov's Translation

Theorem
If $\Gamma+\Delta$ is provable in LK, then $\Gamma^{K+}, \neg \Delta^{K-}+$ is provable in LJ.
Proof: by induction. Negation is still bouncing. Example:

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} \\
\wedge_{R} \stackrel{==}{===}========= \\
\Gamma \vdash A \wedge B, \Delta
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \frac{\pi_{1}^{\prime}}{\Gamma^{K+}, \neg A^{K-}, \neg \Delta^{K-}+} \frac{\pi_{2}^{\prime}}{\Gamma^{K+}, \neg B^{K-}, \neg \Delta^{K-}+} \\
& =================\overline{=}============= \\
& \neg L \frac{\Gamma^{K+}, \neg \Delta^{K-} \vdash \neg \neg A^{K-} \wedge \neg \neg B^{K-}}{\Gamma^{K+}, \neg\left(\neg \neg A^{K-} \wedge \neg \neg B^{K-}\right), \neg \Delta^{K-} \vdash}
\end{aligned}
$$

Results on Polarized Kolmogorov's Translation

Theorem
If $\Gamma+\Delta$ is provable in LK, then $\Gamma^{K+}, \neg \Delta^{K-}+$ is provable in LJ.
Proof: by induction. Negation is still bouncing. Example:

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} \\
\wedge_{R} \stackrel{==}{===}========= \\
\Gamma \vdash A \wedge B, \Delta
\end{gathered}
$$

is turned into:

$$
\begin{aligned}
& \frac{\pi_{1}^{\prime}}{\Gamma^{K+}, \neg A^{K-}, \neg \Delta^{K-}+} \quad \frac{\pi_{2}^{\prime}}{\Gamma^{K+}, \neg B^{K-}, \neg \Delta^{K-}+}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma^{K+}, \neg\left(\neg \neg A^{K-} \wedge \neg \neg B^{K-}\right), \neg \Delta^{K-} \text { 上 }
\end{aligned}
$$

Results on Polarized Kolmogorov's Translation

Theorem
If $\Gamma+\Delta$ is provable in LK, then $\Gamma^{K+}, \neg \Delta^{K-}+$ is provable in LJ.
Proof: by induction. Negation is still bouncing. Example:

$$
\begin{gathered}
\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} \\
\wedge_{R} \stackrel{============}{\Gamma \vdash A \wedge B, \Delta}
\end{gathered}
$$

is turned into:

Results on Polarized Kolmogorov's Translation

Theorem

If $\Gamma \vdash \Delta$ is provable in LK, then $\Gamma^{K+}, \neg \Delta^{K-}+$ is provable in LJ .
Proof: by induction. Negation is bouncing. Example:

Theorem
If $\Gamma^{K+}, \neg \Delta^{K-}+$ is provable in LJ, then $\Gamma \vdash \Delta$ is provable in LK.
Proof: ad-hoc generalization.

Gödel-Gentzen Translation

Disjunctions and existential quantifiers (the only problematic ones) are replaced by their De Morgan duals:

$$
\begin{aligned}
& \text { LHS } \\
B^{g g} & =\neg \neg B \\
(A \wedge B)^{g g} & =A^{g g} \wedge B^{g g} \\
(A \vee B)^{g g} & =\neg\left(\neg A^{g g} \wedge \neg B^{g g}\right) \\
(A \Rightarrow B)^{g g} & =A^{g g} \Rightarrow B^{g g} \\
(\forall x A)^{g g} & =\forall x A^{g g} \\
(\exists x A)^{g g} & =\neg \forall x \neg A^{g g}
\end{aligned}
$$

RHS
$B^{g g}=\neg \neg B$
$(A \wedge B)^{g g}=A^{g g} \wedge B^{g g}$
$(A \vee B)^{g g}=\neg\left(\neg A^{g g} \wedge \neg B^{g g}\right)$
$(A \Rightarrow B)^{g g}=A^{g g} \Rightarrow B^{g g}$
$(\forall x A)^{g g}=\forall x A^{g g}$
$(\exists x A)^{g g}=\neg \forall x \neg A^{g g}$

Example of translation

$((A \vee B) \Rightarrow C)^{g g}$ is $(\neg(\neg \neg \neg A \wedge \neg \neg \neg B)) \Rightarrow \neg \neg C$

Theorem
$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{g g},\right\lrcorner \Delta^{g g} \vdash$ is provable in LJ.

Polarizing Gödel-Gentzen translation

Let us apply the same idea on this translation:

\[

\]

Example of translation

$((A \vee B) \Rightarrow C)^{p}$ is $(\neg(\neg \neg \neg A \wedge \neg \neg \neg B)) \Rightarrow C$
$((A \vee B) \Rightarrow C)^{n}$ is $((A \vee B) \Rightarrow \neg \neg C$

Theorem?

$\Gamma \vdash \Delta$ is provable in LK iff $\left.\Gamma^{g g},\right\lrcorner \Delta^{g g} \vdash$ is provable in LJ.

A Focus on $\mathrm{LK} \rightarrow \mathrm{LJ}$

- less negations imposes more discipline. Example:
- when A^{n} introduces negations $(\exists, \vee, \neg$ and atomic cases) ?? can be $\neg R$ due to the behavior of $\lrcorner A^{n}$
- otherwise A^{n} remains of the rhs in the LJ proof.

A Focus on $\mathrm{LK} \rightarrow \mathrm{LJ}$

- less negations imposes more discipline. Example:
- when A^{n} introduces negations $(\exists, \vee, \neg$ and atomic cases) ?? can be $\neg R$ due to the behavior of $\lrcorner A^{n}$
- otherwise A^{n} remains of the rhs in the LJ proof.
- the next rule in π_{1} and π_{2} must be on A (resp. B).

A Focus on $\mathrm{LK} \rightarrow \mathrm{LJ}$

- less negations imposes more discipline. Example:

- when A^{n} introduces negations $(\exists, \vee, \neg$ and atomic cases) ?? can be $\neg R$ due to the behavior of $\lrcorner A^{n}$
- otherwise A^{n} remains of the rhs in the LJ proof.
- the next rule in π_{1} and π_{2} must be on A (resp. B).
- the liberty of sequent calculus is a sin! How to constrain it ?
- use Kleene's inversion lemma
- or ... this is exactly what focusing is about !

A Focused Classical Sequent Calculus

Sequent with focus

A focused sequent $\Gamma \vdash A ; \Delta$ has three parts:
Γ and Δ
A, the (possibly empty) stoup formula

- when the stoup is not empty, the next rule must apply on its formula,
- under some conditions, it is possible to move/remove a formula in/from the stoup.

A Focused Sequent Calculus

$$
\begin{array}{cc}
\Gamma, A \vdash ; A, \Delta \\
\frac{\Gamma, A, B \vdash \cdot ; \Delta}{\Gamma, A \wedge B \vdash \cdot ; \Delta} \wedge_{L} & \frac{\Gamma \vdash A ; \Delta \quad \Gamma \vdash B ; \Delta}{\Gamma \vdash A \wedge B ; \Delta} \wedge_{R} \\
\frac{\Gamma, A \vdash \cdot ; \Delta \Gamma, B \vdash \cdot ; \Delta}{\Gamma, A \vee B \vdash \cdot \Delta} \vee_{L} & \frac{\Gamma \vdash \cdot ; A, B, \Delta}{\Gamma \vdash \cdot ; A \vee B, \Delta} \vee_{R} \\
\frac{\Gamma \vdash A ; \Delta \quad \Gamma, B \vdash \cdot \Delta}{\Gamma, A \Rightarrow B \vdash \cdot ; \Delta} \Rightarrow L & \frac{\Gamma, A \vdash B ; \Delta}{\Gamma \vdash A \Rightarrow B ; \Delta} \Rightarrow_{R} \\
\frac{\Gamma, A[c / x] \vdash \cdot ; \Delta}{\Gamma, \exists x A \vdash \cdot ; \Delta} \exists_{L} & \frac{\Gamma \vdash \cdot ; A[t / x], \Delta}{\Gamma \vdash \cdot ; \exists x A, \Delta} \exists_{R} \\
\frac{\Gamma, A[t / x] \vdash \cdot ; \Delta}{\Gamma, \forall x A \vdash \cdot ; \Delta} \forall_{L} & \frac{\Gamma \vdash A[c / x] ; \Delta}{\Gamma \vdash \forall x A ; \Delta} \forall_{R} \\
\frac{\Gamma \vdash A ; \Delta}{\Gamma \vdash \cdot ; A, \Delta} \text { focus } & \frac{\Gamma \vdash \cdot ; A, \Delta}{\Gamma \vdash A ; \Delta} \text { release }
\end{array}
$$

A Focused Sequent Calculus

$$
\frac{\Gamma \vdash A ; \Delta}{\Gamma \vdash ; A, \Delta} \text { focus } \frac{\Gamma \vdash \cdot ; A, \Delta}{\Gamma \vdash A ; \Delta} \text { release }
$$

Characteristics:

- in release, A is either atomic or of the form $\exists x B, B \vee C$ or $\neg B$;
- in focus, the converse holds: A must not be atomic, nor of the form $\exists x B, B \vee C$ nor $\neg B$.
- the synchronous (outside the stoup) right-rules are $\exists_{R}, \neg R, \vee_{R}$ and (atomic) axiom: the exact places where \{.\} ${ }^{n}$ introduces negation

Theorem
 If $\Gamma \vdash \Delta$ is provable in LK then $\Gamma \vdash . ; \Delta$ is provable.

Proof: use Kleene's inversion lemma (holds for all connectives/quantifiers, except \exists_{R} and $\left.\forall_{L}\right)$.

Translating Focused Proofs in LJ

$$
\frac{\Gamma \vdash A ; \Delta}{\Gamma \vdash ; A, \Delta} \text { focus } \frac{\Gamma \vdash \cdot ; A, \Delta}{\Gamma \vdash A ; \Delta} \text { release }
$$

Theorem
If $\Gamma \vdash A ; \Delta$ in focused LK , then $\left.\Gamma^{p},\right\lrcorner \Delta^{n} \vdash A^{n}$ in $L J$

- release is translated by the ${{ }_{\neg R}}$ rule
- focus is translated by the \neg_{L} rule

Translating Focused Proofs in LJ

$$
\frac{\Gamma \vdash A ; \Delta}{\Gamma \vdash ; A, \Delta} \text { focus } \frac{\Gamma \vdash . ; A, \Delta}{\Gamma \vdash A ; \Delta} \text { release }
$$

Theorem
If $\Gamma \vdash A ; \Delta$ in focused LK , then $\left.\Gamma^{p},\right\lrcorner \Delta^{n} \vdash A^{n}$ in LJ

- release is translated by the ${\neg_{R}}$ rule
- focus is translated by the \neg_{L} rule
- $\lrcorner \Delta^{n}$ removes the trailing negation on $\exists^{n}(\neg \forall \neg), \vee^{n}(\neg \wedge \neg), \neg^{n}(\neg)$ and atoms ($\neg \neg$)
- what a surprise: focus is forbidden on them, so rule on the lhs:

LK rule	\exists_{R}	$\neg R$	\vee_{R}	ax.
LJ rule	\forall_{L}	nop	\wedge_{L}	$\neg L+a x$.

Going further: Kuroda's translation

Originating from Glivenko's remark for propositional logic:
Theorem [Glivenko]
if $\vdash A$ in $L K$, then $\vdash \neg \neg A$ in $L J$.
Kuroda's $\neg \neg-t r a n s l a t i o n: ~$

$$
\begin{align*}
B^{K u} & =B \tag{atoms}\\
(B \wedge C)^{K u} & =B^{K u} \wedge C^{K u} \\
(B \vee C)^{K u} & =B^{K u} \vee C^{K u} \\
(B \Rightarrow C)^{K u} & =B^{K u} \Rightarrow C^{K u} \\
(\forall x A)^{K u} & =\forall x \neg \neg A^{K u} \\
(\exists x A)^{K u} & =\exists x A^{K u}
\end{align*}
$$

Theorem [Kuroda]
$\Gamma \vdash \Delta$ in LK iff $\Gamma^{K u}, \neg \Delta^{K u}+$ in LJ.

- restarts double-negation everytime we pass a universal quantifier.

Combining Kuroda's and Gentzen-Gödel's translations

- work of Frédéric Gilbert (2013), who noticed:
(1) Kuroda's translation of $\forall x \forall y A$

$$
\forall x \neg \neg \forall y \neg \neg A \text { can be simplified: } \forall x \forall y \neg \neg A
$$

(2) $\neg \neg A$ itself can be treated à la Gentzen-Gödel
(3) and of course with polarization

Reminder:

$$
\begin{array}{rlrl}
\text { Gödel-Gentzen } & \text { Kuroda } \\
\varphi(P) & =\neg \neg P & \psi(P) & =P \\
\varphi(A \wedge B) & =\varphi(A) \wedge \varphi(B) & \psi(A \wedge B) & =\psi(A) \wedge \psi(B) \\
\varphi(A \vee B) & =\neg \neg(\varphi(A) \vee \varphi(B)) & \psi(A \vee B) & =\psi(A) \vee \psi(B) \\
\varphi(A \Rightarrow B) & =\varphi(A) \Rightarrow \varphi(B) & \psi(A \Rightarrow B) & =\psi(A) \Rightarrow \psi(B) \\
\varphi(\exists x A) & =\neg \neg \exists x \varphi(A) & \psi(\exists x A) & =\exists x \psi(A) \\
\varphi(\forall x A) & =\forall x \varphi(A) & \psi(\forall x A) & =\forall x \neg \neg \psi(A)
\end{array}
$$

Combining Kuroda's and Gentzen-Gödel's translations

- How does it work?

$$
\begin{aligned}
& G G \\
\varphi(P) & =\neg \neg P \\
\varphi(A \wedge B) & =\varphi(A) \wedge \varphi(B) \\
\varphi(A \vee B) & =\neg \neg(\varphi(A) \vee \varphi(B)) \\
\varphi(A \Rightarrow B) & =\varphi(A) \Rightarrow \varphi(B) \\
\varphi(\exists \times A) & =\neg \neg \exists \times \varphi(A) \\
\varphi(\forall \times A) & =\forall \times \varphi(A)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kuroda } \\
& \psi(P)=P \\
& \psi(A \wedge B)=\psi(A) \wedge \psi(B) \\
& \psi(A \vee B)=\psi(A) \vee \psi(B) \\
& \psi(A \Rightarrow B)=\psi(A) \Rightarrow \psi(B) \\
& \psi(\exists x A)=\exists x \psi(A) \\
& \psi(\forall x A)=\forall x \neg \neg \psi(A)
\end{aligned}
$$

Combining Kuroda's and Gentzen-Gödel's translations

- How does it work?

$$
\begin{aligned}
& \text { RHS } \\
& \varphi(P)=\neg \neg P \\
& \varphi(A \wedge B)=\varphi(A) \wedge \varphi(B) \\
& \varphi(A \vee B)=\neg \neg \psi(A) \vee \psi(B) \\
& \varphi(A \Rightarrow B)=\chi(A) \Rightarrow \varphi(B) \\
& \varphi(\exists x A)=\neg \neg \exists x \psi(A) \\
& \varphi(\forall x A)=\forall x \varphi(A) \\
& \text { LHS } \\
& \chi(P)=P \\
& \chi(A \wedge B)=\chi(A) \wedge \chi(B) \\
& \chi(A \vee B)=\chi(A) \vee \chi(B) \\
& \chi(A \Rightarrow B)=\psi(A) \Rightarrow \chi(B) \\
& \chi(\exists x A)=\exists x \chi(A) \\
& \chi(\forall x A)=\forall x \chi(A) \quad \psi(\forall x A)=\forall x \varphi(A)
\end{aligned}
$$

- How to prove that? Refine focusing into phases.

Example of translation

$\chi((A \vee B) \Rightarrow C)$ is $(A \vee B) \Rightarrow C$
$\varphi((A \vee B) \Rightarrow C)$ is $(A \vee B) \Rightarrow \neg \neg C$

$$
\begin{aligned}
& \overline{\Gamma, A \vdash . ; A, \Delta} \text { ax } \\
& \frac{\Gamma, A, B \vdash . ; \Delta}{\Gamma, A \wedge B \vdash . ; \Delta} \wedge_{L} \\
& \frac{\Gamma \vdash A ; \Delta \Gamma \vdash B ; \Delta}{\Gamma \vdash A \wedge B ; \Delta} \wedge_{R} \\
& \frac{\Gamma, A \vdash . ; \Delta \quad \Gamma, B \vdash . ; \Delta}{\Gamma, A \vee B \vdash \cdot ; \Delta} \vee_{L} \\
& \frac{\Gamma \vdash A ; \Delta \quad \Gamma, B \vdash \cdot ; \Delta}{\Gamma, A \Rightarrow B \vdash \cdot ; \Delta} \Rightarrow{ }_{L} \\
& \frac{\Gamma, A[c / x] \vdash \cdot ; \Delta}{\Gamma, \exists x A \vdash \ldots ;} \exists_{L} \\
& \frac{\Gamma, A[t / x] \vdash \cdot ; \Delta}{\Gamma, \forall x A \vdash \cdot ; \Delta} \forall_{L} \\
& \frac{\Gamma \vdash A ; \Delta}{\Gamma \vdash ; A, \Delta} \text { focus } \\
& \frac{\Gamma \vdash . ; A, B, \Delta}{\Gamma \vdash \cdot ; A \vee B, \Delta} \vee_{R} \\
& \frac{\Gamma, A \vdash B ; \Delta}{\Gamma \vdash A \Rightarrow B ; \Delta} \Rightarrow_{R} \\
& \frac{\Gamma \vdash . ; A[t / x], \Delta}{\Gamma \vdash \cdot ; \exists x A, \Delta} \exists_{R} \\
& \frac{\Gamma \vdash A[c / x] ; \Delta}{\Gamma \vdash \forall x A ; \Delta} \forall_{R} \\
& \frac{\Gamma \vdash . ; A, \Delta}{\Gamma \vdash A ; \Delta} \text { release }
\end{aligned}
$$

Results

```
Theorem [Gilbert]
if \Gamma}\mp@subsup{\Gamma}{0}{},\neg\mp@subsup{\Gamma}{1}{}\vdashA;\Delta\mathrm{ in LK \^ then }\chi(\mp@subsup{\Gamma}{0}{}),\neg\psi(\mp@subsup{\Gamma}{1}{}),\neg\psi(\Delta)\vdash\varphi(A)\mathrm{ in LJ.
```

Theorem [Gilbert]
$A \mapsto \varphi(A)$ is minimal among the $\neg \neg-t r a n s l a t i o n s$.

- 58% of Zenon's modulo proofs are secretly constructive
- polarizing the translation of rewrite rules in Deduction modulo:
* problem with cut elimination: a rule is usable in the lhs and rhs
\star back to a non-polarized one
* further work: use polarized Deduction modulo
- further work: polarize Krivine's translation

What you hopefully should remember:

- Focusing is a perfect tool to remove double-negations;
- antinegation $ـ$.

