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Could you explain how to get the 204.8 GFLOPS for BlueGene/Q ? 
Demo: cygwin /home/codeSIMD     ./docompil ./go   au tableau la formule de la distance 



Vector  Computing – SIMD (Single Instruction Multiple Data) 

A SIMD machine simultaneously operates on tuples of atomic data (one instruction).  

SIMD is opposed to SCALAR (the traditional mechanism).  

SIMD is about exploiting parallelism in the data stream (DLP) , while superscalar SISD 
is about exploiting parallelism in the instruction stream (ILP). 

SIMD is usually referred as VECTOR COMPUTING, since its basic unit is the vector. 

Vectors are represented in what is called packed data format stored into vector registers. 

On a given machine, the length of the vector registers and their number are fixed and 
determine the hardware SIMD potential.  

SIMD can be implemented on using specific extensions MMX, SSE, AVX, …  



Pipeline Floating Point Computation (multi-stage) 

A scalar implementation of adding two array of length n will require 6n steps  

A pipeline implementation of adding two array of length n will require 6 + (n-1) steps  

Depending on the architecture, pipeline processing applies to # operations (arith, logical). 

Consider the 6 steps (stages) involved in a floating-point addition on a 
sequential machine with IEEE arithmetic hardware:  

A.  exponents are compared for the smallest magnitude. 
B.  exponents are equalized by shifting the significand smaller. 
C.  the significands are added. 
D.  the result of the addition is normalized. 
E.  checks are made for floating-point exceptions such as overflow. 
F. rounding is performed. 

 

Some architectures provide a wider overlapping by chaining the pipelines.  

Roughly speeking, a p-length vector computation on a given n-array needs n/p steps. 

Could you identify and explain other type of pipeline in a standard computation scheme ? 

FP comp // Integer comp // Load // store // …. 

Pipeline feature is usually covered in the topic of  Instruction Level Parallelism(ILP) 



SIMD Implementation 

Advanced Encryption Standard (AES) 
AES New Instructions (AES-NI) 



SIMD Implementation 
MMX = MultiMedia eXtension 
SSE = Streaming SIMD Extension 
AVX = Advanced Vector Extensions 
MIC = Many Integrated Core 



SSE (Overview) 

SSE = Streaming SIMD Extensions 
 
SEE programming can be done either through (inline) assembly or from a high-level 
language (C and C++) using intrinsics. 
 
The {x,e,p}mmintrin.h header file contains the declarations for the SSEx instructions 
intrinsics. 
   xmmintrin.h -> SSE 
   emmintrin.h -> SSE2 
   pmmintrin.h -> SSE3 
 
SSEinstruction sets can be anabled or disabled. If disable, SSE instructions will not be 
possible. It is ecommended to leave this BIOS feature enabled by default. In any case MMX 
(MultiMedia eXtensions) will still avaiable. 
 
compile your SSE code with "gcc -o vector vector.c -msse -msse2 -msse3“ 
 
SSE intrinsics use types __m128 (float) , __m128i (int, short, char), and __m128d (double) 
 
Variable of type  __m128, __m128i, and __m128d (exclusive use)  
maps to the XMM[0-7] registers (128 bits), and automatically aligned on 16-byte boundaries. 

Vector registers are xmm0, xmm1, …, xmm7. Initially, they could only be used for single  
precision computation. Since SSE2, they can be used for any primitive data type.  



SSE (Connecting vectors to scalar data) 

float a[N] __attribute__((aligned(16))); 
__m128 *ptr = (__m128*)a;  
 
prt[i]  or *(ptr+i) represents the vector  
                     {a[4i], a[4i+1], a[4i+2], a[4i+3]} 

float a[N] __attribute__((aligned(16))); 
__m128 mm_a;  
mm_a = _mm_load_pd(&a[i]); // here we explicitly load data into the vector 
 
mm_a represents the vector  
                     {a[4i], a[4i+1], a[4i+2], a[4i+3]} 

Vector variables can be connected to scalar variables (arrays) using one of the following ways 

Using the above connection, we can now use SSE instruction to process our data.  
This can be done through 

(inline) assembly 

intrinsics (interface to keep using high-level instructions to perform vector operations) 

 Pros and cons of using (inline)assembly versus intrinsics. 



SSE (basic assembly instructions) 

Data Movement Instructions 
MOVUPS   - Move 128bits of data to an SIMD register from memory or SIMD register. Unaligned. 
MOVAPS   - Move 128bits of data to an SIMD register from memory or SIMD register. Aligned. 
MOVHPS   - Move 64bits to upper bits of an SIMD register (high). 
MOVLPS   - Move 64bits to lower bits of an SIMD register (low). 
MOVHLPS  - Move upper 64bits of source  register to the lower 64bits of destination register. 
MOVLHPS  - Move lower 64bits of source register  to the upper 64bits of destination register. 
MOVMSKPS  - Move sign bits of each of the 4 packed scalars to an x86 integer register. 
MOVSS   - Move 32bits to an SIMD register from memory or SIMD register. 

Arithmetic Instructions 
Parallel       Scalar (will perform the operation on the first elements only.) 
ADDPS ADDSS  -  Adds operands 
SUBPS SUBSS  -  Subtracts operands 
MULPS MULSS  -  Multiplys operands 
DIVPS DIVSS  -  Divides operands 
SQRTPS SQRTSS  -  Square root of operand 
MAXPS MAXSS  -  Maximum of operands 
MINPS MINSS  -  Minimum of operands 
RCPPS RCPSS  -  Reciprical of operand 
RSQRTPS RSQRTSS  -  Reciprical of square root of operand 

Logical Instructions 
ANDPS - Bitwise AND of operands 
ANDNPS - Bitwise AND NOT of operands 
ORPS - Bitwise OR of operands 
XORPS - Bitwise XOR of operands 
 

http://neilkemp.us/src/sse_tutorial/sse_tutorial.html 

http://neilkemp.us/src/sse_tutorial/sse_tutorial.html
http://neilkemp.us/src/sse_tutorial/sse_tutorial.html


SSE (basic assembly instructions) 

Shuffle Instructions 
 

SHUFPS   - Shuffle numbers from one operand to another or itself.  
UNPCKHPS  - Unpack high order numbers to an SIMD register. 
UNPCKLPS  - Unpack low order numbers to a SIMD register. 

http://neilkemp.us/src/sse_tutorial/sse_tutorial.html 

Shuffling offers a way to  
• change the order of the elements within a single vector or  
• combine the elements of two separate registers. 

   The SHUFPS instruction takes two SSE registers and an 8 bit hex value. (elements are numbered from right to left !!!) 

•The first two elements of the destination operand are overwritten by any two elements of the destination register.  

•The third and fourth elements of the destination register are overwritten by any two elements from the source register.  

•The hex string is used to tell the instruction which elements to shuffle.  

•00, 01, 10, and 11 are used to access elements within the registers. 

Examples 

SHUFPS XMM0, XMM0, 0x1B // 0x1B =  00 01 10 11 and reverses the order of the elements 

SHUFPS XMM0, XMM0, 0xAA     // 0xAA = 10 10 10 10 and sets all elements to the 3rd element 

Write the suffling instruction to obtain (a2, a3, a0, a1) from (a3, a2, a1, a0) in XMM0 
What is XMM0 after SHUFPS XMM0, XMM0, 93h ? 
What is XMM0 after SHUFPS XMM0, XMM0, 39h ? 

http://neilkemp.us/src/sse_tutorial/sse_tutorial.html
http://neilkemp.us/src/sse_tutorial/sse_tutorial.html


SSE (assembly examples) 

// Use sse to multiply vector elements by a real number a * b 
vector4 sse_vector4_multiply(const vector4 &op_a, const float &op_b) 
{ 
 vector4 ret_vector; 
 __m128 f = _mm_set1_ps(op_b); // Set all 4 elements to op_b 
 __asm  
 {   
  MOV  EAX, op_a   // Load pointer into CPU reg 
      MOVUPS XMM0, [EAX]  // Move the vectors to SSE regs 
  MULPS XMM0, f   // Multiply elements 
  MOVUPS [ret_vector], XMM0 // Save the return vector 
 } 
 return ret_vector; 
} 

// Use sse to add the elements of two vectors a + b 
vector4 sse_vector4_add(const vector4 &op_a, const vector4 &op_b) 
{ 
 vector4 ret_vector; 
 __asm  
 {   
  MOV  EAX, op_a   // Load pointers into CPU regs 
  MOV  EBX,  op_b 
      MOVUPS XMM0, [EAX]  // Move the vectors to SSE regs 
  MOVUPS XMM1, [EBX] 
  ADDPS XMM0, XMM1  // Add elements 
  MOVUPS [ret_vector], XMM0 // Save the return vector 
 } 
 return ret_vector; 
} 

struct vector4 
{  
  float x, y, z, w; 
}; 



SSE (assembly examples) 

// Use sse to add the elements of two vectors a + b 
vector4 sse_vector4_cross_product(const vector4 &op_a, const vector4 &op_b){ 
 vector4 ret_vector; 
 __asm  
 {   
  MOV  EAX, op_a   // Load pointers into CPU regs 
  MOV  EBX, op_b 
  MOVUPS XMM0, [EAX]  // Move the vectors to SSE regs 
  MOVUPS XMM1, [EBX]  
 
 
 
 
 
 
 
 
 
  MOVUPS [ret_vector], XMM0  // Save the return vector 
 } 
 return ret_vector; 
} 

We need to write a SSE code to calculate the cross product 
R.x = A.y * B.z - A.z * B.y 
R.y = A.z * B.x - A.x * B.z 
R.z = A.x * B.y - A.y * B.x 

Complete the following code 



SSE (assembly examples) 

// Use sse to add the elements of two vectors a + b 
vector4 sse_vector4_cross_product(const vector4 &op_a, const vector4 &op_b){ 
 vector4 ret_vector; 
 __asm  
 {   
  MOV  EAX, op_a   // Load pointers into CPU regs 
  MOV  EBX, op_b 
  MOVUPS XMM0, [EAX]  // Move the vectors to SSE regs 
  MOVUPS XMM1, [EBX]  
  MOVAPS XMM2, XMM0 
  MOVAPS XMM3, XMM1 
  SHUFPS XMM0, XMM0, 0xD8 
  SHUFPS XMM1, XMM1, 0xE1 
  MULPS XMM0, XMM1 
  SHUFPS XMM2, XMM2, 0xE1 
  SHUFPS XMM3, XMM3, 0xD8 
  MULPS XMM2, XMM3 
  SUBPS XMM0, XMM2 
  MOVUPS [ret_vector], XMM0  // Save the return vector 
 } 
 return ret_vector; 
} 

We need to write a SSE code to calculate the cross product 
R.x = A.y * B.z - A.z * B.y 
R.y = A.z * B.x - A.x * B.z 
R.z = A.x * B.y - A.y * B.x 

Complete the following code 



SSE (common intrinsics) 

_mm_add_ps(__m128 a , __m128 b ) 
_mm_sub_ps(__m128 a , __m128 b ) 
_mm_mul_ps(__m128 a , __m128 b ) 
_mm_div_ps(__m128 a , __m128 b ) 
_mm_sqrt_ps(__m128 a , __m128 b ) 
_mm_min_ps(__m128 a , __m128 b ) 
_mm_max_ps(__m128 a , __m128 b ) 
 
_mm_cmpeq_ps(__m128 a , __m128 b ) 
_mm_cmplt_ps(__m128 a , __m128 b ) 
_mm_cmpgt_ps(__m128 a , __m128 b ) 
 
_mm_and_ps(__m128 a , __m128 b ) 
__mm_prefetch(__m128 a , _MM_HINT_T0) 

 Pros and cons of the prefetch. 



SSE (illustrations) 

void scalar_sqrt(float *a){ 
  int i; 
  for(i = 0; i < N; i++) 
    a[i] = sqrt(a[i]);                                                                                                          
}  

void sse_sqrt(float *a){ 
  // We assume N % 4 == 0. 
  int nb_iters = N / 4;                                                                                                                     
  __m128 *ptr = (__m128*)a;                                                                                                                
  int i; 
  for(i = 0; i < nb_iters; i++, ptr++, a += 4)                                                                                                                  
    _mm_store_ps(a, _mm_sqrt_ps(*ptr));                                                                                                                          
} 

10 times faster !!!!!!! 

scalar  

SSE 



SSE (exercices) 

 Write the SSE loop equivalent to the following scalar loop (use vectors mm_d, mm_a, mm_b, mm_c). 

for(i = 0; i < N; i++) 
    d[i] = (a[i] – b[i])*c[i]; 

for( i = 0; i <N; i+= 4){ 
   mm_a = _mm_load_ps(&a[i]); 
   mm_b = _mm_load_ps(&b[i]); 
   mm_c = _mm_load_ps(&c[i]); 
   mm_r = _mm_add_ps( mm_a, mm_b ); 
   mm_a = _mm_mul_ps( mm_r , mm_c ); 
   _mm_store_ps( &r[i], mm_a ); 
} 

 Write the SSE loop equivalent to the following scalar loop (use vectors mm_c, mm_a, mm_b). 

for(i = 0; i < N; i+= 2){ 
    c[2*i]   = (a[2*i] – b[2*i+1]); 
    c[2*i+1] = (a[2*i+1] – b[2*i]); 
} 

 Write the SSE loop equivalent to the following scalar loop (typedef struct {float re; float im} complex;). 

for(i = 0; i < N; i++) c[i] = multiply(a[i], b[i]); 

 Write the SSE loop equivalent to the following scalar loop 

for(i = 0; i < N; i++) b[i] = 2*a[i] + 1; 

Back to the cross product 


