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LinPy is a polyhedral library for Python based on isl. Integer Set Library (isl) is a C library for manipulating sets and
relations of integer points bounded by linear constraints.

LinPy is a free software, licensed under the GPLv3 license. Its source code is available here.

To have an overview of LinPy’s features, you may wish to read the Tutorial. For a comprehensive description of its
functionalities, please consult the Module Reference.

CONTENTS 1
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CHAPTER

ONE

INSTALLATION

1.1 Dependencies

LinPy requires Python version 3.4 or above to work.

LinPy’s one mandatory dependency is isl version 0.12 or 0.13 (it may work with other versions of isl, but this has not
been tested). isl can be downloaded here or preferably, using your favorite package manager. For Debian or Ubuntu,
the command to run is:

sudo apt-get install libisl-dev

For Arch Linux, run:

sudo pacman -S isl

Apart from isl, there are two optional dependencies that will maximize the use of LinPy’s functions: SymPy and
matplotlib. Please consult the SymPy download page and matplotlib installation instructions to install these libraries.

1.2 Install Using pip

This is the recommanded way to install LinPy, with the command:

sudo pip install linpy

1.3 Install From Source

Alternatively, LinPy can be installed from source. First, clone the public git repository:

git clone https://scm.cri.mines-paristech.fr/git/linpy.git

and build and install as usual with:

sudo python3 setup.py install

3
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CHAPTER

TWO

TUTORIAL

This section a short introduction to some of LinPy’s features. For a comprehensive description of its functionalities,
please consult the Module Reference.

2.1 Z-Polyhedra

The following example shows how we can manipulate polyhedra using LinPy. Let us define two square polyhe-
dra, corresponding to the sets square1 = {(x, y) | 0 <= x <= 2, 0 <= y <= 2} and square2 =
{(x, y) | 2 <= x <= 4, 2 <= y <= 4}. First, we need define the symbols used, for instance with the
symbols() function.

>>> from linpy import *
>>> x, y = symbols(’x y’)

Then, we can build the Polyhedron object square1 from its constraints:

>>> square1 = Le(0, x, 2) & Le(0, y, 2)
>>> square1
And(0 <= x, x <= 2, 0 <= y, y <= 2)

LinPy provides comparison functions Lt(), Le(), Eq(), Ne(), Ge() and Gt() to build constraints, and logical
operators And(), Or(), Not() to combine them. Alternatively, a polyhedron can be built from a string:

>>> square2 = Polyhedron(’1 <= x <= 3, 1 <= y <= 3’)
>>> square2
And(1 <= x, x <= 3, 1 <= y, y <= 3)

The usual polyhedral operations are available, including intersection:

>>> inter = square1.intersection(square2) # or square1 & square2
>>> inter
And(1 <= x, x <= 2, 1 <= y, y <= 2)

convex union:

>>> hull = square1.convex_union(square2)
>>> hull
And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3)

and projection:

>>> proj = square1.project([y])
>>> proj
And(0 <= x, x <= 2)

5
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Equality and inclusion tests are also provided. Special values Empty and Universe represent the empty and universe
polyhedra.

>>> inter <= square1
True
>>> inter == Empty
False

2.2 Domains

LinPy is also able to manipulate polyhedral domains, that is, unions of polyhedra. An example of domain is the set
union (as opposed to convex union) of polyhedra square1 and square2. The result is a Domain object.

>>> union = square1.union(square2) # or square1 | square2
>>> union
Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), And(x <= 3, 1 <= x, y <= 3, 1 <= y))
>>> union <= hull
True

Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations.

>>> diff = square1.difference(square2) # or square1 - square2
>>> diff
Or(And(x == 0, 0 <= y, y <= 2), And(y == 0, 1 <= x, x <= 2))
>>> ~square1
Or(x + 1 <= 0, 3 <= x, And(0 <= x, x <= 2, y + 1 <= 0), And(0 <= x, x <= 2, 3 <= y))

2.3 Plotting

LinPy can use the matplotlib plotting library, if available, to plot bounded polyhedra and domains.

>>> import matplotlib.pyplot as plt
>>> from matplotlib import pylab
>>> fig = plt.figure()
>>> plot = fig.add_subplot(1, 1, 1, aspect=’equal’)
>>> square1.plot(plot, facecolor=’red’, alpha=0.3)
>>> square2.plot(plot, facecolor=’blue’, alpha=0.3)
>>> hull.plot(plot, facecolor=’blue’, alpha=0.3)
>>> pylab.show()

Note that you can pass a plot object to the Domain.plot() method, which provides great flexibility. Also, keyword
arguments can be passed such as color and the degree of transparency of a polygon.

3D plots are also supported:

>>> import matplotlib.pyplot as plt
>>> from matplotlib import pylab
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from linpy import *
>>> x, y, z = symbols(’x y z’)
>>> fig = plt.figure()
>>> plot = fig.add_subplot(1, 1, 1, projection=’3d’, aspect=’equal’)
>>> plot.set_title(’Chamfered cube’)
>>> poly = Le(0, x, 3) & Le(0, y, 3) & Le(0, z, 3) & \

Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \

6 Chapter 2. Tutorial
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Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & \
Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y)

>>> poly.plot(plot, facecolor=’red’, alpha=0.75)
>>> pylab.show()

8 Chapter 2. Tutorial



CHAPTER

THREE

MODULE REFERENCE

3.1 Symbols

Symbols are the basic components to build expressions and constraints. They correspond to mathematical variables.

class Symbol(name)
Return a symbol with the name string given in argument. Alternatively, the function symbols() allows to
create several symbols at once. Symbols are instances of class LinExpr and inherit its functionalities.

>>> x = Symbol(’x’)
>>> x
x

Two instances of Symbol are equal if they have the same name.

name
The name of the symbol.

asdummy()
Return a new Dummy symbol instance with the same name.

sortkey()
Return a sorting key for the symbol. It is useful to sort a list of symbols in a consistent order, as comparison
functions are overridden (see the documentation of class LinExpr).

>>> sort(symbols, key=Symbol.sortkey)

symbols(names)
This function returns a tuple of symbols whose names are taken from a comma or whitespace delimited string,
or a sequence of strings. It is useful to define several symbols at once.

>>> x, y = symbols(’x y’)
>>> x, y = symbols(’x, y’)
>>> x, y = symbols([’x’, ’y’])

Sometimes you need to have a unique symbol. For example, you might need a temporary one in some calculation,
which is going to be substituted for something else at the end anyway. This is achieved using Dummy(’x’).

class Dummy(name=None)
A variation of Symbol in which all symbols are unique and identified by an internal count index. If a name is
not supplied then a string value of the count index will be used. This is useful when a unique, temporary variable
is needed and the name of the variable used in the expression is not important.

Unlike Symbol, Dummy instances with the same name are not equal:

9
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>>> x = Symbol(’x’)
>>> x1, x2 = Dummy(’x’), Dummy(’x’)
>>> x == x1
False
>>> x1 == x2
False
>>> x1 == x1
True

3.2 Linear Expressions

A linear expression consists of a list of coefficient-variable pairs that capture the linear terms, plus a constant term.
Linear expressions are used to build constraints. They are temporary objects that typically have short lifespans.

Linear expressions are generally built using overloaded operators. For example, if x is a Symbol, then x + 1 is an
instance of LinExpr.

class LinExpr(coefficients=None, constant=0)
class LinExpr(string)

Return a linear expression from a dictionary or a sequence, that maps symbols to their coefficients, and a constant
term. The coefficients and the constant term must be rational numbers.

For example, the linear expression x + 2*y + 1 can be constructed using one of the following instructions:

>>> x, y = symbols(’x y’)
>>> LinExpr({x: 1, y: 2}, 1)
>>> LinExpr([(x, 1), (y, 2)], 1)

However, it may be easier to use overloaded operators:

>>> x, y = symbols(’x y’)
>>> x + 2*y + 1

Alternatively, linear expressions can be constructed from a string:

>>> LinExpr(’x + 2y + 1’)

LinExpr instances are hashable, and should be treated as immutable.

A linear expression with a single symbol of coefficient 1 and no constant term is automatically subclassed as a
Symbol instance. A linear expression with no symbol, only a constant term, is automatically subclassed as a
Rational instance.

coefficient(symbol)
__getitem__(symbol)

Return the coefficient value of the given symbol, or 0 if the symbol does not appear in the expression.

coefficients()
Iterate over the pairs (symbol, value) of linear terms in the expression. The constant term is ignored.

constant
The constant term of the expression.

symbols
The tuple of symbols present in the expression, sorted according to Symbol.sortkey().

dimension
The dimension of the expression, i.e. the number of symbols present in it.

10 Chapter 3. Module Reference
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isconstant()
Return True if the expression only consists of a constant term. In this case, it is a Rational instance.

issymbol()
Return True if an expression only consists of a symbol with coefficient 1. In this case, it is a Symbol
instance.

values()
Iterate over the coefficient values in the expression, and the constant term.

__add__(expr)
Return the sum of two linear expressions.

__sub__(expr)
Return the difference between two linear expressions.

__mul__(value)
Return the product of the linear expression by a rational.

__truediv__(value)
Return the quotient of the linear expression by a rational.

__eq__(expr)
Test whether two linear expressions are equal. Unlike methods LinExpr.__lt__(),
LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), the result is a boolean value,
not a polyhedron. To express that two linear expressions are equal or not equal, use functions Eq() and
Ne() instead.

As explained below, it is possible to create polyhedra from linear expressions using comparison methods.

__lt__(expr)
__le__(expr)
__ge__(expr)
__gt__(expr)

Create a new Polyhedron instance whose unique constraint is the comparison between two linear ex-
pressions. As an alternative, functions Lt(), Le(), Ge() and Gt() can be used.

>>> x, y = symbols(’x y’)
>>> x < y
x + 1 <= y

scaleint()
Return the expression multiplied by its lowest common denominator to make all values integer.

subs(symbol, expression)
subs(pairs)

Substitute the given symbol by an expression and return the resulting expression. Raise TypeError if
the resulting expression is not linear.

>>> x, y = symbols(’x y’)
>>> e = x + 2*y + 1
>>> e.subs(y, x - 1)
3*x - 1

To perform multiple substitutions at once, pass a sequence or a dictionary of (old, new) pairs to subs.

>>> e.subs({x: y, y: x})
2*x + y + 1

classmethod fromstring(string)
Create an expression from a string. Raise SyntaxError if the string is not properly formatted.

3.2. Linear Expressions 11
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There are also methods to convert linear expressions to and from SymPy expressions:

classmethod fromsympy(expr)
Create a linear expression from a sympy expression. Raise TypeError is the sympy expression is not
linear.

tosympy()
Convert the linear expression to a sympy expression.

Apart from Symbol, a particular case of linear expressions are rational values, i.e. linear expressions consisting only
of a constant term, with no symbol. They are implemented by the Rational class, that inherits from both LinExpr
and fractions.Fraction classes.

class Rational(numerator, denominator=1)
class Rational(string)

The first version requires that the numerator and denominator are instances of numbers.Rational and
returns a new Rational instance with the value numerator/denominator. If the denominator is 0, it
raises a ZeroDivisionError. The other version of the constructor expects a string. The usual form for this
instance is:

[sign] numerator [’/’ denominator]

where the optional sign may be either ‘+’ or ‘-‘ and the numerator and denominator (if present) are
strings of decimal digits.

See the documentation of fractions.Fraction for more information and examples.

3.3 Polyhedra

A convex polyhedron (or simply “polyhedron”) is the space defined by a system of linear equalities and inequalities.
This space can be unbounded. A Z-polyhedron (simply called “polyhedron” in LinPy) is the set of integer points in a
convex polyhedron.

class Polyhedron(equalities, inequalities)
class Polyhedron(string)
class Polyhedron(geometric object)

Return a polyhedron from two sequences of linear expressions: equalities is a list of expressions equal to 0, and
inequalities is a list of expressions greater or equal to 0. For example, the polyhedron 0 <= x <= 2, 0 <=
y <= 2 can be constructed with:

>>> x, y = symbols(’x y’)
>>> square1 = Polyhedron([], [x, 2 - x, y, 2 - y])
>>> square1
And(0 <= x, x <= 2, 0 <= y, y <= 2)

It may be easier to use comparison operators LinExpr.__lt__(), LinExpr.__le__(),
LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(), Le(), Eq(), Ge() and Gt(),
using one of the following instructions:

>>> x, y = symbols(’x y’)
>>> square1 = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2)
>>> square1 = Le(0, x, 2) & Le(0, y, 2)

It is also possible to build a polyhedron from a string.

>>> square1 = Polyhedron(’0 <= x <= 2, 0 <= y <= 2’)

12 Chapter 3. Module Reference
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Finally, a polyhedron can be constructed from a GeometricObject instance, calling the
GeometricObject.aspolyedron() method. This way, it is possible to compute the polyhedral
hull of a Domain instance, i.e., the convex hull of two polyhedra:

>>> square1 = Polyhedron(’0 <= x <= 2, 0 <= y <= 2’)
>>> square2 = Polyhedron(’1 <= x <= 3, 1 <= y <= 3’)
>>> Polyhedron(square1 | square2)
And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3)

A polyhedron is a Domain instance, and, therefore, inherits the functionalities of this class. It is also a
GeometricObject instance.

equalities
The tuple of equalities. This is a list of LinExpr instances that are equal to 0 in the polyhedron.

inequalities
The tuple of inequalities. This is a list of LinExpr instances that are greater or equal to 0 in the polyhe-
dron.

constraints
The tuple of constraints, i.e., equalities and inequalities. This is semantically equivalent to: equalities
+ inequalities.

convex_union(polyhedron[, ...])
Return the convex union of two or more polyhedra.

asinequalities()
Express the polyhedron using inequalities, given as a list of expressions greater or equal to 0.

widen(polyhedron)
Compute the standard widening of two polyhedra, à la Halbwachs.

In its current implementation, this method is slow and should not be used on large polyhedra.

Empty
The empty polyhedron, whose set of constraints is not satisfiable.

Universe
The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty.

3.4 Domains

A domain is a union of polyhedra. Unlike polyhedra, domains allow exact computation of union, subtraction and
complementary operations.

class Domain(*polyhedra)
class Domain(string)
class Domain(geometric object)

Return a domain from a sequence of polyhedra.

>>> square1 = Polyhedron(’0 <= x <= 2, 0 <= y <= 2’)
>>> square2 = Polyhedron(’1 <= x <= 3, 1 <= y <= 3’)
>>> dom = Domain(square1, square2)
>>> dom
Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), And(x <= 3, 1 <= x, y <= 3, 1 <= y))

It is also possible to build domains from polyhedra using arithmetic operators Domain.__or__(),
Domain.__invert__() or functions Or() and Not(), using one of the following instructions:

3.4. Domains 13
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>>> dom = square1 | square2
>>> dom = Or(square1, square2)

Alternatively, a domain can be built from a string:

>>> dom = Domain(’0 <= x <= 2, 0 <= y <= 2; 1 <= x <= 3, 1 <= y <= 3’)

Finally, a domain can be built from a GeometricObject instance, calling the
GeometricObject.asdomain() method.

A domain is also a GeometricObject instance. A domain with a unique polyhedron is automatically sub-
classed as a Polyhedron instance.

polyhedra
The tuple of polyhedra present in the domain.

symbols
The tuple of symbols present in the domain equations, sorted according to Symbol.sortkey().

dimension
The dimension of the domain, i.e. the number of symbols present in it.

isempty()
Return True if the domain is empty, that is, equal to Empty.

__bool__()
Return True if the domain is non-empty.

isuniverse()
Return True if the domain is universal, that is, equal to Universe.

isbounded()
Return True is the domain is bounded.

__eq__(domain)
Return True if two domains are equal.

isdisjoint(domain)
Return True if two domains have a null intersection.

issubset(domain)
__le__(domain)

Report whether another domain contains the domain.

__lt__(domain)
Report whether another domain is contained within the domain.

complement()
__invert__()

Return the complementary domain of the domain.

make_disjoint()
Return an equivalent domain, whose polyhedra are disjoint.

coalesce()
Simplify the representation of the domain by trying to combine pairs of polyhedra into a single polyhedron,
and return the resulting domain.

detect_equalities()
Simplify the representation of the domain by detecting implicit equalities, and return the resulting domain.

remove_redundancies()
Remove redundant constraints in the domain, and return the resulting domain.

14 Chapter 3. Module Reference
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project(symbols)
Project out the sequence of symbols given in arguments, and return the resulting domain.

sample()
Return a sample of the domain, as an integer instance of Point. If the domain is empty, a ValueError
exception is raised.

intersection(domain[, ...])
__and__(domain)

Return the intersection of two or more domains as a new domain. As an alternative, function And() can
be used.

union(domain[, ...])
__or__(domain)
__add__(domain)

Return the union of two or more domains as a new domain. As an alternative, function Or() can be used.

difference(domain)
__sub__(domain)

Return the difference between two domains as a new domain.

lexmin()
Return the lexicographic minimum of the elements in the domain.

lexmax()
Return the lexicographic maximum of the elements in the domain.

vertices()
Return the vertices of the domain, as a list of rational instances of Point.

points()
Return the integer points of a bounded domain, as a list of integer instances of Point. If the domain is
not bounded, a ValueError exception is raised.

__contains__(point)
Return True if the point is contained within the domain.

faces()
Return the list of faces of a bounded domain. Each face is represented by a list of vertices, in the form of
rational instances of Point. If the domain is not bounded, a ValueError exception is raised.

plot(plot=None, **options)
Plot a 2D or 3D domain using matplotlib. Draw it to the current plot object if present, otherwise create a
new one. options are keyword arguments passed to the matplotlib drawing functions, they can be used to
set the drawing color for example. Raise ValueError is the domain is not 2D or 3D.

subs(symbol, expression)
subs(pairs)

Substitute the given symbol by an expression in the domain constraints. To perform multiple substitutions
at once, pass a sequence or a dictionary of (old, new) pairs to subs. The syntax of this function is
similar to LinExpr.subs().

classmethod fromstring(string)
Create a domain from a string. Raise SyntaxError if the string is not properly formatted.

There are also methods to convert a domain to and from SymPy expressions:

classmethod fromsympy(expr)
Create a domain from a sympy expression.

tosympy()
Convert the domain to a sympy expression.

3.4. Domains 15
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3.5 Comparison and Logic Operators

The following functions create Polyhedron or Domain instances using the comparisons of two or more LinExpr
instances:

Lt(expr1, expr2[, expr3, ...])
Create the polyhedron with constraints expr1 < expr2 < expr3 ....

Le(expr1, expr2[, expr3, ...])
Create the polyhedron with constraints expr1 <= expr2 <= expr3 ....

Eq(expr1, expr2[, expr3, ...])
Create the polyhedron with constraints expr1 == expr2 == expr3 ....

Ne(expr1, expr2[, expr3, ...])
Create the domain such that expr1 != expr2 != expr3 .... The result is a Domain object, not a
Polyhedron.

Ge(expr1, expr2[, expr3, ...])
Create the polyhedron with constraints expr1 >= expr2 >= expr3 ....

Gt(expr1, expr2[, expr3, ...])
Create the polyhedron with constraints expr1 > expr2 > expr3 ....

The following functions combine Polyhedron or Domain instances using logic operators:

And(domain1, domain2[, ...])
Create the intersection domain of the domains given in arguments.

Or(domain1, domain2[, ...])
Create the union domain of the domains given in arguments.

Not(domain)
Create the complementary domain of the domain given in argument.

3.6 Geometric Objects

class GeometricObject
GeometricObject is an abstract class to represent objects with a geometric representation in space. Sub-
classes of GeometricObject are Polyhedron, Domain and Point. The following elements must be
provided:

symbols
The tuple of symbols present in the object expression, sorted according to Symbol.sortkey().

dimension
The dimension of the object, i.e. the number of symbols present in it.

aspolyedron()
Return a Polyhedron object that approximates the geometric object.

asdomain()
Return a Domain object that approximates the geometric object.

class Point(coordinates)
Create a point from a dictionary or a sequence that maps the symbols to their coordinates. Coordinates must be
rational numbers.

For example, the point (x: 1, y: 2) can be constructed using one of the following instructions:

16 Chapter 3. Module Reference
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>>> x, y = symbols(’x y’)
>>> p = Point({x: 1, y: 2})
>>> p = Point([(x, 1), (y, 2)])

Point instances are hashable and should be treated as immutable.

A point is a GeometricObject instance.

symbols
The tuple of symbols present in the point, sorted according to Symbol.sortkey().

dimension
The dimension of the point, i.e. the number of symbols present in it.

coordinate(symbol)
__getitem__(symbol)

Return the coordinate value of the given symbol. Raise KeyError if the symbol is not involved in the
point.

coordinates()
Iterate over the pairs (symbol, value) of coordinates in the point.

values()
Iterate over the coordinate values in the point.

isorigin()
Return True if all coordinates are 0.

__bool__()
Return True if not all coordinates are 0.

__add__(vector)
Translate the point by a Vector object and return the resulting point.

__sub__(point)
__sub__(vector)

The first version substracts a point from another and returns the resulting vector. The second version
translates the point by the opposite vector of vector and returns the resulting point.

__eq__(point)
Test whether two points are equal.

class Vector(coordinates)
class Vector(point1, point2)

The first version creates a vector from a dictionary or a sequence that maps the symbols to their coordinates,
similarly to Point(). The second version creates a vector between two points.

Vector instances are hashable and should be treated as immutable.

symbols
The tuple of symbols present in the point, sorted according to Symbol.sortkey().

dimension
The dimension of the point, i.e. the number of symbols present in it.

coordinate(symbol)
__getitem__(symbol)

Return the coordinate value of the given symbol. Raise KeyError if the symbol is not involved in the
point.

coordinates()
Iterate over the pairs (symbol, value) of coordinates in the point.

3.6. Geometric Objects 17
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values()
Iterate over the coordinate values in the point.

isnull()
Return True if all coordinates are 0.

__bool__()
Return True if not all coordinates are 0.

__add__(point)
__add__(vector)

The first version translates the point point to the vector and returns the resulting point. The second version
adds vector vector to the vector and returns the resulting vector.

__sub__(point)
__sub__(vector)

The first version substracts a point from a vector and returns the resulting point. The second version returns
the difference vector between two vectors.

__neg__()
Return the opposite vector.

__mul__(value)
Multiply the vector by a scalar value and return the resulting vector.

__truediv__(value)
Divide the vector by a scalar value and return the resulting vector.

__eq__(vector)
Test whether two vectors are equal.

angle(vector)
Retrieve the angle required to rotate the vector into the vector passed in argument. The result is an angle
in radians, ranging between -pi and pi.

cross(vector)
Compute the cross product of two 3D vectors. If either one of the vectors is not three-dimensional, a
ValueError exception is raised.

dot(vector)
Compute the dot product of two vectors.

norm()
Return the norm of the vector.

norm2()
Return the squared norm of the vector.

asunit()
Return the normalized vector, i.e. the vector of same direction but with norm 1.

18 Chapter 3. Module Reference
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