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Context The semantic gap

Different levels of description
In control engineering, work on different levels to design and build a
control system:

• Format/high-level aspects: system conception, modeling, possibly
proof.

• Concrete/low-level aspects: creation of an object implementing the
system.
Quadricopter, DRONE Project, MINES ParisTech & ECP.
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Context The semantic gap

Formal aspect

model object

System definition:
• Inputs: sensors [accelerometer, sonar. . . ] + references [operator
instructions].
Outputs: actions to act on environment [rotors rotation speed].

• Modeling in the form of equations to express relations between inputs
and outputs: transfer functions or differential equations.

System requirements:

• Stability conditions [bounded rotation speed].
• Pursuit of reference input [try to reach the ordered position].
• Perturbation rejection [wind].
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Context The semantic gap

Concrete aspect

model object

Creation of a real object implementing the system.
• Electronic circuit that physically computes the transfer function.
• With a microcontroller: a small system with processor, memory,
I/O devices, that runs a program implementing the transfer function.

[ATMEGA128
Frequency: 16MHz
RAM: 4KB
Prog. mem.: 128KB]
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Context The semantic gap

Semantic gap

model C code µC code

Antagonism:
• Abstract, mathematical model.
• Microcontroller code: program written in C, then compiled.
Long (thousands of LoC), low-level (elementary operations, hardware
management, interruptions).

Series of transformations to go from abstract model to microcontroller
code.

Problem of proof transposition: Considering a model with correction
proofs [stability], how to transpose down these proofs at the code level?

Interest: formally check the code, not only the model.

Difficulties: semantic gap, non-equivalent transformations (⇒ proofs must
be checked).
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Context Control-theoretical aspects

Control-theoretical aspects

model pseudocode C code µC code

Produce a pseudocode from the abstract model:

• Solve the model differential equation, get a transfer function.
(Laplace transform/Z transform, initial conditions problem.)

• If continuous-time model, discretization.
(Problems with sampling, execution times.)

while transposing the proof.

Usual problems in control engineering.

Once done, discrete-time system with a loop on the transfer function ⇒
pseudocode [in MATLAB]. Proof: invariants on this code.
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Context Compilation aspects

Compilation aspects

model pseudocode C code µC code

At the other end: compilation of C code to machine code.
Risks of error:

• Important changes in the code: elementary operations, management
of registers and of memory stack, instruction jumps.

• Possible optimizations.

Solutions:

• “Existing C compilers are reliable enough.”
• Proof-preserving compilation [Barthe].
• Certified compilation [CompCert].
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Context C code production

What’s between?

model pseudocode C code µC code

Opener question. Several challenges:
1 High level mathematical operations ; series of elementary

instructions [matrices, sinus].

2 Real values ; machine words with limited precision.
3 On a microcontroller, data/events acquisition raises interruptions

(real-time answer, energy consumption) ⇒ particular code structure.
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From real to floats Example of linear invariant system

Example system

Very simple, linear invariant system.

Pseudocode:
Ac = [0.4990, -0.0500; 0.0100, 1.0000]; state matrix (matrice de dynamique)
Bc = [1;0]; input matrix (matrice de commande)
Cc = [564.48, 0]; output matrix (matrice d’observation)
Dc = -1280; feedthrough matrix (matrice d’action directe)

xc = zeros(2,1); xc =

(
xc1
xc2

)
∈ R2: controller state

receive(y,2); receive(yd,2); y ∈ R : reference input; yd ∈ R : real position
while 1

yc = max(min(y - yd,1),-1); yc ∈ [−1, 1] : bounded gap
u = Cc*xc + Dc*yc; u ∈ R : action to be performed
xc = Ac*xc + Bc*yc;
send(u,1);
receive(y,2);
receive(yd,2);

end
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From real to floats Example of linear invariant system

Lyapunov stability
Lyapunov stability: all reachable states xc start near an equilibrium point
xe and stay in a neighborhood V of xe forever.

V found solving a Lyapunov equation. On linear systems, V is generally
an ellipsoid.

Here, show that xc =

(
xc1
xc2

)
belongs to the ellipse:

EP = {x ∈ R2 | xT · P · x ≤ 1}, P = 10−3
(
0, 6742 0, 0428
0, 0428 2, 4651

)
.

xc ∈ EP ⇐⇒ 0.6742x2
c1 + 0.0856xc1xc2 + 2.4651x2

c2 ≤ 1000.
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From real to floats Example of linear invariant system

Stability proof
xc = zeros(2,1);
xc ∈ EP
receive(y,2); receive(yd,2);
xc ∈ EP
while 1

xc ∈ EP
yc = max(min(y - yd,1),-1);
xc ∈ EP , y2

c ≤ 1(
xc
yc

)
∈ EQµ | Qµ =

(
µP 02×1
01×2 1− µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

send(u,1);
xc ∈ EP̃
receive(y,2);
xc ∈ EP̃
receive(yd,2);
xc ∈ EP̃
xc ∈ EP

end

Proof given as code
invariants

Implication (weakening) if
two consecutive invariants.

Trivial, or easy to check
with matrix computations.

Last implication closes the
loop. Its validity relies on
parameters Ac , Bc , Cc , Dc ,
µ: numerical verification
needed.
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From real to floats Example of linear invariant system

Digression: with C instructions

High level mathematical operations ; series of scalar elementary
instructions.
Here, matrix operations are expanded: the instruction(

xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

becomes:(
xc
yc

)
∈ EQµ

xb[0] = xc[0]; xb: buffer
xb[1] = xc[1];
xc[0] = Ac[0][0]*xb[0]+Ac[0][1]*xb[1]+yc;
xc[1] = Ac[1][0]*xb[0]+Ac[1][1]*xb[1];
???

Same computation: output invariant can be found [Feron].
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From real to floats Numerical precision problems

Numerical precision problems

To produce C code: real numbers ; binary finite-length machine words
(32 b. or 64 b.).

⇒ Loss in accuracy, two consequences:
1 Constant values are slightly altered.
2 Rounding errors during computations.
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From real to floats Machine representation of real numbers

Machine representation of real numbers
1 Floating point: IEEE 754.

Not usual on microcontrollers.

number = sign× 2exponent+cst. offset × fraction

Correct rounding for base operations: +, -, *, /.
⇒ If [bounds on] operands are known, not special, far enough from
extremal values, then rounding error is bounded for +, -, * (not /).

2 Fixed point.
If operands are not special, far enough from extremal values, then
rounding error is bounded for +, -, *.

3 Two integers.
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From real to floats Machine representation of real numbers

Machine representation of real numbers
1 Floating point.
2 Fixed point.
3 Two integers. Rational representation: numerator, denominator.

• Base behavior: +, -, *, / follow rational definition + fraction
simplification:

p1
q1

+
p2
q2

= simpl
(

p1q2 + p2q1
q1q2

)
, etc.

No rounding error.
Problem: numerator value can easily exceed integer bounds.

• Approximated behavior to ensure bounded numerator.
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From real to floats Alteration of constants

Alteration of constants

With IEEE 754, 32 bits, constants
Ac = [0.4990, -0.0500; 0.0100, 1.0000];
Bc = [1;0];
Cc = [564.48, 0];
Dc = -1280;

become
Ac ≈ [0.49900001287460327 , -0.05000000074505806;

0.009999999776482582, 1.0000];
Bc ≈ [1;0];
Cc ≈ [564.47998046875, 0];
Dc ≈ -1280;
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From real to floats Alteration of constants

Effect on proof
xc = zeros(2,1);
xc ∈ EP
receive(y,2); receive(yd,2);
xc ∈ EP
while 1

xc ∈ EP
yc = max(min(y - yd,1),-1);
xc ∈ EP , y2

c ≤ 1(
xc
yc

)
∈ EQµ | Qµ =

(
µP 02×1
01×2 1− µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

send(u,1);
xc ∈ EP̃
receive(y,2);
xc ∈ EP̃
receive(yd,2);
xc ∈ EP̃
xc ∈ EP

end

Rest of the code and proof
sketch unchanged.

P̃ depends on Ac , Bc , Cc ,
Dc , is altered.

⇒ Last implication to be
checked, might be wrong.
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From real to floats Rounding errors

Rounding errors

With real numbers, the implication(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

holds.

With floats, + and * introduce rounding errors.

As xc , yc belong to an ellipsoid, they are bounded so the rounding error on
xc can be bounded by (e1, e2).

Vivien Maisonneuve From Reals to Floats November 20, 2012 18 / 27



From real to floats Rounding errors

Super-ellipsoid
Let ER̃ ⊃ EP̃ an ellipse s.t.
∀xc ∈ EP̃ , ∀x

′
c ∈ R2, |x ′c1 − xc1 | ≤ e1 ∧ |x ′c2 − xc2 | ≤ e2 =⇒ x ′c ∈ ER̃ (∗)

Then:(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;
xc ∈ ER̃

ER̃ can be the smallest magnification of EP̃ s.t. (∗)
holds.

Can be computed, whatever number of dimensions.
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From real to floats Rounding errors

Effect on proof
xc = zeros(2,1);
xc ∈ EP
receive(y,2); receive(yd,2);
xc ∈ EP
while 1

xc ∈ EP
yc = max(min(y - yd,1),-1);
xc ∈ EP , y2

c ≤ 1(
xc
yc

)
∈ EQµ | Qµ =

(
µP 02×1
01×2 1− µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;
xc ∈ ER̃
send(u,1);
xc ∈ ER̃
receive(y,2);
xc ∈ ER̃
receive(yd,2);
xc ∈ ER̃
xc ∈ EP

end

Replace EP̃ by ER̃ in proof
sketch.

Last implication to be
checked, might be wrong.

Here it works: system stable
with floats.
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From real to floats Other systems

Other functions

Elementary operations +, * are sufficient for linear, invariant systems.
The method applies if the proof sketch fits: no tight assumptions, complex
operations on weakened invariants.

1-var, differentiable, periodic functions can be computed
• with an abacus and a polyhedral interpolation function
• wth a polyhedral approximation

with a boounded error (sin, cos).

Idem for 1-var, differentiable functions restricted to a finite range. OK if
proof ensures the operand is bounded to the range.
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Produced C code analysis

Proof checking on C code

model pseudocode C code µC code

Transformations from pseudocode to C code are not equivalences.
⇒ The transposed proof sketch on C code might be false.
⇒ Check the C code invariants with an analyzer.

Attempt with PIPS.
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Produced C code analysis Code aspect

Interrupt handlers
SIGNAL (SIG_INPUT_CAPTURE3)
{

...
}
SIGNAL (SIG_SPI)
{

...
}
...
int main()
{

initialize();
enable_interrupts();
while (1)
{

switch (state)
{

...
}

}
return 0;

}

Specific aspect of the code with interrupt
handler: initialization followed by main loop,
that can be interrupted at any time by
signals.

Problem: structures with parallel loops
difficult to analyze.
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Produced C code analysis Polyhedral analysis

Polyhedral analysis

PIPS performs polyhedral analysis:
invariants = system of (in)equalities on the program variables
(polyhedron). Good balance accuracy/complexity.

Usually, iterative approach: direct invariant propagation on control points,
widening on cycles [Cousot-Halbwachs].

PIPS approach:
1 Abstract each instruction by a transfer relation (transformer), bottom

to top. Links values before and after the instruction.

x += y; ; {x ′ = x + y ∧ y ′ = y}

2 Invariant propagation on control points, using transformers.
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Produced C code analysis Problem of parallel loops

Problem of parallel loops
When confronted to the code
while (rand()) {

if (rand()) {c1}
else {c2}

}

PIPS computes transformers T1,T2 associated to codes c1, c2,
then T = T1 t T2 the tranformer of the whole loop body,
then T ∗ the transformer corresponding to the loop.

T1

T2

;

T

;
T ∗

Problem: loss in accuracy with t and ∗, amplified when combined.
Too imprecise for many systems.
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Produced C code analysis Resolution approaches

Different approaches
1 Refine transformers with invariants.

Usual analysis with transformers then invariants.
Then, restrict every transformer with its entry point invariant.
Recompute invariants with new transformers.

Does not converge in general.
Rarely suited.

2 Delay convex hull.
3 Restructure the program.
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Produced C code analysis Resolution approaches

Different approaches
1 Refine transformers with invariants.
2 Delay convex hull.

Do not directly compute T = T1 t T2, then T ∗.
Instead, keep track of the list [T1,T2] of involved transformers.
Later, to propagate invariant P, do not compute

P ′ = T ∗(P)

but instead:
P ′ = Comb({T1,T2},P)

with

Comb({T1,T2},P) = P tT1(P)tT2(P)tT1 ◦T2(P)tT2 ◦T1(P)

t T1
+(P) t T2

+(P) t T1
+ ◦ T2 ◦ T ∗(P) t T2

+ ◦ T1 ◦ T ∗(P)

3 Restructure the program.
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Produced C code analysis Resolution approaches

Different approaches
1 Refine transformers with invariants.
2 Delay convex hull.
3 Restructure the program.

Transform into an equivalent program, easier to analyze.
Idea: limit number of parallel loops by splitting control points
according to loop guards.

x ≥ 0? x++

x ≤ 0? x--

;

x > 0

x = 0

x < 0

x++

x--

x++

x--

Crucial point: choice of splitting partition. Manual or guided by a
heuristic.
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Produced C code analysis Resolution approaches

Different approaches
1 Refine transformers with invariants.
2 Delay convex hull.
3 Restructure the program.

Best results: on 73 test cases,
28→ 63 with PIPS, 47→ 70 with ASPIC [Gonnord].
Equivalence certified with Coq.
[NSAD’11].

Different approaches can be used simultaneously.
Work in progress.
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Produced C code analysis Resolution approaches
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