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Abstract—Dynamic Voltage and Frequency Scaling (DVFS)
schemes have shown to be effective in reducing the energy
requirements of hand held devices such as smartphones. Current
system-wide DVFS schemes act upon statistics of historical
performance measures. As a result these schemes react after
certain events have manifested. Being proactive to these events
may yield more energy and performance gains. We propose a
DVFS scheme that bases its decisions on the human interaction
with the device. The advantage of such approach is that the
system’s reactivity is following the computational load on the
system better and energy is used more effectively. Our simulations
show that such an interactive DVFS scheme is most effective for
applications that incur low computational load on the system and
interact with user often.

I. INTRODUCTION

The quest for energy optimization in ubiquitous computing
is a daunting task. Many optimization techniques originate
in the area of High Performance Computing (HPC) and are
adapted to function on hand held devices. Moreover, many
techniques are (1) application specific and (2) hardware depen-
dent. These two properties are contradictory to the ubiquitous-
ness of today’s computing. Hand held devices, for example
smartphones and tablets, run on a variety of platforms and
run a plethora of applications. Optimization techniques for
such devices require to handle bursty performance demands
in contrast with HPC systems. Also, most system-wide en-
ergy optimization techniques, which are implemented in the
Operating System (OS), are based on statistical performance
measures. These measures need to be collected before they
can be analyzed by the energy-aware decision algorithm. As
a result there is a time-lag between an event and the reaction
to the event by an energy optimization scheme. In such cases
valuable time may be lost to react upon changing operation
conditions. A proactive decision scheme would allow the
system to be more swift in dynamic energy optimization,
and could tentatively also be more adequate in delivering
performance when needed.

II. HUMAN INTERACTION BASED DVFS SCHEME

We propose a Central Processing Unit (CPU) DVFS scheme
for applications that instigates bursty human interaction, e.g,
card games, email, web browsing etc. Such applications are
idle most of the time and are expected to perform short com-
putations when the user interacts (briefly) with the device. The
device must be responsive not to harm the user’s experience
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Fig. 1: DVFS transition latency (µs) between CPU frequencies
of a Linux powered Samsung Galaxy S2.

while maximizing the idle period of the CPU. Figure 1 shows
the transition latency for switching from one CPU frequency
to another between 200 MHz to 1.6 GHz of a Linux powered
Samsung Galaxy S2. The maximum transition latency shown
in Figure 1 is around 3.6 ms. The Galaxy S2 by default
only transits between 200 MHz and 1.2 GHz, which have a
delay of 2.9 ms for gearing up and 1.3 ms for gearing down.
It is important to maintain a real-time stimulus-response in
order not to affect the user perception. In professional vehicle
simulators this threshold is often assumed not to surpass
the 50 ms threshold [1]. Even though this maximum value
is pessimistic compared to other DVFS measurements, e.g.,
Freeh et al. [2], frequently changing between CPU frequencies
will most likely go unnoticed by the user.

We put forward a DVFS scheme for hand held devices that
speeds up when the user interacts with the device and returns
to idle when system is not doing any computations related to
the foreground applications. This is in contrast with statistical
performance based DVFS that will only speed up when the
system is loaded for a given timespan and will return to idle
when no CPU activity is sensed for a given timespan. The pro-
posed interactive DVFS scheme is anticipated to react faster to



human interaction and would provide ondemand performance
where the conventional DVFS scheme would lag in time. For
the default power management policy of our Galaxy S2, named
ondemand, the time lag is about 400 ms [3].

In a simplified modeling of reality the timespan of the
bursty computation is bounded by (1) the interaction of the user
with the device, e.g., a finger touch on the screen, and (2) the
end of the computation induced by that user interaction. Our
interactive DVFS scheme would gear up during the timespan
of said bursty computation. The conventional DVFS scheme
would gear up if the CPU is loaded for a given timespan and
gear down if it is idle for that a timespan.

We have also shown that the energy/frequency curve of a
piece of code may show convex behavior [4]. Measurements
pointed out that the CPU intensive benchmark is most energy
efficient around 700 MHz. The Galaxy CPU is clocked at
1.2 GHz by default, this implies that running at 700 MHz
increases the computation time by 40 %. This time/energy
trade-off may be used in the case where the trade-off is
justified.

III. SIMULATION SETTINGS

We wrote a simulation program in C++ to analyze the
trade-off between our human interactive DVFS scheme and
the conventional DVFS scheme. We assume that the arrival
time of user interaction with a hand held device occurs
following a Poisson process with mean λa and the triggered
CPU computation service time is exponentially distributed
with mean λs. If the computation following a human in-
teraction is not finished when the next interaction arrives,
the computation is queued for processing. The used energy
and performance statistics are based on measurements of
the Gold-Rader bit-reversal algorithm [4], which is part of
the pertinent Fast Fourier Transformation (FFT) algorithm.
The conventional DVFS schemes gears between 200 MHz
and 1.2 GHz (following the Galaxy S2) and our interactive
DVFS scheme gears between 200 MHz and 700 MHz. The bit-
reversal algorithm drains 0.100 W, 0.529 W, 1.548 W while
computing at 200 MHz, 700 MHz, and 1.2 GHZ respectively.
The smartphone’s CPU consumes 0.053 W and 0.674 W, when
it is idle at 200 MHz and 1.2 GHz respectively.

IV. PERFORMANCE STUDY

Figure 2 shows the energy gains relative to the conventional
DVFS scheme for different λs and λa. Values below 1 indi-
cate that the interactive DVFS scheme consumes less energy
compared to the conventional scheme. It can be seen that this
is the case for inter-arrival times lower than 4 s and service
times between 1 s and 5 s. Figure 4 shows the average dead-line
delay of the two DVFSs schemes for different λs and λa. The
dead-line delay is defined as the time between the completion
of a computation compared to the theoretical completion if
the whole system would be available at 1.2 GHz. Values
below 1 indicate that the interactive DVFS scheme completes
its computational load faster compared to the conventional
scheme. It can be seen that for service times below 0.07 s
the interactive scheme is most efficient. Small service-times
implies short computations.
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Fig. 3: Energy consumption ratio between the interactive and
the conventional DVFS scheme (lower is better).
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Fig. 4: Performance ratio between the interactive and the
conventional DVFS scheme (lower is better).

Both the energy and performance ratio is in favor for
the interactive DVFS scheme where the inter-arrival time is
between 250 ms and 1250 ms and the computational load is
in between 20 ms to 70 ms at 1.2 GHz. This implies that the
interactive DVFS scheme performs best for applications where
the interaction with the user happens fairly often, in the order
of seconds, and where the CPU is lightly loaded. Examples
of such applications are card games, log applications, social
media applications, image editors etc.

V. CONCLUSION

We have motivated an interactive DVFS scheme that is
adapted to the use on hand held devices. Hand held devices
perform usually low computational tasks and are bound by the
user interaction. A tailored DVFS scheme that is application
aware and proactive to user events could therefore optimize
the energy consumption of the hand held device.
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Fig. 2: Energy per array element required by the CPU at 37◦C to complete the Gold-Rader bit-reversal algorithm given an input
size. The dotted lines denote the theoretical model proposed by the authors [4].

We presented the comparison energy and performance
differences between the interactive DVFS scheme and a con-
ventional DVFS scheme based on simulation results. It was
shown that the interactive DVFS outperforms that conventional
scheme both for energy and performance in the case where the
user interaction with the device is in the order seconds and the
computational load is low.
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