

1 The Hopping_Matrix function
Quantum chromodynamics (QCD) [1] is the theory of the strong nuclear force, which is responsible for
attracting quarks together to form the nucleons. QCD can be numerically simulated using lattice gauge
theory (LQCD) which is formulated on a four dimensional lattice. During LQCD simulation as much as
80% [2] of the time is spent to compute the inversion of the Dirac Operator. It is performed using
iterative methods such as Generalized Conjugate Residual or Conjugate Residual. Each iteration
consists of computing the Dirac Operator through so-called Hopping_Matrix function.

1.1 Dirac Operator
The input data for the Hopping_Matrix function is a
four dimensional lattice of size (LT , LX , LY , LZ) ,
with periodic boundary condition. Number of
elements is defined as VOLUME=LT⋅LX⋅LY⋅LZ .
Each vertex of the lattice is a spinor, each edge
between two adjacent vertices is a su3 matrix.

A Dirac Operator calculation involves accessing all
lattice sites. A calculation on a given site

X∈ℕ4 : X=[t , x , y , z] involves memory
accesses to all adjacent spinors and all su3 matrices
that are on the edges coming out from the X node.
The result is obtained by basic linear algebra
operations on the data. The Wilson-Dirac operator
can be schematised by Formula 1 [2]. The symbols
used in the Formula 1 are explained in Table 1.
Values of Dirac gamma matrices are given by:

γ0=(0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0

) γ1=(0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

)
γ2=(0 0 0 −1

0 0 1 0
0 1 0 0

−1 0 0 0
) γ3=(0 0 −i 0

0 0 0 i
i 0 0 0
0 i 0 0

) γ4=(1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
Formula 1

1.2 Data structures
The Table 2 illustrates how Formula 1 variables are represented in C programming language.

1

Formula symbol Meaning
U x, μ 3x3 complex matrix (su3

matrix)
 A 12 x 12 complex matrix

ψ(x) 12 components complex
vector (spinor)

I 4 Identity matrix of order 4
γμ 4 x 4 Dirac gamma matrices
μ̂ μth vector of canonical

basis i.e. 0̂=(0,0,0,1) ,
…, 3̂=(1,0,0,0)

Table 1: The list of symbols used in Formula 1.

D ψ(X)=A ψ(X)−1
2∑μ=0

3

{[(I 4−γμ)×U X ,μ]ψ(X+μ̂)+[(I 4−γμ)×U X−μ̂ ,μ] ψ(X−μ̂)}

Data type declaration Size [B]
typedef struct {
 double re,im;
} complex;

2 x sizeof(double) = 2 x 8 = 16B

typedef struct {
 complex c00,c01,c02,c10,c11,c12,c20,c21,c22;
} su3;

9 x sizeof(complex) = 9 x 16 = 144B

typedef struct {
 complex c0,c1,c2;
} su3_vector;

3 x sizeof(complex) = 3 x 16B = 48B

typedef struct {
 su3_vector s0,s1,s2,s3;
} spinor;

4 x sizeof(su3_vectors) = 4 x 48B =
192B

Table 2 Data structures used in the Hopping-matrix function (C programming language).

1.3 Memory requirements
The memory requirements can be easily calculated. For each
vertex of a lattice one spinor is defined, so there is VOLUME
of spinors. The number of spinors is doubled by the output
array. For each pair of neighboring nodes there is one su3
matrix. Each node has 8 neighbors (left and right in each of the

four directions), so there is
8⋅VOLUME

2
=4⋅VOLUME

(Since each edge was counted twice the total number has to be
divided by two). Total memory is

2⋅sizeof (spinor)⋅VOLUME+sizeof (su3)⋅4 VOLUME .

1.4 Optimization
Ways of optimization will be presented for both single and multi-core processors.

1.4.1 Single core processor
The main algorithm, which consists of a single loop iterating over all lattice sites, has already been
highly optimized. However, it is also possible to decrease the number of accesses to the memory and
increase processor cache usage by means of reordering the computations or changing the data layout.

2

Lattice size Memory usage [GB]

32⋅163 0.1 GB

64⋅323 2.0 GB

128⋅643 32.2 GB

256⋅1283 515.3 GB

Table 3: Memory requirements for
typical lattice sizes.

1.4.2 Multi-core processor
Ways of improvement for a single core processor are also applicable for multi-core processor, because
the calculations on a single core is just a Dirac operator restricted to a sublattice. The new challenge
which comes with the multithreaded computing is limited memory bandwidth.

1.5 The limit for memory access optimization
Estimation of the limit of memory accesses is essential for determining how much we could improve
only by optimizing memory accesses. It is useful for evaluation of algorithms, because it provides the
information if it makes sense to search for an optimization even further.

1.5.1 L1, L2 Cache misses
According to Hill [3] there are three types of a read cache misses.

• Compulsory read cache misses.

• Capacity read cache misses.

• Conflict misses.

Table 4 presents details of the classification.

3

Fundamental reason for occurrence
First access to data Limited cache size

Compulsory read cache miss
• Occurs at first access to

data.
• Cannot be eliminated.
• The number of

compulsory cache misses
is a lower bound for all
memory accesses to data.

Capacity read cache miss
• The data in the cache

needs to be evicted to
make room for the new
data, because there is not
enough space in the
cache.

• Would not occur for a
bigger cache.

Conflict miss
• The cache size smaller

than the memory space
enforces using a non-
injective function to
translate memory address
into cache address.

• Results from an
algorithm translating two
different memory
addresses into the same
cache address.

Table 4: Cache miss classification.
As mentioned in the Table 4, number of compulsory cache misses is a lower bound for reading the data
from the memory. Table 5 shows how many structures of a given type need to be read from the memory
in the main loop of Hopping_Matrix function.

Data type Number of objects Size of a single object [B]
su3 4 * VOLUME 144
spinor VOLUME 192

Table 5: Number of objects read in the Hopping_Matrix function.

1.5.2 32 x 163 problem size
As specified in the paragraph 1.1, number of elements in a four dimensional lattice of size
(LT , LX , LY , LZ) is defined as VOLUME=LT⋅LX⋅LY⋅LZ . For the (32,16,16,16) lattice the

4

Illustration 1: The cache has not
enough free space to store the
memory block.

Illustration 2: Two memory
locations are mapped to a single
cache line.

VOLUME=32⋅163=131072 . The number of compulsory read cache misses can be estimated as the
total size of data to be processed divided by cache line size. For a 64B cache line there is 1 572 864
L1,L2 compulsory read cache misses (sum of compulsory read cache misses for su3 matrices and
spinors).

Data structure name Compulsory cache misses Total size of data structure [B]
su3 1 179 648 75 497 472
spinor 393 216 25 165 824

Table 6: Number of compulsory cache misses for the 32x163 problem size.

1.5.3 32 x 163 even-odd preconditioning
Even-odd preconditioning is presented in detail in the paragraph 4.2. The main idea is to split the
domain into two halves (even and odd lattice nodes), so that the computations for both halves are
independent from each other. Below the analysis for only one half is presented.

Despite the fact that only half of the problem (even or odd nodes) is being solved at a time, there is a
need to process all su3 matrices data. This is because no two adjacent nodes are present in the same
(even or odd) set. For a 64B cache line, half of the spinors and all su3 matrices are accessed, which
totals in 1 376 256 L1, L2 compulsory read cache misses (sum of compulsory cache misses for su3
matrices and spinors).

2 Hardware
In this chapter the relevant hardware components will be described and their impact on performance of
the computation will be analyzed.

2.1 Processor
Table below presents basic information concerning processors being used for performance
measurements.

Machine name Machine 1 Machine 2 Machine 3

Processor name Intel Core 2 E8600 Intel Core 2 E8400 pre-launch Intel Ivy
Bridge

CPU frequency 3,3 GHz 3 GHz 2.2 GHz

Operating system Ubuntu 11.10 64bit Ubuntu 11.10 32bit RHEL 6

Cache line size 64B

L1 cache size 32KB for data per core

32KB for instruction per core

L1 Associativity 8-way associative

5

L2 cache 6MB for both data and instruction shared between 2
cores

256KB

L2 Associativity 24-way associative

L3 cache - 8MB

Number of cores 2 4

Hyper threading Enabled Enabled

2.1.1 Cache design
The cache is constructed of cache line size slots. As mentioned in paragraph 1.5.1 a memory location
α needs to be translated to a cache address: slot number and an offset from the beginning of the

slot. The following sections will show three algorithm to do the translation. Throughout this section
following notation is used: Α is the binary representation of α , p is the number of bits needed to
enumerate all bytes in a cache line (for a 64B cache line, p = log2(64) = 6).

Fully associative cache
Α is split into two parts: offset Α[0 : p−1] and tag Α[p :end] . The algorithm of translating
Α into a cache address depends on the cache state and eviction policies. If the cache has some empty

slots, one of them is used to store the entry. If the cache is full, a cache line is evicted based on eviction
policy then the entry is loaded. The offset and the tag are recorded in a lookup table. To find the entry
in the cache, all slots need to be checked for a matching tag, which is the biggest disadvantage of the
cache design, due to difficulty of implementing it efficiently in hardware [4].

Direct-mapped cache
Α is split into three parts: offset Α[0 : p−1] , slot Α[p : p+k−1] , tag Α[p+k : end] , where

k is the number of bits needed to enumerate all cache slots. The slot is directly chosen based on the slot
part of the Α address representation. The disadvantage of the cache design is a higher conflict rate
[4], because cache eviction may occur when the cache has some empty slots.

N-way associative cache
N-way associative cache is a compromise between a direct-mapped cache and a fully associative cache.
Both are not common in modern architectures, the former because of the high conflict rates, the latter
because of the difficult implementation in the hardware. It is called a hybrid because it mixes the two
approaches. The cache set is chosen in a direct way (bits extracted from the memory address), however,
each cache set is a full associative.
Α is split into three parts: offset Α[0 : p−1] , set Α[p : p+q−1] , tag Α[p+q :end] , where

q is the number of bits needed to enumerate all cache sets. The set chunk of an address Α is used to
directly address the cache set.

L1 data cache consists of
32KB
8⋅64B

=64 sets.

6

L2 data cache consists of
6 MB

24⋅64B
=4096 sets.

2.2 Memory read latency
L1 data cache read latency differs from processor
to processor. The values presented in Table 7 are
not precise for Intel Core 2 E8600, they are
supposed to give an order of magnitude of the
real value.

3 Current Hopping_Matrix implementation
The current Hopping_Matrix implementation already consists of multiple optimizations. In the
following chapter they will be briefly described. The version is refereed in the whole document as the
reference version.

3.1 Memory alignment
The data is stored in dynamically allocated arrays. Memory location of each array is shifted, so that it
starts at the address which is a multiple of the cache line size. Such alignment minimize the number of
memory accesses (cache line loads).

7

Type of memory Number of clock cycles
L1 cache 3 - [5], paragraph 2.2.5.1 [8]
L2 cache 10 - [7]

14 - [6]
15 - paragraph 2.2.5.1 [8]

RAM memory 200 - [6]

Table 7 Memory access cost (in clock cycles).

Illustration 3: An example transaction of memory addresses form the main memory to the cache
memory for the Direct Mapped Cache and the 2-Way Associative Cache. Source: Wikipedia.

3.2 Tiling
Tiling is a method of splitting the space into smaller parts in order to increase the locality of
computations, which results in increasing the cache hit rate. Tiling was implemented to produce four
dimensional cubes of size 24 ,44 ,84 ,164 , however, no improvement was achieved (There was a
significant L2 cache miss rate increase). Following paragraphs explain the reasons for lack of
improvement.

3.2.1 Tiling memory requirements
A tile (lattice fragment) size N in a discrete K dimensional
space consist of V=N K nodes. Each node can be represented
as a K element vector of the space coordinates
Α=(α0, ...αK),α i∈0 ... K∈{0,…, N−1 } . If the coordinate
α i∈0 ... K=0 or α i∈0 ... K=N−1 this means the node is at the

tile frontier, so there is a need to access a node from a different
tile. The total number of elements accessed outside the tile is
equal to the total number of α i=0 or α i=N−1 in the
Α=(α0, ...αK),α i∈0 ... K=(0,…, N−1) representation of all tile

nodes. Since each tile dimension is the same size N, every value
of α i is equally frequent in the
Α=(α0, ...αK),α i∈0 ... K=(0,…, N−1) representation of all tile

nodes, so α i∈0 ... K=k , k=0 ... N−1 occurs
K⋅V

N
=K⋅N 4

N
=K⋅N 3 times. Finally, the total number of

elements accessed outside the tile is equal to O=2⋅K⋅N3 ,
because we count both α i=0 and α i=N−1 .

3.2.2 32 x 163 lattice
With even-odd preconditioning only one part “even” or “odd” is considered, so the K=4 dimensional
space consists of V = M4 = 164 nodes instead of VOLUME = 32 * 163 = 2 * 164. Each tile consists of S
= N4 nodes, N <= M. Number of elements that need to be accessed from the outside of the tile, to
enable computations at the tile frontiers, is equal to O=2⋅K⋅N3=8⋅N3 . The space is split into V/S
number of tiles.

It is assumed that each tile calculation is independent from each other and the L2 cache is cleared after
each tile calculation. Total size in bytes of the tile and the outside spinors is equal to TS =
(S+O)*sizeof(spinor) = (S+O)*192 [B]. It is also assumed that the tile with the outside nodes fit the L2
cache. Based on this assumption, the theoretical L2 data cache miss rate (TDLmr) is calculated. TL2mr
is the sum of L2 cache misses during calculation of each tile and is equal to TDLmr = V/S * (S + O) *
3 (cache lines per spinor) + 1 179 648 (su3 obligatory cache misses).

The DLmr value presents the L2 miss rate obtained during experiments using Cachegrind software.
The exact values of the parameters described in this paragraph, for a 32x163 problem are presented in
Table 8.

8

Example: N = 4, K = 2, V = NK =
16. The grid below depicts A
representation of all tile nodes. The
border indices are marked in bold.

a0\a1 0 1 2 3 … M-1
0 00 01 02 03
1 10 11 12 13
2 20 21 22 23
3 30 31 32 33
… …
M-1

N S O V/S TS [B] TDLmr DLmr
2 16 64 4096 15 360 2 162 688 1 636 593
4 256 512 256 147 456 1 769 472 1 580 335
8 4096 4096 16 1 572 864 1 572 864 1 591 244

16 65536 0
(since N=M)

1 12 582 912 1 376 256 1 470 770

Table 8: Example for the 32x163 problem, presenting values described in the paragraph 3.2.2.

3.2.3 32 x 163 lattice conclusions
The theoretical analysis well reflects experiment only for the N = 8. For the values N=2 and N=4 the
assumption that the content of L2 cache is evicted after each tile calculation doesn't hold, because L2
cache size (6MB) is many time greater than TS value, so there is no need for evictions and some data
are reused. However, for N=16 there is an opposite situation, the L2 cache is not capable of holding
that much of data. The conclusion can be drawn that the size of the outside spionors to the size of the

tile ratio O
S

=8⋅N 3

N 4 = 8
N , with a L2 cache size 6MB is too high (for small values of N) to be

efficient. However, bigger values of N requires a sufficiently large cache size, which are not yet
supported by the hardware. This is why Hopping-matrix function does not benefit from tiling.

3.3 Su3 matrices double allocation
Each su3 matrix is used twice in the Hopping_Matrix function
because of the symmetry of the interactions between the
adjacent lattice nodes. For convenience of indexing and speed
of access each su3 matrix is stored twice in the order of the
sites accesses. Note that this causes two fold memory
overhead. Indexing u[t+1,x,y,z],u[t-1,x,y,z],...,u[t,x,y,z-1],
which required substantial displacements in the memory was
replaced with continuous indexing: u'[t,x,y,z][0], … ,
u'[t,x,y,z][7] which store eight accessed su3 matrices in a
continuous array block.

9

Illustration 4: The symmetry of
interactions (su3) between lattice nodes
(spinors).

Illustration 5: Replacement of row-major order indexing of su3 matrices with continuous
indexing. For each spinor all 8 adjacent su3 matrices are stored in a continuous memory
block.

3.4 Other optimizations
Optimization Description
Even-odd preconditioning paragraph 4.2.
Neighbor indexing paragraph 4.3.1.

3.5 Multi-core optimization
The reference version can be executed on a multi-core environment. The domain is split into two parts
(even and odd), then for each part main loop of Hopping-Matrix function is shared between the cores in
an OpenMp style. It is important to choose the right granularity of parallel loops. For example
execution of one iteration per thread interchangeably leads to inefficient L1 cache usage.

4 Neighbor spinors access
As mentioned in paragraphs 1.1, 1.3 each iteration of the Hopping_Matrix function consists of basic
linear algebra operations on adjacent spinors. In order to access neighbor spinor its array index needs to
be obtained. In this chapter methods of calculating indices of adjacent spinors will be discussed.

4.1 Data structure
The four dimensional lattice of spinors is stored in the memory as a one
dimensional array. The layout of data is identical as if it was stored in a four
dimensional array with row-major order.

Example: 2x2x2 lattice, row major order, layout in the memory.

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

10

Illustration 6:
Visualization of the
2x2x2 lattice.

4.2 Even-odd preconditioning
A node in N-dimensional space is considered even if the sum of all N coordinates is an even number.
Analogously, a node in N-dimensional space is considered odd if the sum of all N coordinates is an odd
number. An important property of the even-odd preconditioning is if X is an odd node, then all its
neighbors are even and vice-versa. Such an approach has two advantages. Firstly it improves data
locality, which may lead to better processor cache performance. Secondly both arrays can be processed
in parallel because of no spinor data dependence. The two sets are called “even” and “odd”. The
drawback of the method is an inability to reuse the su3 matrices stored in the cache. For odd (and even)
nodes each su3 matrix is accessed only once.

Example: 2x2x2 lattice, row major order, data layout of “even” and “odd” matrices.

“Even” nodes

(0,0,0) (0,1,1) (1,0,1) (1,1,0)

“Odd” nodes

(0,0,1) (0,1,0) (1,0,0) (1,1,1)

4.3 Accessing neighbor nodes
There are two ways of accessing neighbor spinors. The first approach is to precompute indices and
store them in an array, which doesn't require additional clock cycles for computations during execution
of the Hopping-matrix function, but requires an additional memory storage and cache activity. The
second is to compute the index on the fly each time it is needed, which doesn't require additional
memory storage, but has a computation overhead.

4.3.1 Memory based access
Two arrays of indices are precomputed: iup – containing indices of nodes X(t+1,x,y,z), X(t,x+1,y,z),
X(t,x,y+1,z), X(t,x,y,z+1) and idn – containing indices of nodes X(t-1,x,y,z), X(t,x-1,y,z), X(t,x,y-1,z),
X(t,x,y,z-1).

4.3.2 Computation based access
The task of translation lattice indexing into lexicographical is performed using Formula 2.

Formula 2: lattice2lexic function.
,

11

lattice2lexic (t , x , y , z)=z+Lz⋅y+Lz⋅Ly⋅x+Lz⋅Ly⋅Lx⋅t

For a 32x163 problem size the Lz, Ly, Lx values are all powers of 2, which can simplify the
computations by introducing shift operations. The products LZ⋅y , LZ⋅LY⋅x , LZ⋅LY⋅LX⋅t are
replaced with shift operations that means respectively y << log(LZ), x << (log(LZ)+log(LY)), and t <<
(log(LZ)+log(LY)+log(LX)). The pseudo-code of the lattice2lexic function is presented in Listing 1.

lattice2lexic(int t, int x, int y, int z)
return ((t << 12) + (x << 8) + (y << 4) + z)/2;

Listing 1: lattice2lexic function for 32x163 problem size (log(LZ)=log(LY)=log(LX)=4).
For a node X(t,x,y,z) eight neighbors are accessed, the way to access them using lattice2lexic function is
presented in the Table 1. Components such as (t+1)%LT or (t-1+LT)%LT in the lattice2lexix function
calls enable satisfying the periodic boundary condition.

Neighbor indices The index in the spinors array
X(t+1,x,y,z) lattice2lexic((t+1)%LT,x,y,z)

X(t-1,x,y,z) lattice2lexic((t-1+LT)%LT,x,y,z)

…

X(t,x,y,z+1) lattice2lexic(t,x,y,(z+1)%LZ)

X(t,x,y,z-1) lattice2lexic(t,x,y,(z-1+LZ)%LZ)

Table 9: Neighbor indices and the way to access them using lattice2lexic function.

4.3.3 Binary operations based access
In the binary operations based access the need to create t, x, y, z variables is eliminated. The variables
are represented by a single variable icx as a concatenation of t, x, y, z binary representations. This is
only possible when Lz, Ly, Lx values are all powers of 2. Each inner variable is accessed by binary
product of the icx variable and a precomputed mask. The rest of the algorithm remains similar to 4.3.2,
with the respect to division by two, which was eliminated.

4.4 Even-odd lattice traversal methods
As described in the paragraph 4.3.2 the method to access neighbor spinors needs t, x, y, z variables,
methods described in 4.3.1 and 4.3.3 do not. The t, x, y, z variables are needed for fast and easy
calculation of neighbors. The variable icx is the current spinor index and can be used to access current
spinor neighbors through looking up indices in the iup, idn arrays. Since methods of iterating through
“even” or “odd” nodes are equivalent, following paragraphs iterating “odd” will be presented.

Because of the permutation optimization (paragraph 5) the icx variable is obtained from a loop array,
which maps current loop index to the current spinor index (icx = loop[i]). This array of indices can be
used to influence the loop scheduling.

12

4.4.1 Lexicographical approach
The simplest method is to access subsequent spinors as they are stored in the memory and use icx index
variable and iup, idn integer arrays to access neighbors indices. This method does not involve
calculation of t, x, y, z variables, so it cannot be used with computation based access (described in
4.3.2).

for i = 0:VOLUME/2
 icx = loop[i]
 [function body]
Listing 2: The Lexicographical approach.

4.4.2 Naive approach
Approach presented in the Listing 3 explicitly implements the concept of accessing “even” nodes.
Despite its clarity, it involves huge computational overhead because of unnecessary operations (t,x,y,z

variables incrementation executed in total VOLUME instead of
VOLUME

2 times) and the if

statement executed VOLUME times.

for t=0:LT
 for x=0:LX
 for y=0:LY
 for z=0:LX
 if (t+x+y+z)%2 == 0
 icx++;
 [function body]
Listing 3: The naive approach.

4.4.3 Improved approach
Both disadvantages of previous implementation were eliminated due to a trick with the z variable
initialization and incrementation by two. The pseudo-code is presented in Listing 4. The t,x,y,z

variables are incremented in total exactly
VOLUME

2 times and there is no if statement before the

function body.

for t=0:LT
 for x=0:LX
 for y=0:LY
 for z=(t+x+y)%2:2:LX
 icx++
 [function body]
Listing 4: The improved approach.

13

4.4.4 Singe variable loop
The last approach eliminates the need for four loop condition checking. However, it involves at least
two additional calculations to compute t, x, y, z variables. The pseudo-code is presented in Listing 5.

for i = 0:VOLUME/2
icx = loop[i]
t = (icx & (31 << 11)) >> 11;
x = (icx & (15 << 7)) >> 7;
y = (icx & (15 << 3)) >> 3;
z = (2*icx & 15) + (x+y+t)%2;

 [function body]
Listing 5: The single variable loop approach implemented for 32x163 problem size.

4.5 Experiment
The goal of this experiment is to explain benefits and drawbacks from suggested improvements. All
programs were compiled using Icc 13.0.0 and executed on both Machine 1 and Machine 2 (paragraph
2.1). The Ir, D1mr, and DLmr values were obtained using Cachgrind software. Details of the three
algorithms tested in the experiment are presented in the Table 10. The execution time presented is the
minimal time out of 20 program executions.

Algorithm name Reference version Memory based Computation based
Even-odd lattice
traversal methods

Lexicographical Lexicographical Improved approach

Accessing neighbor
nodes

Inefficient memory
based access

Memory based access Computation based
access

Table 10: Details of three algorithms tested in the experiment.
The results of the experiments are presented in the Table 11 and Table 12.

Reference version Memory based Computation based
Instruction reads (Ir) 172 032 038 172 163 089 173 094 749
L1 data read cache

misses (D1mr)
2 320 337 2 219 536 2 174 450

L2 data read cache
misses (DLmr)

1 470 775 1 424 147 1 388 546

Time Machine 2 [s] 0.0386 0.038 0.0368

Table 11: The results of the experiment on the Machine 2.

14

Reference version Memory based Computation based
Instruction reads (Ir) 163 643 429 161 808 391 165 568 318
L1 data read cache

misses (D1mr)
2 316 673 2 217 057 2 175 490

L2 data read cache
misses (DLmr)

1 470 779 1 424 229 1 388 546

Time Machine 1 [s] 0.0341 0.0324 0.0324

Table 12: The results of the experiment on the Machine 1.

4.5.1 Memory usage decrease
The computation based access version is expected to use less memory than the two other algorithms
because it does not store the order in which the lattice is traversed (loop array of indices) nor does it
stores the indices of neighbor spinors (iup, idn arrays of indices). The loop array is an array of integers
size ½VOLUME (½ because of even-odd preconditioning). The iup and idn arrays are also arrays of
integers, however, the size of each is is 4*½VOLUME (each of the four directions for half of the
problem). The total memory saving is S = sizeof(int)*(½VOLUME+2*2*VOLUME) =
4*4½*VOLUME B = 2'359'296 B. The expected decrease of cache misses is S / cache line size = S /
64 = 36864 L1, L2 data read cache misses. The number can be estimated as the quotient of total size by
cache size because of continuous memory layout of the arrays.

Despite the fact that the memory based algorithm is similar to the reference version algorithm it
outperformed the reference version algorithm with about 100'000 less D1mr (4% improvement) and
about 46'000 less DLmr (3% improvement). The reason for that is a highly inefficient way of accessing
neighbor nodes in the reference version. The conversion from lexicographical to even-odd indexing is
performed using g_lexic2eosub array (lexic2eosub[iup[ix]]), which results in multiple cache misses. In
the memory based algorithm the iup array was in advance translated to even-odd indexing.

As expected the computation based algorithm performed the best in terms of L1 and L2 data read cache
misses. In the memory based version there was over 40'000 more D1mr (2.5% increase) and over
35'600 more DLmr (2% increase) than in the computation based. These figures roughly correspond to
the calculated figure of 36'864, the small difference might have been caused by some local variables
evicted in the computation based version.

4.5.2 Instruction read increase
On the 64B operating system of the Machine 1 there was a noticeable decrease in Ir. As expected the
computation based approach generates the biggest number of Ir, however the decrease in L1,L2 cache
misses makes it the fastest. The memory approach also had a very good performance on the Machine 1.

5 Permutation optimization
Let us assume that the Hopping_Matrix iteration space is described by an array of indices K. For each
index, eight neighbor spinors are accessed. The goal of the permutation optimization is to find a
permutation K' = permute(K), that will maximize the reuse of spinors held in the L1, L2 cache. The

15

algorithm used in following paragraphs has the even-odd preconditioning enabled. Only “even” nodes
are described, because the approach is exactly the same for both “even” or “odd” nodes.

Illustration 7: The 3D lattice visualization with indices of even (red) spinors. It
should make understanding of the zigzag strategies easier.

5.1 L1 data cache usage optimization
The number of spinors that could be simultaneously held
in a L1 cache depends on the size of the L1 cache, the
cache replacement policy and memory organization (see
paragraph 6). During each iteration of Hopping_Matrix
function, eight spinors are accessed. Every algorithm
below, that produces a permutation K', was designed for a
given number of spinors that could be simultaneously
held in L1 cache (L1S) and for least recently used (LRU)
replacement policy. In each table starting part of the
permutation K' is presented. Spinor indices assessed for a
second time are highlighted in bold. Next to a value that
will be accessed for the second time in a next few
iterations, coordinates (x, y) are placed to make clear

16

... y+1 y-1 z+1 ...
(-1,2) B

(1,1) A

B A

Table 13: Fragment of a spinor indices
table. The value B is first accessed in the
y-1 column, 1st row. Then it is accessed in
column y+1 and 3rd row. The coordinates
(-1,2) indicate the path between the two
positions. This way of indication is used
throughout paragraph 5.1 to illustrate
the reuse of spinors.

where the value is accessed. The idea is depicted by the Table 13.

5.1.1 Lexicographical indexing
Lexicographical indexing is the default indexing K. Following table shows only five out of
VOLUME/2 consecutive iterations of Hopping_Matrix function (Index column) and array indices of
eight spinors accessed at each iteration (t+1,t-1,...,z+1,z-1 columns). Only one spinor (column z-1) is
reused in the consecutive iteration at L1 cache level. L1S = 8.

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
0 2048 63488 128 1920 8 120 (1,1) 0 7

1 2049 63489 129 1921 9 121 (1,1) 1 0

2 2050 63490 130 1922 10 122 (1,1) 2 1

3 2051 63491 131 1923 11 123 (1,1) 3 2

4 2052 63492 132 1924 12 124 4 3

Table 14: Spinor indices accessed during five consecutive iterations of Hopping_Matrix function.

5.1.2 Zigzag2D numbering
The easy way of improving lexicographical indexing is reordering K is such a way, that every second
iteration access spinors from the next lattice row. Consecutive computations share two spinors
(columns z-1 and (y+1 or y-1)). This method is synonymous to 1x1x2x1 (t,x,y,z) tiling on even or odd
nodes. L1S = 8.

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
0 2048 63488 128 1920 (3,1) 8 120 (-1,1) 0 7

8 2056 63496 136 1928 16 (2,1) 0 (-2,1) 9 8

1 2049 63489 129 1921 (3,1) 9 121 (-1,1) 1 0

9 2057 63497 137 1929 17 (2,1) 1 (-2,1) 10 9

2 2050 63490 130 1922 (3,1) 10 122 (-1,1) 2 1

10 2058 63498 138 1930 18 2 11 10

Table 15: Spinor indices accessed during six consecutive iterations of Hopping_Matrix function.

5.1.3 Improved Zigzag2D numbering
There is a possibility for more efficient reuse of the spinors held in cache. Starting at the 3rd row there is
a cycle: 3, 2, 2 accesses to spinors held in the cache. Indices assessed for a second time are highlighted

17

in bold. The approach is presented in the Table 16. This method is synonymous to 1x1x4x1 (t,x,y,z)
tiling on even or odd nodes. L1S ≈ 18.

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
0 2048 63488 128 1920 (1,1) 8 120 (-1,1) 0 7

16 2064 63504 144 1936 (3,1) 24 (2,1) 8 16 23

8 2056 63496 136 1928 (1,1) 16 (2,1) 0 (-2,1)9 8

24 2072 63512 152 1944 32 (2,1) 16 (-2,1) 25 24

1 2049 63489 129 1921 (1,1) 9 121 (-1,1) 1 0

17 2065 63505 145 1937 (3,1) 25 (2,1) 9 17 16

9 2057 63497 137 1929 (1,1) 17 1 10 9

25 2073 63513 153 1945 33 17 26 25

Table 16 The improved Zigzag2D approach.

5.1.4 Zigzag3D
The Zigzag3D algorithm is based on the same concept as Zigzag2D, however, it makes use of three
dimensions as opposed to two dimensions used by Zigzag2D. There is a 4 iterations cycle: 0 or 1 cache
hit at the first iteration, then 2, 3, 3 cache hits in subsequent iterations. L1S ≈ 13. The approach is
presented in the Table 17. This method is synonymous to 1x2x2x1 (t,x,y,z) tiling on even or odd nodes.

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
0 2048 63488 (3,2) 128 1920 (3,1) 8 120 (-1,1) 0 7

8 2056 63496 (4,1) 136 1928 16 (-2,2) 0 9 (-4,1) 8

136 2184 63624 264 8 144 (2,1) 128 (-2,1) 136 143

128 2176 63616 256 (4,1) 0 (3,3) 136 248 (-1,3) 129 128

1 2049 63489 129 1921 (3,1) 9 121 (-1,1) 1 0

9 2057 63497 137 1929 17 (-2,2) 1 10 (-4,1) 9

137 2185 63625 265 9 145 (2,1) 129 (-2,1) 137 136

129 2177 63617 257 1 137 249 130 129

Table 17: The Zigzag3D approach.

18

5.1.5 Zigzag4D
The last algorithm from the ZigzagND series, takes full advantage of the four dimensional structure of
spinors, however the L1S is the highest and is approximately equal to 30. This algorithm is the most
complicated and difficult to visualize because of its four dimensional nature. The algorithm resembles
modification of tilling with cube size of 24 and with indexing changed inside the cube. The approach is
presented in the Table 18. This method is synonymous to 2x2x2x1 (t,x,y,z) tiling on even or odd nodes.

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
0 (7,4)2048 63488 (3,2) 128 1920 (3,1) 8 120 (-1,1) 0 7

8 (4,3)2056 63496 (4,1) 136 1928 16 (-2,2) 0 9 (-4,1) 8

136 (2,3)2184 63624 264 (-2,3) 8 144 (2,1) 128 (-2,1) 136 143

128 (2,1)2176 63616 256 (-2,1) 0 (-3,3) 136 248 129 (-7,3)128

2048 4096 0 (3,2)2176 3968 (2,1)2056 2168 2049 (-2,1)2048

2056 4104 8 (5,1)2184 3976 2064 (-2,2)2048 (-3,1)2056 2063

2184 4232 136 2312 2056 2192 (1,1)2176 2185 (-3,1)2184

2176 4224 128 2304 2048 2184 2296 2176 2183

Table 18: The Zigzag4D approach.

5.2 Experiment
The experiment was performed on both Machine 1 and Machine 2. The icc 13.0.0 compiler was used.
Results are presented in the Table 19, the Table 20, and the Illustration 8. Following observations has
been made:

• The main goal of the optimization to reduce D1mr was achieved. Regardless of the machine
and the approach to lattice traversal the zigzag4D method performed less L1 data read cache
misses than the lexicographical indexing. However, there was also an increase in the DLmr.

• Illustration 8 makes clear that the zigzag2D algorithm performs best in terms of time execution.
• For the Machine 1 the zigzag2D and zigzag3D outperformed the lexicographical indexing in

terms of time execution by 10%, however, the exact reasons for improvement are not clear form
the data provided.

• The tilling8_zigzag (1st on Machine 2, 4th on Machine 1) is an improved approach to tilling. It
splits the space into tiles of size 84, however, the tile itself is iterated using zigzag4D method.

19

Machine 2 Time [s] Ir D1mr DLmr
Memory based

lexicographical 0.0374 172,163,089 2,222,241 1,424,150
zigzag2D 0.0371 172,163,089 2,278,000 1,424,146

zigzag2Dnew 0.0377 172,163,089 2,318,625 1,424,146
zigzag3D 0.0371 172,163,089 2,226,336 1,424,163
zigzag4D 0.0371 172,163,089 2,184,384 1,566,370

zigzag4D_new 0.0377 172,163,089 2,151,296 1,562,986
zigzag4D_new2 0.0378 172,163,089 2,392,896 1,555,918
tilling8_zigzag 0.037 172,163,089 2,186,561 1,520,916

tilling8 0.0376 172,163,089 2,264,896 1,520,922
Computation based

lexicographical 0.0368 173,094,749 2,176,466 1,388,546
zigzag2D 0.0375 173,719,516 2,234,625 1,388,545
zigzaf3D 0.038 174,099,788 2,188,419 1,388,547
zigzag4D 0.0382 175,064,176 2,114,050 1,513,326

zigzag4D_mem 0.0383 173,884,526 2,144,260 1,511,080

Table 19: The results of the experiment performed on the Machine 2.

20

Illustration 8: Execution time as a function of the indexing type, for different machines and
indexing strategies. M1 stands for Machine1, M2 stands for Machine2.

M2 memory based
M2 computation based

M1 memory based
M1 computation based

0,025

0,027

0,029

0,031

0,033

0,035

0,037

0,039

zigzag2D
zigzag3D
zigzag4D

Experiment type

E
xe

cu
tio

n
Ti

m
e

[s
]

Machine 1 Time [s] Ir D1mr DLmr
Memory based

lexicographical 0.0324 161,808,391 2,215,841 1,424,229
zigzag2D 0.0297 161,808,391 2,276,304 1,424,229

zigzag2Dnew 0.0305 161,808,391 2,318,496 1,424,233
zigzag3D 0.0299 161,808,391 2,226,977 1,424,186
zigzag4D 0.031 161,808,391 2,174,464 1,571,221

zigzag4D_new 0.0314 161,808,391 2,140,672 1,567,723
zigzag4D_new2 0.0317 161,808,391 2,385,216 1,560,343
tilling8_zigzag 0.0303 161,808,391 2,175,488 1,520,814

tilling8 0.0324 161,808,391 2,262,977 1,520,915
Computation based

lexicographical 0.0323 165,568,318 2,175,490 1,388,546
zigzag2D 0.03 165,737,883 2,235,633 1,388,545
zigzag3D 0.0306 165,967,367 2,187,171 1,388,547
zigzag4D 0.0322 166,998,636 2,110,210 1,519,907

zigzag4D_mem 0.0309 165,819,243 2,136,324 1,518,200

Table 20: The results of the experiment performed on the Machine 1.

5.2.1 Experiment conclusion
No or very little improvement for all zigzag strategies over lexicographical indexing in D1mr is due to
insufficient amount of free space in the L1 cache to hold the spinors. This may be caused by the cache
pollution from su3 matices.

5.3 Analysis of lexicographical indexing results
As visualized in Table 14 in lexicographical indexing only one spinor is reused between the two
consecutive iterations. However, the analysis using Cachegrind software proved that this solution is
more efficient in terms of L1 data cache misses than the Zigzad2D indexing scheme (which shares two
spinors between each two consecutive iterations). This fact proves that spinors are retained in cache for
far more than just one iteration of Hopping-Matrix function. The goal of this paragraph it to explain the
figures of L1 and L2 data cache misses returned by Cachegrind. The analysis will be performed for
32x163 problem size, for only even nodes, however, the idea can be applied to other lattice sizes.

It is important to remember that Cachegrind is a very limited model which doesn't take into account
events such as hardware/software prefetches and other processes running in parallel on the processor.
Table 21 presents main Hopping-Matrix loop indices at which an example node X(t,x,y,z) was accessed
(X(t,x,y,z) notation was introduced in paragraph 4.3.1). The node was accessed for the first time when
computation of X(t-1,x,y,z) = X(2,3,3,3), lattice2lexic(2,3,3,3) = 4506 were performed. To compute the

21

value of spinor at position X(t-1,x,y,z) all neighboring su3 matrices and spinors are accessed, including
X(t,x,y,z).

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
4506 6553
6426 6553
6546 6553
6553 6553
6554 6553
6562 6553
6682 6553
8602 6553

Table 21: Presentation of indices where a example node X(t,x,y,z)=X(3,3,3,3),
lattice2lexic(3,3,3,3)=6553 node was accessed.

5.3.1 Distance between accesses
The distance (the number of Hopping-Matrix loop iterations) between consecutive accesses to the same
node can be calculated only for non-boundary nodes, because of periodic boundary condition.
Formulas used to compute distances and the example values from Table 21 are presented in Table 22.
The distance information is used in following sections to estimate if the spinor data is preserved at
given level of cache.

22

X(t,x,y,z)
notation

Decimal index forumla. Example
values

Decimal difference between
consecutive values (32x163

problem size).
X(t-1,x,y,z) 1

2
(z+Lz⋅y+Lz⋅L y⋅x+Lz⋅L y⋅Lx⋅(t−1)) 4506 -

X(t,x-1,y,z) 1
2
(z+Lz⋅y+Lz⋅L y⋅(x−1)+Lz⋅Ly⋅Lx⋅t) 6426 1

2
(Lz⋅Ly⋅Lx−Lz⋅L y)=1920

X(t,x,y-1,z) 1
2
(z+Lz⋅(y−1)+Lz⋅Ly⋅x+Lz⋅Ly⋅Lx⋅t) 6546 1

2
(Lz⋅Ly−Ly)=120

X(t,x,y,z-1) 1
2
((z−1)+Lz⋅y+Lz⋅Ly⋅x+Lz⋅Ly⋅Lx⋅t) 6553 1

2
(Lz−1)=7

X(t,x,y,z+1) 1
2
((z+1)+Lz⋅y+Lz⋅Ly⋅x+Lz⋅Ly⋅Lx⋅t) 6554 1

2
(1+1)=1

X(t,x,y+1,z) 1
2
(z+Lz⋅(y+1)+Lz⋅Ly⋅x+Lz⋅Ly⋅Lx⋅t) 6562 1

2
(Lz−1)=8

X(t,x+1,y,z) 1
2
(z+Lz⋅y+Lz⋅L y⋅(x+1)+Lz⋅Ly⋅Lx⋅t) 6682 1

2
(Lz⋅Ly−Ly)=120

X(t+1,x,y,z) 1
2
(z+Lz⋅y+Lz⋅L y⋅x+Lz⋅L y⋅Lx⋅(t+1)) 8602 1

2
(Lz⋅Ly⋅Lx−Lz⋅L y)=1920

Table 22: Distance between consecutive accesses to the same spinor.

5.3.2 L1 cache result
The values X(t,x,y-1,z), X(t,x,y,z-1), X(t,x,y,z+1), X(t,x,y+1,z) presented in Table 22 are accessed
several iterations after each other, so they are preserved in the L1 cache during Hopping-Matrix
function execution. The remaining four values X(t-1,x,y,z), X(t,x-1,y,z), X(t,x+1,y,z), X(t+1,x,y,z)
needs to be loaded to L1 cache each time prior to computations. This totals in 1+4=5 loads of each
spinor to the L1 cache. Since a spinor is 192B it is equal exactly to three 64B cache lines, this makes 15
L1 data cache misses per spinor.

Component contributing to the final value Number of L2 data read
cache misses

Compulsory read cache misses - su3 1'179'648
Spinor L1 cache misses (VOLUME/2 * 15) 995'842

Total sum 2'175'490
The value obtained using Cachegrind software (Lexicographical indexing,
computation based access - Table 20)

2'175'490

Table 23: Analytical analysis of the number of L1 data read cache misses.

23

5.3.3 L2 cache result
During an iteration of the Hopping-Matrix function eight spinors are accessed, one in every direction:
t+1, t-1, …, z+1, z-1. After conversion from lattice indexing to lexicographical, the difference between
two extreme indices values (min, max) is no bigger than 4096 (see Table 22). Moreover at all directions
t+1, t-1, …, z+1, z-1 in two consecutive iterations accessed spinors indices are in great majority
consecutive. They are not consecutive only at boundaries, but the condition of indices difference being
less than 4096 still holds. The first exception are first 2048 iteration of Hopping-Matrix function at the
t-1 direction, because X(0-1,x,y,z) is transformed to X(31,x,y,z). The second exception are last 2048
iteration of Hopping-Matrix function in t+1 direction, because X(31+1,x,y,z) is transformed to
X(0,x,y,z) due to the boundary condition.

The 6MB L2 cache is capable of holding 4096 spinors. Since spinors are accessed in more less
consecutive order at any given direction, it is needed to load a spinor to from the main memory to L2
cache only once! In vast majority of cases it will be used eight times and evicted from cache. As
mentioned above the only situation, when a spinor needs to be loaded for a second time is when it is
accessed at t-1 or t+1 direction in the first 2048 or last 2048 iterations (respectively) of Hopping-Matrix
function.

Component contributing to the final value Number of L2 data read
cache misses

Compulsory read cache misses - su3 1'179'648
Compulsory read cache misses - spinors 196'608
Cache misses caused because of first 2048 and last 2048 iterations anomaly 4'096*3 = 12'288

Total sum 1'388'544
The value obtained using Cachegrind software (Lexicographical indexing,
computation based access - Table 20)

1'388'546

Table 24: Analytical analysis of the number of L2 data read cache misses.

5.3.4 Conclusion
The number of L2 cache misses estimated by Cachegrind for lexicographical indexing is extremely
efficient and close to optimal. The number of capacity cache misses contributes of less than 10% of all
cache misses. The remaining 90% were unavoidable, because this were compulsory cache misses.
However, there is room for improvement in terms of L1 data cache misses.

6 Cache optimization
The goal of this optimization is to assure that as much spinors as possible is simultaneously held in the
L1 data cache. It is designed for N-way associative L1 data cache with LRU replacement policy.

6.1 Cache pollution
The cache pollution refers to fetching the data into a cache that will override more important, reusable
data [9]. Other definition also suggest that the cache pollution occurs when the data loaded to a cache

24

will not be reused before eviction [10].

During an iteration of the Hopping_Matrix function, eight su3 matrices are loaded. As already
mentioned in the paragraph 3.3, none of the su3 matrices are reused in the following computations. Not
only the su3 matrices are used only once before eviction, but also they cause an eviction of previous
data. What is the most important the spinors, which have the potential to be reused are also evicted
from the memory to make room for su3 matrices. It is clear that su3 matrices are causing the cache
pollution and this issue needs to be addressed.

6.2 Solution
The solution to tackle the cache pollution is to store su3 matrices in a way, that will minimize the
number of cache sets (of a N-way associative cache) used to store the data. The description below uses
processor parameters mentioned in paragraph 2.1.

To capture the solution, understanding of the way N-way associative cache works is essential. The su3
array is reorganized as follows. Every 4*R consecutive su3 matrices are stored at a memory location
which address is an multiple of 4096 (page size, the product of the number of cache sets and the cache
line size). The efficiency of memory accesses remains almost unchanged, to read 4 consecutive su3
matrices 9 cache reads are needed, however, while iterating through memory skipping unused bytes
results in additional computations. What is achieved are su3 matrices at addresses from 0 to 576*R
(modulo 4096) are always stored in the cache set from 1st to 9*Rth. The remaining sets are not polluted
by su3 matrices.

This solution also require spinors array reorganization. Spinors should use cache sets from 9*R th

exclusive. Using the same concept as above Q spinors are stored starting at the address, which quotient
reminder by 4096 is equal to 576*R. Bytes that are not used to store su3 matrices nor spinors (matlab
notation) [576*R+192*Q:4095] are left unused. All possible Q values with corresponding 4*R values
are presented in the Table 25.

25

Illustration 9: Continuous memory block shared by su3 matrices and spinors. Projection of memory
locations to L1 data cache sets.

4*R 4 8 12 16 20 24

su3 memory pages
number

262144 131072 87382 65536 52429 43691

Su3 bytes per page 576 1152 1728 2304 2880 3456

Q 18 15 12 9 6 3

Spinor memory pages
number

7282 8739 10923 14564 21846 43691

Spinor bytes per page 3456 2880 2304 1728 1152 576

Memory used 1.07GB 537MB 358MB 268MB 215MB 179MB

Overhead ratio 6,10 3,05 2,03 1,52 1,22 0.01

Table 25: Memory optimization parameters and figures of the memory overhead for a 32x163 problem
size.
Such memory organization leads to the memory overhead because of two reasons. Firstly the padding
is never used, secondly su3 matrices occupy more memory than spinors by six fold. As presented in
Table 25 the number of memory pages used by spinors is always smaller or equal than the number used
by su3 matrices. The overhead is depicted in the Illustration 10 by the light gray color.

6.3 Performance
It can be seen at Illustration 10 the smaller memory overhead the faster algorithm. Experiments were
performed for R = 1, 2, 3, 4 and repeated multiple times on the Machine 2. Different neighbor
accessing schemas were tested, however, the trend was not affected.

26

Illustration 10: Number of memory pages occupied by su3 matrices and spinors. The light gray color
indicates the memory that is not used.

6.4 D1mr experiment
Since the algorithm with R = 4 achieved the best performance (Illustration 11), this value was used in
the following experiment. The experiment was performed on the Machine 2 using the icc 13.0.0
compiler. The detailed results are presented in Table 26. The D1mr and DLmr values decreased for all
of the cases but one. Zigzag2D performed worse which comes as a surprise, probably because of cache
pollution caused by the loop array. The indexing strategy that benefit most from memory optimization
is zigzag4D_new, which improved D1mr by almost 8% and DLmr by almost 9%. However there was
no improvement in time execution. The reason for that is substantial increase in number of instructions
retired and significant increase in cache misses caused by hardware prefetch.

Memory optimized Non-optimized
Time [s] D1mr DLmr Time [s] D1mr DLmr

lexicographical 0.0393 2 203 619 1 423 914 0.0374 2 222 241 1 424 150

zigzag2D 0.0395 2 409 716 1 423 913 0.0371 2 278 000 1 424 146

zigzag3D 0.0389 2 213 377 1 423 922 0.0371 2 226 336 1 424 163

zigzag4D 0.039 2 023 023 1 423 772 0.0371 2 184 384 1 566 370

zigzag4D_new 0.0393 1 980 677 1 423 769 0.0377 2 151 296 1 562 986

Table 26: Comparison of the memory optimized and non-optimized algorithm results.

27

Illustration 11: Time as a function of R in the memory optimized algorithm.

R=1 R=2 R=3 R = 4 no optimization
0,030

0,035

0,040

0,045

0,050

0,055

COMP based
MEM based
REF version

Experiment type

tim
e

[s
]

6.5 Hardware prefetch
The reason for lack of improvement is due to an active hardware prefetcher which causes multiple L2
cache misses. Effects of hardware prefetches are not included in the Cachegrind software, so to identify
the exact reason VTune software was used. Output from the experiment is presented in the Table 27.
The most significant factor which decreases the optimization performance is the hardware prefetcher
which is a source of huge number of cache misses. Prefetching is discussed in detail in the Paragraph 7.

Parameter description (Core 2 Duo event name) Zigzag4D,
4*R = 8

Zigzag4D,
disabled

Difference
[%]

Number of the L2 cache misses

(MEM_LOAD_RETIRED.L2_MISS)

687000 646200 6.31

Number of requests from L1 cache to L2 cache

(L2_LD.SELF.DEMAND.MESI)

1956000 1863000 4.99

Number of requests from hardware prefetchers to the L2 cache
(L2_LD.SELF.DEMAND.MESI)

2485800 2299800 8.09

Number of L2 lines allocated because of demand from the L1
cache (L2_LINES_IN.SELF.DEMAND)

216000 192000 12.5

Number of L2 lines allocated because of demand from
hardware prefetchers (L2_LINES_IN.SELF.PREFETCH)

1896000 1524000 24.40

Table 27: Comparison between memory optimization enabled and disabled.

7 Data prefetching
Prefetching data is a technique to load a memory location before it is needed for a computation. The
advantage of this technique is that it reduces processor stalls due to computations and load parallelism.
However, it has also drawbacks such as possibility of loading data that will never be used or causing
eviction of relevant data from cache (cache pollution). In the following paragraph the most important
aspects of prefetching are briefly described, then the impact on Hopping-Matrix function is presented.

7.1 Hardware prefetching
The hardware prefetching operates transparently to fetch the data without any programmer effort. There
are two areas of the hardware prefetching operation, loading the data from memory to least level cache
and loading the data from least level cache to the L1 cache [8].

7.1.1 Least level cache prefetching
In the Core 2 duo E8600 and E8400 processors there are two hardware prefetchers working at the same
time using different algorithms to accomplish the task. The first prefetcher is Stremer, it assumes that
the data is organized in 128B chunks. When a memory location located in the first chunk half is
accessed, Stremer automatically reads the second half (one cache line). The mechanism is very similar

28

to adjacent cache line prefetch. The second DPL (Data Prefetch Logic) is more advanced. It is triggered
by two L2 cache misses which occur inside the same memory page and at the same memory address
stride. The address to be prefetched is obtained by adding the stride to the last address being accessed.
The DPL is characterized by TTD (Trigger Threshold Distance), the maximal size of the stride in bytes,
and by the the number of different streams that it track to make prefetch predictions. The Core 2 Duo
prefetcher is able to track streams in both forward and backward directions.

7.2 Hardware prefetch impact on Hopping-Matrix
The layout of su3 matrices is the same in every algorithm modification unless specified otherwise. As
described in the paragraph 3.3 each su3 matrix in the even-odd preconditioning is accessed only once
and all su3 matrices accessed at an iteration are stored in a continuous memory space. This is a perfect
situation for the hardware prefetchers, which benefit from continuity of memory layout. However,
optimizations proposed in previous paragraphs focus on spinors instead of su3 matrices. Following
paragraphs describe impact of prefetching on the performance of the application.

7.2.1 Prefetching spinors
A spinor is a 192B data structure which consists
of four su3_vectors (paragraph 1.2). During an
iteration of the Hopping-Matrix loop eight
spinors are accessed for each direction +0,-0,
…, +3,-3. For +1,-1,+2,-2 directions 1st and 4th

su3_vector are first accessed, which results in
two cache misses for the [0, 64[and
[128,192[bytes. 2nd and 3rd su3_vectors are
accessed second, however, they not result in a
cache miss, because the data [64, 128[is
prefetched by Stremer during computations on
1st and 4th su3_vectors. The computations on +0,-0,+3,-3 directions don't benefit from Stremer
prefetches because operation on 1st and 3rd su3_vector requires reading all three cache lines at once.

7.2.2 Prefetching su3 matrix
A su3 matrix is a 144B data structure. Unlike spinors it is loaded all at once, so it doesn't benefit from
the Stremer operation. The important thing to mention is an efficient load of su3 matices occurs only
when four consecutive su3 matrices are read before cache eviction. This is because four su3 matrices
can be loaded using exactly nine 64B cache lines (only when array containing su3 matrices is 64B
aligned).

7.2.3 Reference implementation
The reference implementation strongly benefits from the hardware prefetches. Each column from
Table 14 (t+1, t-1, … , z-1) is represented by a DPL stream, which enables correct prefetches. The
prefetcher is capable of tracking 12 different streams in forward direction and 4 in backward direction
(paragraph 3.7.2, [8]) which is enough for the case.

29

Illustration 12: Spinor memory layout. From the top: A
tick per cache line, every 64B. A tick per su3_vector,
every 48B. Four su3_vectors marked as 1st,2nd,3rd and
4th.

7.2.4 Zigzag
Using the analogous reasoning as in paragraph 7.2.3 for the simplest zigzag indexing – Zigzag2D,
Table 15 shows there is at least 14 different streams to track for a DPL hardware prefetcher which
exceeds its capacity. The analysis for even more complicated Zigzag algorithms shows that the number
of stream increases with the complexity of the indexing schema. The zigzag indexing doesn't benefit
from DPL prefetcher.

7.3 Software prefetch
Gcc provides extension method __builtin_prefetch(const void *addr, …) with two optional arguments
rw and locality. The value of addr is the address of the memory to prefetch. The value of rw is compile-
time constant one (write) or zero (read). The values of locality with corresponding assembly
instructions are presented in the Table 28. The __builtin_prefetch function reads the address up to a
cache line, which totals in maximum of 64B (paragraph 2.5.2 [8]).

Locality
value

Assembly
instruction

Description

0 prefetchnta Non-temporal with respect to all cache levels; prefetch data into non-
temporal cache structure, with minimal cache pollution. The cache
line is loaded from the memory directly to the L1 cache which
doesn't results in polluting the L2 cache (paragraph 3.7.2 [8]).

1 prefetcht2 Temporal with respect to the second level cache; prefetch data in all
cache levels, except the 0th and the 1st cache levels.

2 prefetcht1 Temporal with respect to first level cache; prefetch data in all cache
levels except the 0th cache level.

3 prefetcht0 Temporal data; prefetch data into all cache levels.

Table 28: The locality values with corresponding assembly instructions [11].

7.4 Software prefetch impact on Hopping-Matrix
Several experiments were performed to check if Hopping-Matrix function can benefit from software
prefetches. The hardware prefetches during the experiments were not switch off. Software prefetches
tend to increase data bus utilization ratio, so it is recommended to use then only when an application is
not memory bounded.

7.4.1 Su3 L2 cache pollution
In the Paragraph 6 the ways of addressing the L1 cache pollution were addressed, however, in this
paragraph a way to reduce the L2 cache pollution is presented. The idea is to use prefetchnta instruction
for every su3 matrix. Since no su3 matrices are stored in L2 cache it can be used to store even more
spinors. Both advantages and disadvantages of such an improvement are presented below.

The experiment proves that the disadvantage of prefetching every su3 matrix using prefetchnta
instruction is an increase in requests to the memory, which can be observed as:

30

• L2 address bus utilization increased by 33%,

• data bus utilization increased by 12%,

• number of bus transaction delays increased by over 70%.

The advantage is reduced number of L2 cache misses:

• Number of L2 data read cache misses reduced up to 30%, however, this doesn't have a huge
impact on computations performance because the number of occurrences is relatively low.

• Number of hardware prefetches reduced by 30% and the number of cache misses caused by
them reduced by 35%.

• The number of evicted cache lines because of L1 request or prefetch decreased by almost 40%.

Experiments show that the algorithm with prefetched su3 matrices is more than 5% slower than the
unoptimized one. It seams that the idea needs further investigation. Nearly 30% reduction of L2 cache
misses can lead to significant improvement, however, there is a need to cope with address and data
buses utilization ratio increase. One way to do it is to switch off the hardware prefetching and use only
software prefetching.

7.4.2 Su3 prefetch strategy
The performance of an application which use software prefetches depends strongly on the locations of
__builtin_prefetch instructions in an application code. It is a difficult task especially when using -O3
compiler optimization, which results in rearranging basic blocks to improve code locality [12]. The
gain from prefetches is the most significant when a prefetch is done in parallel with computations. A
brute force solution was used to check all possible locations in the program code where to place
prefetch instructions. The su3 matrix was prefetched 4 su3 matrix loads in advance. It turned out that
there was no improvement because of software prefetches.

7.4.3 Lexicographical spinor prefetch strategy
As specified in section 5.3.3, most of the spinors are loaded to L2 cache only once. So the simplest
strategy is to prefetch the t+1 direction value, because it is the biggest for the vast majority of Hopping-
Matrix function iterations (with exception to last 2048 iterations) and this memory location will be
reused when accessed at different directions. Such prefetch strategy can lead up to 5% time execution
improvement only when the run on a single core, which means the application is not memory bounded.
Otherwise additional memory

8 Hybrid algorithm
A common approach to improving algorithms is to merge two different solutions into one, so that the
final algorithm benefit from both. The following paragraph will present such algorithms and their
experimental results.

8.1 Improved Zigzag2D split into halves
The improved Zigzag2D algorithm was presented in paragraph 5.1.3. The idea to modify the algorithm

31

stems from the layout of reused spinors indices. As presented in Table 16 only values in the y+1, y-1, z-
1 columns (2nd half) were accessed from the L1 cache. Values in the t+1, t-1, x+1, x-1 columns (1st half)
did not benefit from the L1 cache. The solution is to calculate the two parts separately, each iterated
using Improved Zigzag2D, to benefit more from the L1 cache reuse. The final score is obtained by
summing up the result from both halves. The performance of reading su3 matrices should not decrease
since 4 continuous su3 matrices are read. The layout of spinor indices accessed in the first several
iterations is presented in Table 29. The thin column in the middle of the table separate the halves.

Index t+1 t-1 x+1 x-1 y+1 y-1 z+1 z-1
0 2048 63488 128 1920 8 120 0 7

16 6144 2048 4224 6016 24 8 16 23

8 4224 128 2304 2048 16 0 9 8

24 8320 4224 6400 6144 32 16 25 24

1 2304 63744 384 128 9 121 1 0

17 6400 2304 4480 4224 25 9 17 16

9 4480 384 2560 2304 17 1 10 9

25 8576 4480 6656 6400 33 17 26 25

Table 29: Indices of spinors accessed in the first few iterations.
The algorithm was tested on both Machine 1 and Machine 2 using both icc and gcc compilers. The
comparison with the original version is performed for the fastest out of four, which is icc compiler
executed on Machine 1. As expected the number of L1 data read cache misses decreased by 6,5%,
however, the original version was almost twice faster. The main reason for such a slow performance is
a significant increase in the L2 cache misses (over 21%), which leads to the memory bus usage
increase. Full experiment results are presented in Table 30.

Machine Compiler Time [s] Ir D1mr DLmr
Machine 1 Gcc 4.6.1 0.0533 177,668,110 2,169,680 1,807,865

Machine 1 Icc 13.0.0 0.0529 163,184,649 2,167,566 1,807,848

Machine 2 Gcc 4.6.1 0.0668 172,228,626 2,176,776 1,807,892

Machine 2 Icc 13.0.0 0.0598 172,228,626 2,175,524 1,807,892

Table 30: Experimental results for modified Zigzag2D algorithm.

9 Even-odd su3 cache level sharing
The proposed algorithm is designed for a multi-core processor. The most significant difference
comparing to the reference version implementation is resignation from double su3 allocation. Thanks to

32

this property even and odd parts executed in parallel can reuse common su3 matrices using a cache
shared between the cores. All experiments presented in this paragraph were performed on the full
32x163 lattice.

9.1 Reaching memory limits
The optimizations described in paragraphs 4, 5, and 7 resulted in a single threaded implementation
faster by 10% from the reference version implementation. However, when executed on two cores the
efficiency for 2 cores was equal to 0.73 on both Machine 1 and Machine 2. The execution time for a
given number of cores is presented in the Chart 1.

This suggested that the Hopping-Matrix function is memory bounded. Due to limited bandwidth of the
memory bus, the processor stalled waiting for the data from the memory. To prove this point two
applications were created. The first was supposed to determine how much time is spent by the
Hopping-Matrix function on memory accesses, the second to determine how much time is spent on
computations. Comparing these results makes it possible to determine whether the main problem is
CPU or memory bounded. To achieve the first goal, almost all computations from the Hopping-Matrix
function were commented out, only a few were left to prevent compiler from removing the dead code.
To achieve the second goal all computations were performed on the same data, so there was no need to
load it from the main memory. Both implementations were thoroughly tested using Cachegrind profiler
to verify if relevant parameters (the number of instructions or the number of memory reads) were
exactly the same as in original implementation or as designed, equal to zero.

33

Chart 1: Chart depicting scaling of the double su3 allocation algorithms on Machine 1 and 2.

1core 1st core 2nd core
0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

Scaling of the double su3 allocation

odd
even

Number of cores

tim
e

[s
]

Data presented in Chart 2 proves, that on both Machine 1 and Machine 2, the Hopping-Matrix function
is memory bounded. Machine 3 has more than twice greater memory access speed than the other
machines, however, Machine 3 processor is just 2.2GHz, comparing to 3GHz (Machine 2) and
3.33GHz (Machine 1). This is the reason why Hopping-Matrix function on Machine 3 is CPU bounded.
All Ivy Bridge Core i5 and Core i7 processors which are publicly available have significantly higher
frequency, this is why ways of improving CPU time will not be presented in this paragraph.

9.2 Overcoming memory limits
Because the memory limit has been reached, the only way to improve performance of Hopping-Matrix
function was to reduce the amount memory loaded. Decision has been made to resign from the double
su3 allocation and try to reuse the su3 matrices at all cache levels.

9.2.1 Consequences of single su3 allocation
The consequence of the single su3 allocation is a significant increase in the hardware prefetcher cache
pollution and the number of cache misses. This is because of highly irregular access patterns. Chart 3
illustrates how severe is this penalty. “Su3 cache level sharing” solution executed on a single core is
highly ineffective comparing to “double su3 allocation” despite the fact that the same amount of
memory is loaded. The only reason of slowdown is the order of reading memory locations.

34

Chart 2: Execution time of two applications (blue - CPU, red - memory) designed to measure the time
spent loading memory and the time spent on computations in Hopping-Matrix function. Test were
performed on three different multi-core machines.

M2_1core
M2_2core

M1_1core
M1_2core

M3_1core
M3_2core

M3_4core

0

0,01

0,02

0,03

0,04

0,05

0,06

Scaling of the CPU and the memory on multiple cores

Cpu time
Memory access time
Cpu time
Memory access time

Machine description

tim
e

[s
]

9.2.2 Su3 cache level sharing
The new approach to Hopping-Matrix function is to schedule even and odd part on one core each and
start both threads exactly at the same time. Both threads are not synchronized in any way during
execution. Because of exactly the same memory access patterns and exactly the same amount of
computations it is assumed that the threads will execute at the same pace.

Since two adjacent spinors (one even, one odd) share a su3 matrix, when both cores execute at nearly
the same pace, the su3 matrix will be loaded by one of the cores, and then reused by the other. Such
memory optimization leads to better memory scaling (Chart 3), which eventually leads to almost linear
scaling of the whole application (Chart 4).

9.2.3 Multiple cores
The drawback of the memory optimization described in this paragraph is that it addresses memory
scaling problem only for two cores. The author was unable to generalize the method for more cores. To
use more than two cores, the set of cores needs to be split into two groups. One group of cores is
calculating even part, the other group is calculating the odd part. The main loop of Hopping-Matrix
function can be parallelized in an OpenMP style. Some experiments needs to be performed to
determine the optimal granularity of loops parallelism.

35

Chart 3: Comparison of reference version (with double su3 allocation) with Su3 cache level sharing
solution. Both implementation measure just the memory time.

M1_1core
M1_2core

M2_1core
M2_2core

M3_1core
M3_2core

M3_4core

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

Comparison of memory scaling on different machines.

Su3 cache level sharing memory
time
Double Su3 memory time
Shared L2 trend
Double Su3 trend

Machine description

tim
e

[s
]

9.2.4 Results
The best results were obtained for Machine 1. The reason for this was significant dominance of
memory time over CPU time on two cores (Chart 2). After implementation of the algorithm described
in this paragraph the memory overhead was reduced, which resulted in a very efficient application.

The Improved reference version was 6.8% faster than the reference version. The su3 cache level
sharing implementation was 17% faster than the reference version.

10 Releted work
As presented in paragraph 9, the Hopping-Matrix function can be both memory and CPU bounded
depending on a machine. Modifications to Hopping-Matrix function code need to be designed for a
specific architecture. Michael Clark in [13] presents an algorithm which reconstructs a su3 matrix (18
double values) from 12 or just 8 double values. This solution is designed for GPUs to save costly
memory accesses. Such an algorithm could also suit a multi-core, low frequency processors.

11 Tools and measures
To analyze performance of an algorithm several characteristics are collected using appropriate tools.

11.1 Cachegrind
Cachegrind is a part of the open source Valgrind software which given an application and processor
description (L1, L2 cache size, cache policy) simulates the cache behavior and provides detailed
information such as:

36

Chart 4: Comparison of results for three different implementations executed on 1 and 2 cores
on the Machine 1.

Reference implementation
Improved reference implementation

Su3 cache level sharing

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Comparison of execution time of three different solutions

1 core
2 core

tim
e

[s
]

• Number of instruction reads Ir, Ir L1 cache misses, Ir L2 cache misses.

• Number of memory reads Dr, Dr L1 cache misses, Dr L2 cache misses.

• Number of memory writes Dw, Dw L1 cache misses, Dw L2 cache misses.

• Number of branch conditions Bc, Bc misses.

11.1.1 Disadvantages
The Cachegrind tool doesn't tracks the impact of software and hardware prefetches.

11.2 VTune
VTune is a commercial Intel application designed to analyze software performance. During an
execution of an analyzed program processor events are registered. The data collected in the first phase
is presented to the user in clear graphical way. The VTune analysis tracks far more processor events,
however, the counts for each event are less precise than those of the Cachegrind.

11.3 Tools comparison
The principle of operation of vTune is different from the Cachegrind. It is not a simulator, but it records
live processor performance, so it may be interrupted by other processes running (even VTune itself).
Cachegrind simulates a perfect situation where only a single process is being executed on a processor.
To ensure that the theoretical values obtained with Cachegrind are realistic the comparison with vTune
is necessary.

12 Results
The following chapter consists of experiments descriptions
and results. Each result is supplied with a brief note to
explain the reasons for such score and suggest
improvement. Each experiment was performed with su3
matrices double allocation, so it is not mentioned in
algorithms description. The tool used to provide the
algorithm details was Cachegrind. Time result provided for
each experiment is the fastest execution out of twenty.

12.1Reference version algorithm
The design of the reference version was already mentioned in the paragraph 3.

Machine Machine 2

Loop As in paragraph 4.4.1, even-odd preconditioning

Neighbor access As in paragraph 4.3.1

Permutation none

37

Symbol Meaning
Ir Number of instruction

reads.
D1mr Number of L1 data cache

misses.
DLmr Number of least level data

cache misses.

Table 31: Explanation of the
abbreviations used.

Memory optimization none

Time [s] 0.0381 Ir 171,507,751 D1mr 2,320,288 DLmr 1,470,769

12.2The fastest so far
The improvement stems from two modifications. The first one is modification of iup and idn arrays, so
that they contain indices in even-odd convention. This was computed before entering Hopping_Matrix
function. The second is the zigzag2D strategy to traverse the lattice.

Machine Machine 1

Loop Lexicographical, as in 4.4.1

Neighbor access As in paragraph 4.3.1

Permutation Zigzag2D

Memory optimization none

Time [s] 0.0297 Ir 161,808,391 D1mr 2,276,304 DLmr 1,424,229

12.3Best reduction of D1mr
The reduction of D1mr is significant, however, the execution time is huge. There could be multiple
reasons for this issue. Firstly it could be the DLmr (data least level (L2) cache miss read) that vastly
contribute to the time spent in the Hopping_Matrix function. Moreover the number of instruction reads
was higher than in other experiment. Finally the D1mr is theoretical value that would be received in
case when only one program is being executed on a processor, other processes executed at the test
machine could have spoiled the result.

Machine Machine 2

Loop As in paragraph 4.4.1, even-odd preconditioning

Neighbor access As in paragraph 4.3.1

Permutation Modified Zigzag4D (paragraph 5.1.5) so that 4x23,
instead of 24 tile is processed.

Memory optimization As in paragraph 6.2. Parameter 4*R = 16.

Time [s] 0.0389 Ir 173,015,05 D1mr 1,980,677 DLmr 1,423,852

38

Table of Contents
1The Hopping_Matrix function...1

1.1Dirac Operator..1
1.2Data structures..1
1.3Memory requirements..2
1.4Optimization...2

1.4.1Single core processor..2
1.4.2Multi-core processor...3

1.5The limit for memory access optimization...3
1.5.1L1, L2 Cache misses...3
1.5.232 x 163 problem size...4
1.5.332 x 163 even-odd preconditioning..5

2Hardware..5
2.1Processor..5

2.1.1Cache design...6
Fully associative cache..6
Direct-mapped cache...6
N-way associative cache..6

2.2Memory read latency..7
3Current Hopping_Matrix implementation...7

3.1Memory alignment...7
3.2Tiling..7

3.2.1Tiling memory requirements..8
3.2.232 x 163 problem size...8
3.2.332 x 163 problem size conclusions...9

3.3su3 matrices double allocation...9
3.4Other optimizations..10

4Neighbor spinors access...10
4.1Data structure ..10
4.2Even-odd preconditioning..10
4.3Accessing neighbor nodes..11

4.3.1Memory based access...11
4.3.2Computation based access..11
4.3.3Binary operations based access..12

4.4Even-odd lattice traversal methods..12
4.4.1Lexicographical approach...12
4.4.2Naive approach...13
4.4.3Improved approach...13
4.4.4Singe variable loop...13

4.5Experiment...14
4.5.1Memory usage decrease..15
4.5.2Instruction read increase...15

5Permutation optimization...15
5.1L1 data cache usage optimization..16

5.1.1Lexicographical indexing...17

39

5.1.2Zigzag2D numbering..17
5.1.3Improved Zigzag2D numbering...17
5.1.4Zigzag3D..18
5.1.5Zigzag4D..18

5.2Experiment...19
5.2.1Conclusion..21

6Cache optimization..21
6.1Cache pollution...21
6.2Solution..22
6.3Performance..24
6.4D1mr experiment..24
6.5Hardware prefetch..25

7Data prefetching...25
7.1Hardware prefetching...26

7.1.1Least level cache prefetching..26
7.2Hardware prefetch impact on Hopping-Matrix..26

7.2.1Prefetching spinors...26
7.2.2Prefetching su3 matrix..27
7.2.3Reference implementation..27
7.2.4Zigzag...27

7.3Software prefetch...27
7.4Software prefetch impact on Hopping-Matrix...28

7.4.1Su3 L2 cache pollution...28
7.4.2Su3 prefetch strategy..28

8Hybrid algorithms..28
8.1Improved Zigzag2D split into halves...29

9Tools and measures..30
9.1Cachegrind..30

9.1.1Disadvantages...30
9.2VTune...30
9.3Tools comparison...30

10Results..31
10.1Reference version algorithm..31
10.2The fastest so far...31
10.3Best reduction of D1mr..31

40

Bibliography
1: F. Wilczek, , 2000
2: C. Tadonki, An efficient CELL library for Lattice Quantum Chromodynamics,
3: Mark D. Hill and Alan Jay Smith, Evaluating associativity in CPU caches, 1989
4: Dr. Colin Keng-Yan Tan, CS 1104 Caches, ,
5: Franck Delattre et Marc Prieur, www.behardware.com/articles/623-6/intel-core-2-duo-test.html,
2006,
6: , http://wwwcdf.pd.infn.it/valgrind/cg_main.html, ,
7: Ulrich Drepper, What Every Programmer Should Know About Memory, 2007
8: , Intel® 64 and IA-32ArchitecturesOptimization Reference Manual, 2011
9: Binny S. Gill and Luis Angel D. Bathen, AMP: Adaptive Multi-stream Prefetching in a Shared
Cache,
10: , docs.cray.com/books/S-2315-50/,
11: Janis Johnson, Data Prefetch Support, ,
12: , gcc.gnu.org/onlinedocs/gcc-3.4.5/gcc/Optimize-Options.html, ,
13: M. Clark, Blasting through systems of linear equations using GPUs,

41

Internship summary.
 Who? Wiktor Olko
 When? 1st of March – 30th of June 2012
 Where? MINES ParisTech - Fontainebleau
 What? High-level code optimization (case study

of the Dirac Operator), for the research project
PetaQCD.

Agenda
 Physics revision – LQCD.
 Current implementation.
 My contribution.

QCD
 Quantum Chromodynamics – the current

theory of strong interaction (strong
nuclear force).

 D. Politzer, F. Wilczek, D. Gross (photo)
(early 1970s)

General Relativity
(Gravitation)
Albert Einstein (photo)
(1915)

Quantum electrodynamics
(Electromagnetism)
P. Dirac (1927), R. Feynman
(photo), F. Dyson, J. Schwinger,
S. Tomonaga (1940s).

Electroweak Theory
(Weak interaction)
S. Glashow, A. Salam, S.
Weinberg (1968)
(photo: P. Higgs).

LQCD
 Numerical QCD studies are performed

using discrete formalism formulated on
a four dimensional grid (space and time)

 About 80% of time in the Hybrid Monte-
Carlo simulations is spent to compute
inversion of Dirac Operator.

 The inversion is performed using iterative
methods such as: CR or GCR
(Generalized Conjugate Residual).

 Hopping_Matrix function computes Dirac
Operator.

Dirac Operator
Dψ(X)=A ψ(X)−1

2∑μ=0

3

{[(I 4−γμ)×U X ,μ] ψ(X+μ̂)+[(I 4−γμ)×U X−μ̂ ,μ]ψ(X−μ̂)}

The task
 Optimize the Hopping_Matrix function
 Input: 32x163 lattice.

 Each node: 192B (spinor)
 Each vertex: 144B (su3)

 Output: 32x163 lattice.
 Each node: 192B (spinor)
 [Vertices remain unchanged]

Memory requirements

Lattice

Node → spinor
Edge → su3

Since it is difficult to
visualise 4D lattice,
throughout the
presentation a 3D
lattice will be used.

Basic implementation
 Foreach spinor in the lattice:

 Foreach direction D:
1. Read su3
2. Read spinor
3. Perform computation

Even-odd preconditioning

 Even nodes marked
in red.

 Odd nodes marked
in green.

 Each pair
(even,odd) shares
a su3 matrix.
Marked in blue.

Consequences of even-odd
 Su3 double allocation, trade-off:

 Double the su3 memory use.
 For each spinor, all 8 neighbor su3 are stored in a

continous memory space → fast access.
 Parallelism.
 Locality.

Memory limits

1core 1st core 2nd core
0

0,01
0,02
0,03
0,04
0,05
0,06
0,07

Scaling of the even-odd preconditioning

odd
even

Number of cores

tim
e

[s
]

M1_1core
M1_2core

M2_1core
M2_2core

M3_1core
M3_2core

M3_4core

0

0,01

0,02

0,03

0,04

0,05

0,06

Scaling of the CPU and the memory on multiple cores

Pure computation time
Pure memory access time
Pure computation time
Pure memory access time

Machine description

tim
e

[s
]

Limited memory bandwidth makes it
impossible to load twice as much memory
for two cores in the same time as for a
one core.

To identify if Hopping_Matrix
function is CPU or memory
bounded two applications have
been created:

1. Pure computations (all
memory accesses were
removed).
2. Pure memory accesses (all
computations were removed).

My contribution
 Perform calculations on the even and odd lattice in

parallel to reuse the common su3 matrix at L2/L3
cache level.

 Resign from su3 double allocation

Results

M1_1core M1_2core M2_1core M2_2core M3_1core M3_2core M3_4core
0

0,01

0,01

0,02

0,02

0,03

0,03

0,04

Comparison of memory scaling on different machines.

Shared L2 memory time
Double Su3 memory time
Shared L2 trend
Double Su3 trend

Machine description

tim
e

[s
]

Efficiency

Reference implementation Improved reference implementation L2 cache reuse implementation
0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Comparison of execution time of three different solutions

1 core
2 core

tim
e

[s
]

Reference
implementation

Improved
reference
implementation

L2 cache reuse
implementation

Efficiency 0.72 0.73 1.03

Improvements

Comparison with the reference implementation.

Improved reference
implementation

L2 cache reuse
implementation

Relative time execution
improvement (2 cores)

6.8% 17.3%

Reasons for improvement ● Two accesses
g_lexic2eosub[idn[i]]
replaced with only one.
● 84 tile size.
● Altered order of traversing
a tile to improve L1 cache
reuse.

● Two accesses
g_lexic2eosub[idn[i]]
replaced with only one.
● 16 x 83 tile size.
● The new approach to
memory loading.

Profiling tools

by Wiktor Olko

Agenda
 Valgrind, VTune:

 How does it work?
 What information does it provide?
 How to use it?

 Comparison of the tools.

What is Valgrind?
 GNU General Public License, version 2.
 Instrumentation framework for building dynamic

analysis tools.
 Set of tools:

 Memcheck, SGcheck (memory errors)
 Cachegrind, Callgrind (cache profilers)
 Helgrind, Drd (thread errors)
 Massif, DHAT (heap profiler)

 Support: X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux, PPC64/Linux,
S390X/Linux, ARM/Android (2.3.x), X86/Darwin and AMD64/Darwin (Mac
OS X 10.6 and 10.7)

Valgring operating
principle

 No need to: recompile, relink or modify application
under test (-g compile option recommended).

 Executable is run on a virtual CPU provided by the
Valgrind core.

 The selected tool adds its own instrumentation
code, then the app is executed on Valgrind core.

 The selected tool collects information from
Valgrind core and presents the output (text file).

Memcheck: a memory error
detector

 Default tool, no need to specify it for Valgrind.
 Common memory problems in C and C++:

 Accessing memory you shouldn't (heap or stack)
 Using undefined values
 Incorrect freeing of heap memory
 Memory leaks.

Memcheck: sample output
Sample application

int f(){
 int *a=(int*)malloc(8);
 return 4;
}

int main(){
 int *a = (int*)malloc(8);
 int c = f()+a[5];
 free(a);
}

Sample output

Invalid read of size 4

 at 0x8048455: main (v.c:13)

 Address 0x41c403c is 12 bytes
after a block of size 8 alloc'd

HEAP SUMMARY:

 in use at exit: 8 bytes in 1
blocks

 total heap usage: 2 allocs, 1
frees, 16 bytes allocated

 LEAK SUMMARY:

 definitely lost: 8 bytes in 1
blocks

Cachegrind: a cache and
branch-prediction profiler

 Simulates how your program interacts with a
machine's cache hierarchy and branch predictor.

 Unified cache hierarchy.

 Collected events:
 Ir
 Dr, D1mr, DLmr
 Dw, D1mw, DLmw
 Bc, Bcm

Cachegrind: sample output

I1 cache: 32768 B, 64 B, 8-way associative
D1 cache: 32768 B, 64 B, 8-way associative
LL cache: 6291456 B, 64 B, 24-way associative
…

 Ir Dr D1mr DLmr function
--
344,719,420 142,868,498 4,797,681 2,996,387 Hopping_Matrix
 84,488,688 12,782,562 393,234 393,234 main
 39,321,600 10,485,760 1,572,865 1,572,865 __intel_sse3_me

What is VTune?

Windows Linux

GUI Visual Studio integrated Standalone client

Command line interface yes yes

 Commercial Intel product – standalone or
included in a suite (Parallel Studio, C++ Studio)

 Facilitates the full process of improving software
and the way it uses aviable resources.

 Two analysis categories: Algorithm Level and
Advanced Hardware-level Analysis.

VTune - Algorithm Analysis
 User-Mode Sampling and Tracing Collection

 Snapshot of the number of threads at a given moment
provide a hint to the degree of parallelism.

 Sampling interval: 10 ms for Linux* 2.4; 1,2 or 4
milliseconds for new Linux >= 2.6

 Use collected data to understand the control flow for
statistically important code sections.

 General information about hotspots in the
application.

VTune - Advanced
Hardware-level Analysis

 Hardware Event-based Sampling Collection
 Uses installed driver to configure and collect

interrupts from the Performance Monitoring Unit
of each Intel CPU Core.

 PMU has limited number of simultaneous events it
can track (max 3 or 4).

 Example events: L1/L2 cache misses, clock cycles,
instructions retired, hardware/software prefetches.

 User specifies: events to track, ”sample after” value.
 Very detailed information.

VTune GUI

VTune GUI

Valgrind vs VTune
Valgrind VTune

Number of processes
analysed

One Every process running.

Operating principle Core model, dynamical
application
instrumentation.

Harwdare PMU events /
User-Mode Sampling

Licence GNU GPL Commercial (free: home
use, trials, beta releases;
discount for: students,
universities).

Source Open, possible to modify
when needed, contribute.

Closed.

Sources
 http://valgrind.org/docs
 http://www.rz.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaaccile
 Intel(R) VTune(TM) Amplifier XE 2011 docs.

	1-titre
	2-report
	1 The Hopping_Matrix function
	1.1 Dirac Operator
	1.2 Data structures
	1.3 Memory requirements
	1.4 Optimization
	1.4.1 Single core processor
	1.4.2 Multi-core processor

	1.5 The limit for memory access optimization
	1.5.1 L1, L2 Cache misses
	1.5.2 32 x 163 problem size
	1.5.3 32 x 163 even-odd preconditioning

	2 Hardware
	2.1 Processor
	2.1.1 Cache design
	Fully associative cache
	Direct-mapped cache
	N-way associative cache

	2.2 Memory read latency

	3 Current Hopping_Matrix implementation
	3.1 Memory alignment
	3.2 Tiling
	3.2.1 Tiling memory requirements
	3.2.2 32 x 163 lattice
	3.2.3 32 x 163 lattice conclusions

	3.3 Su3 matrices double allocation
	3.4 Other optimizations
	3.5 Multi-core optimization

	4 Neighbor spinors access
	4.1 Data structure
	4.2 Even-odd preconditioning
	4.3 Accessing neighbor nodes
	4.3.1 Memory based access
	4.3.2 Computation based access
	4.3.3 Binary operations based access

	4.4 Even-odd lattice traversal methods
	4.4.1 Lexicographical approach
	4.4.2 Naive approach
	4.4.3 Improved approach
	4.4.4 Singe variable loop

	4.5 Experiment
	4.5.1 Memory usage decrease
	4.5.2 Instruction read increase

	5 Permutation optimization
	5.1 L1 data cache usage optimization
	5.1.1 Lexicographical indexing
	5.1.2 Zigzag2D numbering
	5.1.3 Improved Zigzag2D numbering
	5.1.4 Zigzag3D
	5.1.5 Zigzag4D

	5.2 Experiment
	5.2.1 Experiment conclusion

	5.3 Analysis of lexicographical indexing results
	5.3.1 Distance between accesses
	5.3.2 L1 cache result
	5.3.3 L2 cache result
	5.3.4 Conclusion

	6 Cache optimization
	6.1 Cache pollution
	6.2 Solution
	6.3 Performance
	6.4 D1mr experiment
	6.5 Hardware prefetch

	7 Data prefetching
	7.1 Hardware prefetching
	7.1.1 Least level cache prefetching

	7.2 Hardware prefetch impact on Hopping-Matrix
	7.2.1 Prefetching spinors
	7.2.2 Prefetching su3 matrix
	7.2.3 Reference implementation
	7.2.4 Zigzag

	7.3 Software prefetch
	7.4 Software prefetch impact on Hopping-Matrix
	7.4.1 Su3 L2 cache pollution
	7.4.2 Su3 prefetch strategy
	7.4.3 Lexicographical spinor prefetch strategy

	8 Hybrid algorithm
	8.1 Improved Zigzag2D split into halves

	9 Even-odd su3 cache level sharing
	9.1 Reaching memory limits
	9.2 Overcoming memory limits
	9.2.1 Consequences of single su3 allocation
	9.2.2 Su3 cache level sharing
	9.2.3 Multiple cores
	9.2.4 Results

	10 Releted work
	11 Tools and measures
	11.1 Cachegrind
	11.1.1 Disadvantages

	11.2 VTune
	11.3 Tools comparison

	12 Results
	12.1 Reference version algorithm
	12.2 The fastest so far
	12.3 Best reduction of D1mr

	3-annexe
	4-presentation_internship
	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16

	5-presentation_tools
	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

