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Abstract

Program parallelization is usually based on dependence graph analysis. The dependence graph is built
on program statements and conveys ordering constraints on statements and statement iterations. These con-
straints must be summarized since statement iterations are virtually unbounded. This is usually done by
using Dependence Direction Vectors (DDV). We introduce here a new concept called Dependence Cone (DC),
that providles a more accurate dependence summary than DDV, and show that parallelization techniques
based on DDV can be adapted to DC. DC’s computation is based on linear systems and can exploit intra- and
inter-procedural information on variable values and CALL effects. Furthermore DC’s accuracy increases the

number of possible reorderings with transformations like the hyperplane method and supernode partitioning

and global parallelization.
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Introduction

Automatic program parallelization is not an easy task. Supercomputer architectures provide many
features like_ vector registers or cache memory that cannot l‘_)e exploited only by detecting parallel DO-loops
in a program. Statements and statement iterations must be transformed and/or reordered without changing
the program semantics. Reordering transformations must be compatible with Bernstein’s conditions? and

keep statement iterations which write and read the same memory location in the same temporal order.

Statements and statement iterations that refer the same memory location are said to be dependent on
each other and dependence analysis!® 1 has become a major tool in program parallelization. The dependence
relation can be defined at the statement' level, or at the statement iteration level. The iteration level would
usually require very largeii dependence graphs to represent the dependence relation. The dependence graph
would not fit in memory and would not be easy to use. Thus vectorizers and parallelizers usually build a
dependence graph at the statement level, but label each arc with summary information on dependences
between statement iterations. One such summary information is the Dependence Direction Vector?! which is

useful for execution reordering transformations like DO-loop parallelization' or DO-loop interchange.

The amount of information available with dependence direction vectors is not approriate for complex
reorderings of elementary computations. On the contrary the other kind of summary mechanism presented
in this paper, the Dependence Cone (DC), suits very well the need of global parallelization as performed by

the hyperplane method or supernode partitioning methods.

In the first section, we define our notations and explain which assumptions are made on the program to

be parallelized: control structures, form of subscript expressions, etc...

In the second section, we explain how a linear system can be built to denote a potential dependence
between two statements due to two array references. Then, we show how this system, called the dependence

system, is used to either prove the dependence does not hold or to compute additional information on this

' A few transformations like node-splitting require dependence relations to be defined at the variable reference
level.

H,They are even potentially unbounded since DO-loop bounds cannot always be evaluated at compile time.

i Loop parallelization is a reordering since this transformation destroies many couples of the execution order
relation. This is a sufficient condition but not a necessary one for DO-loop vectorization. For example, the DO-
loop Aj = Aj is a vector loop but not a parallel one. See [15] for a thorough discussion of the difference.
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dependence.

In the third section, we show how dependence information can be summarized with dependence direc-
tion vectors or with dependence cones. Both representations can be computed from the linear system built in

the second part but dependence cones are more accurate than dependence direction vectors.

In each section many examples are given.

1. Basics of Parallelization. Assumptions and Notations.

Program parallelization and restructuring must preserve the initial program semantics. The order of
read and write accesses to each memory location is kept while accesses to distinct memory locations can be
exchanged. Thus the value history of each memory location remains the same and final states are equal ag

the bit level.

Dependence based parallelization enforces the order between any read and any write and between

writes. This is a sufficient condition for histories to be preserved.

1.1. Assumptions

We assume there is no aliasing by equivalence or by parameter passing or between common variables

and parameters. Thus memory locations referred to with different names are distinct.

Scalar variables are easy to deal with since dependences can be tested with a string comparison. This

paper considers only array references enclosed in DO-loop bodies.

We assume the program is structured with sequence and DO-loop operators because backward and for-
ward GOTO and IF statements can be dealt with with the IF conversion algorithm described in 2. Further-
more, DO-loops are normalized: their lower bounds and their increments are equal to 1. Thus statements and
statement iterations can be designated by statement numbers and enclosing DO-loop index values. The exe-

cution order is the lexicographic order (see figure 1).

Finally we suppose that subscript expressions and DO-loop bounds are linear expressions based on
integer scalar variables. However, non-linear expressions can be dealt with by assuming they can take any

value in the declaration range and by deleting all equations or inequations built with them. For example, the
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Figure 1. Designations for Statement Iterations

non-scalar-linear references A(LB(K)) and A(I+1,K**2) would be reduced to A(,*) and A(I+1,*), which still

provides useful information.

These assumptions may seem to be too restrictive at first sight but are usual in automatic paralleliza-

tion because they hold for most parallel DO-loops.

1.2, Notations and Definitions

Let S1 and S2 be two potentially dependent statements. Let R1 and R2 be two references to the same
array. Let k be the number of enclosing DO-loops common to S1 and S2. If non common DO-loops are
ignored, and if SI and S2 are both enclosed in at least one DO-loop, then it is not necessary to designate
statements as shown in figure 1. Coordinates which are not DO-loop index values can be dropped except the
last one which must be kept to indicate the order of two .staltements within the DO-loop body. For the sake

of simplicity, this last coordinate is not shown in the following.

So iterations of S1 and S2 are integer elements of a k-dimensional vector space called the iteration
space, and are labeled by iteration vectors whose coordinates are equal to DO-loop index values relative to
iterations. Loop bounds define a subset of the iteration space called the iteration domain. Under our linear-

ity assumptions, this subset is a convex polyhedron.
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Let suppose iteration j, of S2 reads a memory location written by iteration j; of S1. Then S2 depends
onSland d=TJ5-7, is a dependence distance vector. If d is lexico-positive, j, must occur after 3, and the
dependence is called data (flow) dependence or true dependence since its expresses the way values are
re-used in the computation. If d is lexico-negative, the read must occur before the write, because of 2
memory location reuse; the dependence is from S2 to S1, and is called anti-dependence; its dependence dis-
tance vector is —d. If R1 and R2 are both write references, the dependence is called output-dependence and
d is kept lexico-positive by choosing S1 or S2 as origin of the dependence. In the following all kinds of depen-

dences are unioned in one dependence relation.

Control dependences are ignored because the program is assumed to be structured (see § 1.1).

2. Dependence System

This section is on setting, in terms of linear equations and inequations, the conditions for a dependence
between two statements S1 and S2 to exist because of references R1 of S1 and R2 of S2. This system, called
the dependence system, is used to compute the set of points TQ of the iteration space which are dependent on

a given point ?1. This set may be approximated by a convex polyhedron (see figure 2-a):

1, = { 33/ deponts n, |
The shape and size of I'I—I-r1 vary with Tl and we approximate all possible polyhedra by their convex hull

(see figure 2-b):

where the union symbol denotes the convex hull. As can be seen in figure 2-c, this convex hull is an upper

approximation of H—j+1 for any J;.

Such dependence systems are built for each pair (R1, R2) of references to the same array. They con-
tain information on the references (subscript expressions), and information valid for any iteration of S1 and

S2, like variables constant between S1 and S2 or enclosing DO-loop bounds.
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Figure 2. Dependence Polyhedra
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2.1. Variables of the Dependence System

Let J; and Jp be the iteration vectors of S1 and S2:

‘111 112
- 121 - i22
11 = . J2 = .
i i

where i} is the value of index I, for statement Sj.
Let d be the dependence distance vector. By definition d = T le.

Index variables are not the only variables to appear in subscript expressions or DO-loop bounds. Other
scalar variable values are kept in vectors ¥, and ¥, for statements S1 and S2. These vectors are called vari-

able vectors.

2.2. Equations and Inequations of the Dependence System

By definition a dependence exists if both statements S1 and S2 refer the same memory location at some
iterationsi and Tg Let R, be the matrix of the affine function mapping the iteration vector 7, and the vari-
able vector V| onto array indices and T the constant term. Let R, and T, be the same for R2 of S2. The fol-

lowing equation must hold for a dependence to exist:

it J2
R =R T
The definition of the dependence distance vector can be used as such:
d=T0-7
Information at S1 and S2 si usually a set of inequations like DO-loop bounds or results of a semantic
analysis’ although equations between variables sometimes exist. Variables may also be disguised constants.

This information is added to the system:

o} [;] <TG [;?2] <7

Moreover equations between variable values at S1 and S2 sometimes exist:

VI:F?Q‘{‘T‘

Very often, F =1 and T =10 when SI and S2 are close to each other in the program because not all scalar

variables are modified in the DO-loop body.
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The dependence system characterizes all possible dependence distance vectors between two references of
two statement iterations. The projection IT of this system on the subspace of dependence distance vectors d
can be approximated by the smallest convex hull of these distance vectors, which is again a linear system. If

the dependence system is not feasible, I is empty and there are no dependences between the two statements

for the references that were considered.

Kuhn proposed in [13] to test dependences by solving a linear system but he used mostly equalities and

built his system on j; and -j;, ignoring ¥; and ¥;. Loop bounds had to be linear functions of the outer DO-loop

indices.

2.3. Examples of Dependence Free Statements

Let’s consider program 1 which initializes the main diagonal, the upper-part and the lower part of a

square matrix to three different values.

DOI=1N
S1: T(LI) = o0.
DOK=1,I-1
32; T(ILK) = 1.
S3: T(K,I) = -1.
ENDDO
ENDDO

Program 1: Matrix Initialization

In the following upper case letters denote program variables, while lower case letters are used for their values

at some iteration j. To analyze the dependence between S1 and S2, the variables are:

=) B=() m=[n) w—[E] a-(a)

The dependence system can now be written:

iI:iQsi]:kﬂ

= iy ol

1<i £
1<i3Sny 1<k <ip-1

n; = g
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This system contains a non-consistent subsystem:
i = Ip, i; = ko
1<k, <ip-1
It is non feasible and statement S1 and S2 never depend on each other.

In the same way variables for statements S2 and S3 are:

e B M I OIS ORES b

The dependence system becomes:

I =ks, ko =13

i e Sl By ==, o
1< <np 1<k, <ip-1
1<i13<n31<ks<iz-1

g = g

This new system is not feasible as can be seen by substituting i, and 13 by ks and k; in the inequations. A
third system should be tested for the couple (S1, S3). This would show that the initialization procedure is
fully parallel. Let remark that usual dependence computation methods cannot handle triangular DO-loops. In

such cases, dependences are assumed.

2.4. Example of Dependent Statements

We need another example to show what happens when a dependence exists. Consider program 2 which
i1s part of a Gaussian elimination algorithm for banded matrices® where F is a side-effect free function
intended to represent the whole DO-loop body. Three references, R1: Y(I+J), R2: Y(I) and R3: Y(I+J),
appear in S and three systems should be built to compute the dependences between iterations of S. These

systems, as well as dependence nature, will label arcs from S to S in the statement dependence graph.

DOI=1,N
DOJ=1,M
S: Y(I+J) = F(Y(1), Y(I+J))
ENDDO
ENDDO

Program 2: Gaussian Elimination of banded Matrices
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Here is the dependence system for references R1 and R2:

L+ =1

lp =1 +dj, js = j; + ¢
1< €n,1<j <my
1<1p<ny1<j<m

my = mg, Nj = Ny

Its projectioniv on the dependence subspace is given by the following system II, 5:

d>1
Me=Yq+4>1
The dependence system for references R1 and R3, which is equal to the previous dependence system except

for the subscript expressions, is also projected and equal to:

HI,S == {d] + dj =0
Thus dependences exist' for statement S of the Gaussian Elimination program. Such systems define depen-

dence polyhedra.

2.5. Interprocedural Information

Triolet has shown in[19] that effects of procedure calls on a d-dimension array can be summarized with
convex polyhedra of Z%. One polyhedron provides possible values for subscript indices, and so defines a con-

vex part of the array. Such array parts are called regions.

For instance, if T is a NxN-array, the region:

T(¢1, ¢3) Where {qsl =N,1< ¢, < ¢1}
defines the lower triangular part of T. Two pseudo-variables ¢, and ¢, are introduced to represent possibles

values of T’s subscript indices. The linear system defining a region is built over pseudo-variables, DO-loop

indices (j) and other scalar integer variables (¥).

' In fact, the convex hull of the projection. This does not matter since it is a pessimistic assumption and since
reordering transformations are based on convex hulls of many elementary dependences.

VIt is not yet possible to say rigorously if they exist or not because they should be tested for lexico-positivity
and their nature should be computed. But it is more convenient to do this later.
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The dependence test presented above can be applied to DO-loops containing procedure calls, providing

minor modifications are introduced in the way dependence systems are built. First, pseudo-variables must be

added to the system variables. Second, the set of equalities:

3 ).
R]_ [?t]+?1=R2 [?2]"‘1'2
must be replaced by the systems defining the regions being tested. Other steps remain identical. More details

are available in [19].

Thus, dependence testing with linear systems provides an excellent support for interprocedural paralleli-

zation.

2.6. Semantics Information Exploitation

It is well known that program restructuring is better done when more information is available on the
program variables. Inter-® or intra-procedural constant propagation, linear equalities and inequalities on

scalar variables can provide key information for parallelization like a dependence sign or a loop upper bound.

The most accurate information that can be computed automatically is made of linear systems of equali-
ties and inequalities” . It can be used in a straightforward manner with a dependence test based on linear sys-

tems.

Moreover semantic information precludes the need for basic transformations like inductive variable
replacement or loop normalization. Information is conveyed by invariants attached to statements to the

dependence test algorithm and no actual transformation of the source program is needed? .

2.7. Concluding Remarks ’

When the dependence distance vectors are constant for all iterations of a pair of statements (see pro-

gram 4), the system IT is reduced to a set of equations.

The projection algorithm is potentially expensive when using a straight Fourrier-Motzkin algorithm as
in [20] because the number of inequations doubles at each variable elimination in the worst case. Moreover

equations must be converted into inequations and some information is lost because the system should be
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solved on Z. Fortunately this loss of information leads to an overestimation of dependences and to a correct

parallel code.

For accuracy, it seems better to use an exact algorithm like Gomory’s cutting planel” as it is done in
the parallelizer project PAF18 but this provides only feasibility and projection on one variable, or to solve
the subsystem of linear diophantine equations and to substitute unknowns by unconstrained variables in the

inequations before projection® .

The next section shows how II systems are transformed into dependence direction vectors and depen-

dence cones.

3. Dependence Direction Vector and Dependence Cone Computations with Linear Systems

In the first part, the dependence polyhedron is reduced to a set of dependence direction vectors as

defined by Wolfe in [21]. These are computed by intersections and feasibility tests.

In the second part, the dependence polyhedron representation is changed. Its system of equalities and
inequa.}it.ies is transformed into a generating system with vertices, rays and lines. This generating system is
basic for the dependence cone computation. For a DO-loop body, the cone is equivalent to the transitive
closure of all dependence relations for all pairs of statements (S1, S2) and all pairs of references (R1, R2). So,

all dependences for a DO-loop body can be defined by one dependence cone.

In part three, we show that dependence direction vectors and dependence cones are both cones of the
dependence space and that it is easy to transform one into the other and reciprocally. But the function
transforming a dependence cone into a dependence direction vector has no inverse function because it looses

information. Dependence cones are more accurate than dependence direction vectors.

3.1. Dependence Direction Vector Computation

The dependence direction vector is defined in [21] as a vector of elements taking their value in the set
{<, =, >}. These comparison symbols are used to express approximate possible directions for the depen-

dence distance vectors, by comparing their coeflicients to 0. For instance, the meaning of direction vector
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d >0 dy=0 d3<0
Note that Wolfe’s choice for his comparison symbols is opposite to ours.

Thus a DDV can be seen as a cone whose faces are hyperplanes orthogonal to basis vectors. The basic
comparison symbol set is enlarged with other symbols like >, <, £ (different) and * (no information) to
define an internal combination operation on dependence direction vector which is equivalent to their convex
hull. The different symbol £ let Wolfe define a non convex set which is not a cone but which does not seem

to provide more useful information than * for program transformations.

A dependence arc is labeled with a dependence direction vector if there exists at leats one dependence
distance vector in the cone defined by the direction vector. If this is true, the intersection of the dependence
polyhedron and the DDV cone cannot be empty. This condition is easy to test for any polyhedron IT and any
dependence direction vector since both are linear systems. The two systems are put together and the con-

sistency of the new system is tested.

For example, II; ; and the direction vector (<, >) are combined in:

4 > 1
& +d; > 1
& >0
d; < 0

which is feasible (d; = 2 and d; = -1 is a solution).

The results of this test for all possible dependence direction vectors'’ and for II; 3 and II; ; are summar-
ized in table 1 for lexico-positive direction vectors. The hierarchical test sequence described in [5] can be
applied to gain time. So the dependence arc due to the ﬁrsp two references to Y (see program 2) is labeled

with the combined DDV (< ,*) and the arc due to the first and third ones by (<,>).

Y1 The (=,~) vector is irrelevant because an iteration cannot depend on itself. Lexicographically negative
vectors are either irrelevant when both references are definitions because an iteration cannot depend on an
iteration executed afterwards or change a data dependence into an anti-dependence (and vice-versa) when one
reference is a definition and the other a use. The set of lexico-positive vectors depends on the relative position
of the two statements in the DO-loop body, unless statement numbers are introduced in iteration vectors and
distance vectors.
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Iz I 5
fe,4) yes no
(<,=)  yes no
(<,>)  yes yes
(=,<) no no

(<) (<>)

Table 1: Dependence Direction Vector Existence

Each large dependence system is projected only once for a pair of references and only small subsystems
are tested consistent for each potential direction vector. No tests at all are performed when II is not con-

sistent.

3.2. Dependence Cone Computation

Linear systems define convex polyhedra which can also be defined by generating systems. A generating
system is a triplet of sets: a set of vertices, ¥, ¥s,... , a set of rays, T}, Tp,... and a set of lines Tl,_l;, ... A point
X belongs to the corresponding convex polyhedron if:

J-lf= E )\iVi+ 2 ,anl'*j'i- E Uka

under the constraints:

¥l Ryl
Vi N>0
Vi =20

Generating systems and linear systems of equalities and inequalities define the same set, the set of con-

vex polyhedra. Algorithms to convert generating systems into systems of inequalities and vice-versa existl7 .

For example, the system I, , is transformed into a generating system with one vertex and two rays

while II; 5 is a simple line (see figure 3):
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Figure 3. Generating Systems and Convex Polyhedra

Dependence Polyhedron and Lexicographic Order

Dependence nature and existence cannot be decided without studying the lexico-positivity of points in

the dependence polyhedron II.

If R1 is a definition and R2 a use, lexico-positive points of II correspond to data dependences from S1
to S2, while lexico-negative points correspond to anti dependences from S2 to S1. If R1 and R2 are both
definitions the dependence is always an output one, and lexico-positive points correspond to an arc from S1

to S2 and others to an arc from S2 to S1.

As a consequence, several arcs may be generated by a single dependence system but all of them are
labeled with a lexico-positive polyhedron, i.e. a polyhedron whose points are all lexico-positive. In case the
i

initial polyhedron is not strictly lexico-positive or strictly lexico-negative'’, we have to split it into two

smaller polyhedra: a lexico-positive one and a lexico-negative one.

We do not have a direct test to check if a polyhedron is lexico-positive, except if all generating ele-

ments are lexico-positive. This happens in most cases with usual programs.

In the general case, the lexico-positive part of a polyhedron is computed by intersecting it with each

elementary linear condition of the lexico-positive order, and unioning all intersections. The lexico-negative

VI 10 this case, the opposite polyhedron is computed by negating all generating elements.
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part is computed the same way and then is negated.

Here are the elementary conditions for a 3-D lexicographic order:

lexico-positive conditions lexico-negative conditions
d >0 d <0
dj=0and d; >0 di=0and d; <0
dj=0anddj=0andd; >0 | dj=0and dj=0and d, < 0

These complex computations can sometimes be simplified. For example, the lexico-positive part of a
line is obtained by replacing in the generating system its direction vector by a ray and the smallest lexico-
positive point.

Let examine our example. There are no problems with II,, whose generating elements are lexico-
positive: II; 5 is a data dependence. But this is not true for IT, 3 which contains a line, i.e. two opposite rays.
II; ; contains two dependences as can be seen with:

=) ==1(3)
Iteration j; must write Y(3) after jo’s read. And jy’s write must occur before j,’s read. Read/Write and

Write/Read conflicts can be tested simultaneously because only one statement is considered. Because the

same reference appears twice, the Write/Write conflict is also tested at no cost.

I, 3 must be intersected with the two polyhedra whose union define the lexico-positive part of the

plane:

o o701} {0}

Since the first intersection is empty, the last generating system defines the lexico-positive part of IT; 3 denoted

I1% (see figure 4).

Now let’s consider program 3. The dependence system for references R1 and R2 of statement S leads

to the following dependence polyhedron:

di+d;+de =0
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it

Figure 4. Lexico-positive Part of II, ;

DOI=1,N
DOJ=1M
DOK=1,P
S A(I+J+K) = f(A(I+J+K))

Program 3: a Dependence Plane

which can also be expressed by the generating system:

)~ {1)G)))

Its intersections with lexico-positive constraints are:

d 4 dy

o, > g * d;>0 di+dj+de=0

II, = = > non-consistent

15 is empty, while II; and Il; can be expressed as generating systems:
1 1 0
0 0 -1
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- () (1))

The convex hull of II; and Il;, which is the convex hull of the lexico-positive subset of the dependence

= (AR

which contains one lexico-positive ray and one line. Some accuracy is lost when the parts are combined and

polyhedron, can be generated by:

replaced by their convex hull.

Dependence Cone

The goal of the dependence cone is to study how iterations of perfectly nested DO-loops can be re-
ordered. The DO-loop body is considered as a single statement, and no transformations are applied on it.

An iteration j; must be executed after an iteration j, if there exists a list of statement iterations:"™"

SlG;): SQ(?Q): T, Sk(Tk)) Ty Sn(_j’n)

such that Si(j,) is dependent on S_;(Jx;) because of a couple of array references ¢y, for k in [2,n].

- - =
Let dy = jy—Jx_1, We have:

- = N
3 = larly = E Hk
k=2

where ?fk belongs to the elementary dependence polyhedron Hck, and can be written as:

=3 MV wErMY wFLE
o g

+
the dependence distance vector d can be rewritten as:

n .ll! n
I=3 5 MWSY D wnsy B vkl
k=2 o k=2 g 2 of

k=

We can reorder the three parts of the previous expression by grouping all terms produced by the same
couple ¢ of array references. We obtain:
_ k k]l = 'S
-2 T (S Mw+T S (2 wlw+T T (D &%
e 1

c o
C=¢ Ck=C Ck=c

- -
i S@ denotes iteration ] of statement S.
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Let define new coefficients:

k
=t cx=¢

=Y M B=% s w=% v
k k
ck=c

There are no constraints on coefficients z.;. Coefficients y4 are positive since all ,uf}‘ are positive. Finally,

[E 3 xo‘,:] is greater than 1 since each term [E )\O}f] is equal to 1 for every k.
c o o

Thus we can find two sets {f;} and {f;} such that:

d can be rewritten as:

=N}
l
-1
214
5
&
+
-
=[]
o
s
+
-
%
<

i+ LT 4T
c T

We recognize the usual way of writing that d belongs to the convex polyhedron C whose generating sys-

WA CRUAG

This convex polyhedron is called the Dependence Cone.

tem 1is:

The generating system computed above for C is not canonical: some elements may be redundant and
lines may be hidden in rays. However, algorithms to eliminate redundancy from generating systems are

presented in [17].

The dependence cone summarize the dependence relations with which the parallel execution ordering

must be compatible. It may contain too many elements but for any Tz depending on any Tl, YQ r"j*] e C.

Examples

For instance, DO-loops of program 2 are characterized by the following cone:

me = [{O () €)}) o
e one= ({0} g 1O A B



o 0=

This generating system can be made non redundant:

e= (B @)

This DC is drawn on figure 5-a for a particular point Tl. It defines the set of points ?2 which might be depen-

=

dent on J;. The DDVs for the same program are drawn on figure 5-b&c. One can see that the DC is more

accurate than the union of the 2 DDVs (the half-space d; > 0).

X

Figure 5. DC and DDVs for Program 2

Another example to show that points which are dependent on each other because of transitivity are

taken into account. The following constant dependence polyhedron'™, computed for program 4, is changed

into the following cone:

n({(4) () @)} o] = o= ({(2). (3). (

which can be simplified into:

o

{61 @)))

—

o= ({2 @) ©) ]

The dependence polyhedron and the corresponding cone are shown on figure 6.

X such polyhedra are called polytopes.
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Ja - i
JT" j1'* ////

/)

Figure 8. A Constant Dependence Polyhedron and its Dependence Cone

DOI=1,N

DO J=1,M
A(LJ) = f(A(I-1,7),A(IJ-1),A(I-1,J+1))

Program 4. Constant Dependence Distance Vectors

DOI=1,N
DO J=1,M
S A(LI) = f(A(I, J-1), A(I-1, N))

Program 5: Dependence Cone Simplification

A last example to show redundance elimination is not that simple. Consider program 5 which contains

3 references in statement S. There is no output dependence on A(I,J). There is a constant data dependence

o0}

and a broadcast data dependence between A(I,J) and A(I-1, N):

ma= ({0} {2}

E.N.SMP.-CAL Report 87-E94

with A(I, J) and A(I, J-1):



Although II, g’ray is lexico-negative, II; 5 is lexico-positive since the first coordinate of all its points is neces-

sary equal to 1.

As shown previously, the dependence cone is:

o= ({1 @) {0). () 09

It contains the origin, and one line hidden in the ray set. After simplification, we obtain:

w-[{@MH{OHOY

3.3. Relation Between DDV and DC
Both are polyhedra. They can be represented either by a linear system or by a generating system.

The dependence direction vectors can be kept under the generating form and the intersection with II is
equivalent to a membership test of vertices and rays and lines in II. Vice-versa, II can be put into the gen-

erating form and its vertices and rays and lines checked for membership to the direction vector.

DDV is optimal for many transformations because it conveys the right amount of information (DO-loop
parallelization, DO-loop interchange). This is not true for less straightforward transformations like the

hyperplane method!# or supernode partitioning!? .

The lack of accuracy of DDV’s is shown on figure 7 where three different dependence cones are summar-

ized by the same DDV,

4. Conclusion

We have presented in this report a new way of computing dependence graphs for a nest of DO-loops.

This new method is based on linear systems of equalities and inequalities.

We have shown how to express a potential dependence between two statements with a linear system.
The two statements are dependent on each other if the system is consistent, and, when it is, it can be used to
compute the corresponding dependence direction vectors which summarize the set of possible directions for

dependence distance vectors.

We have introduced a new concept, the dependence cone, to summarize these possible directions, and
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we have shown how dependence cones can be computed. The dependence cone provides a more accurate
summary of dependence distance vectors than the dependence direction vector. The cone rays provides
extreme dependence directions that may not be parallel to the basis vectors. The generating systems of the
dependence cone and of the dependence polyhedron are finite description of infinite sets of dependence dis-
tance vectors encountered by Kuhn when a datum is broadcasted in the iteration space or when a memory

location is used many times.

When constant dependence distance vectors are available, they should be kept as such to apply the
minimum distance partitioning!® because the generating system computation would divide their coordinates
by their GCDs. Rays provide information on dependence direction and not on dependence distance. This is

the price to pay to summarize data broadcasting.

The main advantage of dependence cones is to provide accurate information on possible directions for
dependence vectors. Generating systems provide a representation that does not depend on the set of initial
DO-loops, whereas dependence direction vector is based onthem. As a consequence, complex reorderings of

computations are possible with dependence cones.

The hyperplane method!? produces complex reorderings where computations are done simultaneously
along hyperplanes of the iteration space. Supernode partioning!! , a generalization of the hyperplane
method, produced much more complex reorderings, where the initial set of computations is decomposed into

parallel fronts of computation subsets (supernodes).

The hyperplane method, as well as supernode partitioning, can be applied with dependence direction
vectors, but the lack of accuracy of dependence direction vectors prevents some times a possible application

and other times limit unduly the range of valid transformation parameters.

Using linear systems in program parallelization and dependence testing is doomed to failure according
to many people because of the exponential complexity of many algorithms. Although no implementation
exists yet, it seems possible to cut the average cost by using simple techniques when references are simple

and by using the full power of the integer linear theory only when necessary.
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