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Abstract. Based on fundamental physics-based considerations, we in-
troduce the Biaffine Temperature-Voltage power model (BiTV) for SoC
systems, which takes the influence of dynamic voltage, frequency, and
ambient temperature conditions into account. Using an ARM-Cortex-
based AM572x system operating in a temperature-controlled oven, we
provide experimental evidence of the validity of the BiTV power model
over a significant range of ambient temperatures (25 to 55 °C), voltages
(0.98 to 1.23 V) and frequencies (100 to 1,500 MHz).
These experiments and the BiTV model provide quantitative elements
to assess the impact of ambient temperature on systems’ performance.
Such insights could be of use to system designers and compiler writers,
in particular when dealing with embedded systems operating in harsh
conditions or under energy-critical constraints.

Keywords: Energy · temperature · energy profiling · monitoring infras-
tructure.

1 Introduction

The laws of thermodynamics impose that the warmer the ambient tempera-
ture is, the more difficult it will be to cool down silicon-based processing de-
vices, and thus the more energy these devices will consume. Many research
works investigate the subtle interplay between energy, power, and tempera-
ture at a rather large system scale (see, for instance, among the recent ones,
[Guermouche and Orgerie(2022)]). The situation is, in fact, even more complex
at a finer-grained level, where system-provided performance and environmen-
tal counters typically used in the above-mentioned lines of research might not
provide the precision required. In particular, since many embedded systems are
operated on energy-constrained batteries and in various mobile settings (cold
remote outdoors, temperate indoors, hot engines, etc.) [Prakash et al.(2020)],
a detailed understanding of how power requirements and energy consumption
parameters evolve with respect to temperature is clearly needed to implement
performance-increasing strategies.
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If the system-on-chip (SoC) manufacturers provide tools such as Xilinx Power
Estimator [Inc.(2018)] or Intel FPGA Power and Thermal Calculator [Intel(2020)]
for power-related analysis, they are CPU-intensive and very complex to set up
and use, thus being mostly dedicated to the design phase of SoCs. Our goal
here is to come up with a simpler yet experimentally and physically validated
model that could be used, say, within a compiler or an embedded runtime to
take temperature-related power-management decisions. Such a model could be,
for instance, used to decide when and how to increase the CPU frequency to
meet real-time computational demands while taking into account the tempera-
ture conditions. This is a key element to ensure that the processor temperature is
always maintained within its manufacturer-specified limits and thus that thermal
runaways are avoided.

Unfortunately, setting up an experiment to inform such an issue is rather
complex for a typical computer-oriented academic laboratory, which may explain
the scarcity of related works in the domain (see Section 5), even though the
application spectrum is rather vast, in particular when dealing with battery-
equipped systems.

In this paper, we describe how we conducted such an experiment on one spe-
cific system, namely a Texas Instrument AM572x chip. Our contributions are (1)
an experimental assessment of the impact of ambient temperature on the energy
and power characteristics of a SoC system, and (2) the Biaffine Temperature-
Voltage power model (BiTV), a physics-inspired and experimentally-validated
analytical model of SoC system behavior with respect to both ambient tempera-
ture, dynamic voltage, and CPU clock frequency. Our experiments suggest that
the BiTV power model provides a good approximation of the system behavior
over a significant spectrum of temperatures, voltages, and frequencies.

These new results are a considerable improvement with regard to the previous
work of [Skadron et al.(2003)][Chandrakasan et al.(1996)][Vaddina et al.(2017)],
where all experiments were run at constant ambient temperature. Using a tempe-
rature-controlled oven, we report here on an extensive data-gathering run, from
which a detailed analysis of how such a system behaves for various temperature
points is performed. Even though we focus in this paper on one particular SoC
system, we believe that the approach taken here and the corresponding results
should be, thanks to their reliance on physics-informed concepts (see Section 2),
similar for other SoC systems overall. Of course, future work will be needed to
confirm this hypothesis.

The structure of the paper is as follows. In Section 2, we introduce the BiTV
power model. In Section 3, we describe the experimental setup and protocol used
to check the validity of BiTV. In Section 4, we present and analyze the data that
support this model. Related work is presented in Section 5. We conclude and
discuss future work in Section 6.
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2 The BiTV power model

Even though transistor-level models exist to study how the various involved
currents (gate leakage current, sub-threshold current, etc.) vary with respect
to say temperature, voltage or technology-specific parameters such as channel
length and width, scaling these models to the billions of transistors found in
a typical chip is very difficult. Given the interplay between all these elements,
power requirements for digital computing devices Pcpu are thus linked to many
complex physical processes. A coarse definition for this power requirement is:

Pcpu = Pdynamic + Pstatic

= Pdynamic + Pgate + Psubthreshold,
(1)

where the static power is considered to be the sum of two dominant compo-
nents [Narendra and (eds.)(2006)]: (1) the sub-threshold (leakage) power, of key
importance, since it doesn’t contribute to the integrated circuit’s (IC) function
and constitutes a significant fraction of IC energy consumption [Lucian(2011)],
and (2) the usually smaller gate-leakage power.3 Each power component Pi cor-
responds to a current component Ii, such that Pi = VddIi, where Vdd is the
supply voltage at drain. An approximate assessment of a component’s energy
consumption while running a device, Ei, can then be obtained as Pit, where t is
the time during which the system is run.

There exist analytical and numerical models for each of these components
(see, for instance, Chandrakasan et al. [Chandrakasan et al.(1996)] or Skadron
et al. [Skadron et al.(2003)]). Even though these apply only to the smallest com-
ponents of an actual SoC and thus cannot be used directly at the system level,
one can still build upon them and Equation 1. In particular, these observa-
tions suggest the following constraints to follow when designing a parameterized
temperature-aware system-level analytical power model.

– Idynamic is linked to the actual running of programs, and can be deemed
proportional (by a factor ϵ) to the frequency f of the processor and to
Vdd [De Vogeleer et al.(2014a)]:

Idynamic = ϵfVdd.

– Isubthreshold is proportional to T 2 and to an exponential of a function of the
temperature T and Vgs, the gate-to-source voltage:

Isubthreshold = αT 2eβ(Vgs−Vth)/T ,

where Vth is the threshold voltage [Liu et al.(2007)]. Since Vgs varies be-
tween 0 and Vdd, Vth being its minimum, we decide to approximate the
voltage term Vgs − Vth in the exponent by Taylor expansion around the
minimum of the voltage range (which is narrow here, between 0.98 V and

3 The usually smaller short-circuit power dissipation effects are here ignored.
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1.23 V, see Section 3) to first order in Vdd. After rewriting αT 2 as eln(αT
2)

and adding the exponents, we further simplify the model, since the consid-
ered ambient-temperature range is here, when expressed in Kelvins, narrow
(from 25 °C to 55 °C, see Section 3), by approximating β/T and ln(αT 2) by
Taylor expansion around 273.15 K (0 °C) to first order in T . The resulting
approximate exponent is then of the form a+ bVdd + cT + dVddT , where T
is now expressed in °C.

– Igate depends in a complex manner upon T and Vdd. However, since this term
is most of the time very small when compared to Isubthreshold, we assume it
to be 0, to simplify the model [Liu and Kursun(2007)].

We suggest thus to build upon this high-level analysis of the physical foun-
dations behind the modeling of the power requirement, Pcpu, for a single CPU to
generalize it for a whole SoC board, at least as far as CPU-bound tasks are con-
cerned. Abstracting over the formal mathematical formulae introduced above,
we introduce thus the Biaffine Temperature-Voltage Power Model (BiTV)4 to
approximate the power requirements of SoCs. It is specified as follows.

PBiTV = Vdd(ϵfVdd + ea+bVdd+cT+dVddT ). (2)

The BiTV model parameters ϵ, a, b, c, and d are linked to the particularities of
the system at hand such as the technology parameters or the actual code being
run on the device (OS, user code, I/O, etc.). In the rest of this paper, we provide
experimental evidence for the validity of the BiTV power model.

3 Experimental setup

In order to validate BiTV under varying conditions, including benchmark char-
acteristics, temperature, processor frequency, and supply voltage, we performed
a campaign measuring the instantaneous power requirements of a SoC system.
The setup for these measurement experiments is shown in Figure 1.

3.1 Equipment

The central component of this setup is an oven that allows us to precisely control
the ambient temperature inside the oven’s chamber. The oven model is a UFP
400, produced by Memmert GmBH (Germany), which has a chamber volume of
53 l, a temperature range starting from 5 °C above room temperature (no cooling
possible) up to 300 °C, and forced air convection. The temperature probes of the
oven are located at the top of the chamber. We used the oven to heat the chamber
to 25, 35, 45, and 55 °C. We refer to the temperature inside the oven’s chamber
as the ambient temperature for the experiments.

As a SoC system, we use an AM572x EVM development board manufactured
by Texas Instruments. The board hosts a Sitara ARM SoC chip, 2 GB DDR3L
4 BiTV is loosely called “biaffine” since it is affine in its exponent term with respect

to each of its T and Vdd parameters when the other is held constant.
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Fig. 1: Representative picture of the experimental setup. The AM572x board is
inside the thermal oven. It is connected to the host system and NI cDAQ with
its I/O modules NI 9215 and NI 9211. [Oven courtesy Centre des matériaux,
Mines Paris, Evry]

memory, 4 GB of flash memory, a TPS659037 power management chip, and
several connectors (audio, HDMI, Ethernet, USB, etc.). For our measurements,
we are interested in monitoring the power of the microprocessors inside the Sitara
SoC only. We thus modified the board to directly measure the power at the
current-sense resistors of the microprocessor submodule, which are intended for
high-precision power monitoring and thus allow measurements independent from
other components on the board/SoC. The chip itself is fabricated using a 23-nm
design process and contains two ARM Cortex A15 cores in the microprocessor
submodule. During the experiments, only a single core was active, running the
Linux operating system from Texas Instruments’ Processor SDK (v.04).

We modified the setup of the Linux power management to allow us to manu-
ally control the microprocessor’s clock frequency and voltage settings. The pro-
cessor supports three voltage settings: OPP_NOM (0.98 V), OPP_OD (1.09 V), and
OPP_HIGH (1.23 V).5 The clock frequency can be controlled in steps of 100 MHz
in the range from 100 to 1,500 MHz. However, the processor specification im-
poses a minimum voltage level for certain frequency settings, i.e., OP_NOM, up
to 1,000 MHz, OPP_OD, up to 1,176 MHz, and OPP_HIGH, for higher frequencies.
Note that it is possible to impose higher voltage levels; for our measurements, we
nevertheless always use the lowest possible voltage level for a given frequency.

5 Note that these voltage numbers are specific to a particular board and thus may
slightly vary between different boards.
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Power monitoring is semi-automatized using National Instruments LabVIEW
software running on a separate host machine (a MacBook Pro running Windows,
in this case). The host machine is connected to a Compact DAQ data-acquisition
module by National Instruments (NI cDAQ-9174) holding an I/O module NI
9215, in-turn connected to the aforementioned current-sense resistors on the
microprocessor submodule6 of the AM572x EVM development board. A second
I/O module, an NI 9211, is connected to a temperature probe at the heatsink.
The measured sensor data from both I/O modules are processed by the cDAQ
module and sent to the host machine, where the data is annotated and recorded
in a trace file. LabVIEW and the cDAQ equipment ensure a tight synchronization
between the two measured data streams.

3.2 Protocol
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Fig. 2: Ambient air and heatsink temperatures when the system is shutdown.

The AM572x EVM development board is placed inside the oven at the 2nd
of 4 levels of shelves in order to improve air circulation and minimize the time
to reach the target temperature. Figure 2 provides an idea of the time needed
to heat the oven’s chamber with respect to a specified target temperature. In
addition to the oven’s temperature probes, we also placed, as mentioned above,
a probe at the SoC’s heatsink. This heatsink temperature is the best possible
approximation of the actual temperature conditions of the transistors inside the
chip that can be measured from the outside. More precisely, we compute this
last so-called junction temperature, i.e., the temperature at the transistor level,
6 This submodule hosts the 2 processor cores, the L1 and L2 caches, the boot ROM,

the power management unit and the PLL.
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from the thermal resistance of the heatsink [CTS Electronic Components(2006)]
and the SoC chip [TI Inc.(2011),TI Inc.(2017),TI Inc.(2018)]. Note that the chip
itself also provides integrated temperature probes, but they are not very precise
and reliable, e.g., reading temperature values from these sensors interferes with
the execution of the current program.

For measurements, we consider 3 benchmark kernels: Goldrader (a bit-
reversal algorithm), Blowfish (a symmetric block cipher), and SHA (a hashing
function). These kernels are compute-bound and thus mostly stress the micro-
processors, but do so with a different mix of instructions. Thus running these
kernels for a short period (a couple of seconds) allows us to optimally control
the actual temperature conditions at the transistor level of the chip, while moni-
toring power of a processor core in isolation. Given that these running times are
rather short, we assume the chip-level temperatures to remain quasi-constant.

As can be seen in Figure 2, it takes about 10 minutes to increase the ambi-
ent temperature from 28.5 °C to roughly 30.5 °C. It can also be seen that the
heatsink temperature for a system that is shutdown follows with a slight lag,
but eventually converges towards the ambient temperature. Heating times are
considerable; the experiments were thus performed in batches with temperature
strictly increasing within a batch. More precisely, a batch starts with a com-
pletely cooled oven (at room temperature); we then set the oven to a target
temperature of 25 °C, while keeping the SoC system in an IDLE state. Once the
oven and heatsink temperatures have both reached the target temperature, we
run one of the short kernels as a benchmark at the lowest possible clock fre-
quency (100 MHz) and put the system again into an IDLE state. Running the
kernel might slightly increase the temperature inside the chip; we thus keep the
system in an IDLE state for a while to allow any excess heat to dissipate before
proceeding to the next measurement, i.e., by increasing the clock frequency by
100 Mhz, switching the benchmark kernel, or increasing the target temperature
by 10 °C. We also made sure that all runs were using warm cache states.

We performed a series of experimental campaigns to gather physical data,
namely power requirements for the three benchmark kernels running at different
settings. The parameters under study were the following:

– benchmark B. One out of the three kernels Goldrader, Blowfish, or SHA;
– temperature T . Ambient temperatures of 25, 35, 45, or 55 °C in the oven;7

– frequency f . Clock frequency of the microprocessor module, varied in steps
of 100 MHz from 100 to 1,500 MHz;

– voltage Vdd. Minimal voltage settings OPP_NOM, OPP_OD, or OPP_HIGH, de-
pending on the requirements of the clock frequency.

7 We limited the maximum ambient temperature to 55 °C, since going beyond this
value would increase the on-chip temperature to more than 90 °C, at which point
the CPU would experience a thermal emergency and shutdown. Cooling the board
to less than 25 °C would require a refrigerating enclosure (see Section 6 ).
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Fig. 3: Junction and heatsink temperatures with respect to ambient temperature
(in °C). The system is running IDLE.

3.3 Temperature calibration

The introduction of an oven to induce higher ambient-temperature conditions
introduces a new constraint on heat transfer via the chip’s heatsink. There are
thus many different temperatures involved in the current experiment. The model
in Equation 2 relies on a temperature T that is, in fact, the junction temper-
ature Tj , while what is controlled by the oven is the ambient temperature Ta.
In addition, our temperature probe is mounted on the SoC chip’s heatsink, thus
providing us another temperature point Th.

We compared these different temperatures as follows. As mentioned above,
we derived Tj from Th considering the thermal resistance parameters as spec-
ified for the heatsink [CTS Electronic Components(2006)] and the SoC chip
[TI Inc.(2017)] using a standard manufacturer-provided formula [TI Inc.(2011)].
An on-chip microprocessor-domain thermal sensor measures the approximate
junction temperature, and their values can be retrieved from the command line
using the sysfs pseudo file system, a feature provided by the Linux kernel. After
allowing the board to soak for 5 minutes, the junction temperature Tj corre-
sponding to each ambient temperature Ta has thus been recorded. Using the
junction temperature model and θi parameters provided in [TI Inc.(2017)], we
also checked for the consistency of our measurements with the modeled ones.

Figure 3 relates the data points for Tj , Th, and Ta for a system in an IDLE
state and running at the lowest voltage/frequency setting. For every degree in-
crease in Ta, as long as the system is running IDLE, Tj increases by a factor
of 1.135. The obtained numbers are consistent with measurements by Texas
Instruments Incorporated, the manufacturer of the SoC [TI Inc.(2018)].

When assessing the validity of the BiTV model, one has thus to be careful to
use the proper temperature variant. Note however that, since the relationships
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between temperatures are mostly linear when running IDLE, we surmised that
using the biaffine model could still be valid using any of the above mentioned
temperatures, the only impact being possible changes in the proportionality
coefficients and parameters. This is, in fact, what we validate via the experiments
described below. Unless otherwise mentioned, we consider thus from now on that
T , the ambient temperature, is the parameter of interest here.

4 Results

Below we present the experimental results obtained using the previously de-
scribed setup. Given the size of the gathered data, when discussing specific re-
sults, we select in this section the most interesting and/or illustrative subset of
parameter values for B (benchmark index), T (°C), f (MHz), and Vdd (V). The
other results are similar.

4.1 Measurements

In Figure 4a is plotted the measured average power when running B = Goldrader

for various T and f (i.e., also Vdd). As expected, the power needs increase with
f . Three different regimes can be noticed, clearly linked to the frequency bound-
aries of the 3 different supply voltage settings (Vdd) required by the Texas Instru-
ments chip (see Section 3). The significant and non-linear impact of T on power
requirements is clearly visible, in particular at high-frequency settings. The non-
linearity of power with respect to Vdd can indirectly be seen at the mid-voltage
setting, since the points for frequencies 1, 1.1 and 1.2 GHz, corresponding each
to a different value of Vdd, are not aligned.
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Fig. 4: Average power vs. frequency for Goldrader (4a) and qsort (4b).

The three core benchmarks Bi are rather small program kernels. They amount
to about a dozen of lines of code each and run rather fast (depending on fre-
quency, between 8 and 120 s for Goldrader, 21 and 331 s for Blowfish, and 43
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and 683 s for SHA). Thus, we also decided to run some more significant programs
to further explore the impact of the ambient temperature on the thermal be-
havior under complex load. Using typical benchmark examples, namely susan,
bitcount, basicMath, and qsort from the MiBench benchmark suite for em-
bedded systems [Guthaus et al.(2001)], we obtained quite similar experimental
results to those found for smaller benchmarks (see, for instance, Figure 4b), sug-
gesting that a unique generic model of power requirements could probably be
designed, which is what we did with BiTV.
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Fig. 5: Energy consumption vs. frequency and temperature (Goldrader).

Finally, when multiplying an average power value by the total running time
of the corresponding program, one gets its energy consumption profile, e.g., for
Goldrader in Figure 5. One can clearly see the typical convex energy/frequency
curve discussed by De Vogeleer et al [De Vogeleer et al.(2014a)], although the
characteristics of these convexity profiles vary for each of the three frequency
intervals mentioned in Section 3. Notice that, in particular when running slowly,
the energy consumption can vary by a quite significant factor with ambient
temperature (almost 2, between 25 and 55 °C). Also, this graph suggests that
the energy/frequency rule keeps being valid for each frequency interval when
varying the ambient temperature, a property not experimentally checked until
now.

4.2 BiTV model assessment

To assess the validity of BiTV, we performed a non-linear fitting of PBiTV (Equa-
tion 2) using the experimental power data gathered from running the Blowfish
benchmark kernel. We used the default solver for non-linear problems SWARM
from LibreOffice. The model parameters we obtained for BiTV that minimize
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the standard error for the Blowfish kernel are: ϵ = 1.10, a = −1.32, b = 4.44,
c = 3.85× 10−2, and d = −3.67× 10−4.
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Fig. 6: Comparison of BiTV-predicted (red) and measured (blue) average power
(in mW) at 25 and 35 °C while varying voltage and frequency (Goldrader).

We then applied the obtained model parameters to the other two benchmark
kernels Goldrader and SHA. Figures 6 and 7 illustrate the good fit between the
measured average power (in blue) and the BiTV-predicted average power (in
red) for the Goldrader benchmark at various temperature (T ), voltage (Vdd),
and frequency (f) settings. The best fit occurs at T = 55 °C (Figure 7, right),
while some divergence can be observed for all other settings – notably towards
the high end of the frequency spectrum. Yet, the relative (with respect to the
mean) standard errors of estimate (RSE) for these four temperature values are
all below 2% for Goldrader.

Applying the model with the same parameter values (for ϵ, a, b, c, and d)
to SHA yields similar results, which are not shown here. The RSE values vary
slightly, but are still below 2% for all configurations. This suggests that the BiTV
power model provides good accuracy even across the considered benchmark ker-
nels and a wide range of temperatures.

As a final check, we compared the actual total energy consumed by SHA with
a prediction based on the BiTV model, which is computed by multiplying the
modeled power value (again using the same model-parameter values) for SHA
by its actual running time. The results, for the temperatures (T ) 45 and 55 °C
and varying voltage and frequency settings (Vdd and f), are given in Figure 8.
One can observe a good fit between the related curves, albeit with a clearly
visible gap. This gap can be explained by the fact that the model was not fit
using the SHA power data, consequently leading to a slight error (recall that
the RSE was small, below 2%, but not zero). In addition, we can observe an
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Fig. 7: Comparison of BiTV-predicted (red) and measured (blue) average power
(in mW) at 45 and 55 °C while varying voltage and frequency (Goldrader).

amplification of the absolute model error probably due to the multiplication
with the benchmark’s running time.

5 Related work

The impact of ambient temperature on CPU power requirements and/or energy
consumption is extensively studied at the large-grain level of data centers or
HPC farms (see, for instance, [El-Sayed et al.(2012)] [Gupta et al.(2021)]). Yet,
research that focuses on more low-level devices, yet at a coarser level than Reg-
ister Transfer Level (RTL), is rarer. A possible reason for this might be that
experimental validation of analytical models is a complicated affair at such a
small scale, requiring somewhat complex equipment and protocols.

Among significant related work, De Vogeleer et al. [De Vogeleer et al.(2014b)]
introduce a temperature-aware power model for the Samsung Galaxy A7 and A15
processors. They experimentally confirm the exponential behavior of power w.r.t.
temperature and equip an analytical model with parameters that are polynomial
functions of temperature, frequency and number of cores. The use of an oven in
our experiments allows for a much better controlled initial-temperature condition
for the measurements. In particular, De Vogeleer et al. [De Vogeleer et al.(2014b)]
manually forced heating, resulting in a less homogeneous environment for the
device than in our experiments. Finally, the BiTV model is built on more physics-
based foundations and is able to handle varying voltage.

Vaddina et al. [Vaddina et al.(2021)] proposed a workflow for energy and tem-
perature profiling on high-performance systems running parallel applications.
They carried out their experiments on Intel’s X86-based multi-core processors,
utilizing the NAS parallel benchmark suite. Their approach allows full and dy-
namic runtime control over the execution of applications, ensuring that the pro-
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Fig. 8: Comparison of BiTV-predicted (red) and measured (blue) total energy
consumption at 45 and 55 °C while varying (voltage and) frequency, in MHz
(SHA). The fit is similar at 25 °C (and thus omitted here), while the experimental
data are missing at 35 °C, due to technical issues during the experiment.

cessors’ frequency remains within a specified range. They demonstrated that the
energy response to frequency scaling is greatly influenced by the characteristics
of the workload and forms a convex function around the optimal frequency point.
Despite this previous work by the same lead author, the present paper, attempt-
ing to tackle similar issues, focuses on a totally different architecture, which, by
itself, justifies this new work. In addition to introducing the new BiTV model,
it also demonstrates the universality of the taken approach, methodology and
theoretical framework, which are thus relevant to different architectures.

Recent work by Texas Instruments [TI Inc.(2018)] as well as Intel/ARM
[Singla et al.(2015),Bhat et al.(2018)] used a similar setup as ours, notably with
a temperature-controlled oven.8 The measurements by Texas Instruments are
also based on an AM572x EVM board and are in line with our measurements
(cf. Figure 3), considering an IDLE system [TI Inc.(2018), Figure 1]. Other re-
sults are, however, not comparable, since they measured the power requirements
of the entire SoC system using the Drystone benchmark. Yet, our measurements
still follow the same overall trends. The biggest difference, though, is that Texas
Instruments only provides measured data and does not introduce a power model
that may be used for predictions.

The work supported by Intel and ARM uses different SoC systems based
on the Odroid platform (Samsung Exynos 5410 and Exynos 5422) and aim
at designing a Dynamic Thermal and Power Management (DTPM) algorithm
(see [Singh et al.(2020)] for a survey). In the initial work [Singla et al.(2015)],
the objective is to predict the evolution of the SoC system’s temperature in the
future and apply dynamic voltage and frequency scaling to control the tempera-

8 This research was performed independently of ours.
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ture – even without cooling support by a fan. In more recent work, the algorithm
was extended to incorporate a power model [Bhat et al.(2018)] whose parame-
ters have been determined in a similar setup as ours. However, the power model
itself is only compared to the measured data, but otherwise is not evaluated.
Instead, the DTPM algorithm is evaluated; it performs runtime monitoring and,
based on a mix of measured and predicted parameters, tries to find an opti-
mal frequency setting when the SoC’s temperature exceeds a certain threshold.
Our work focuses on the power model itself. Notably, we introduce a simpler
analytical power model, explain its link to physical foundations, and show its
adequacy with experimental measurements across different benchmarks as well
as temperature, frequency, and voltage settings.

6 Conclusion and future work

Based on physics-informed and experimental considerations, we modeled and
quantified the influence of the ambient temperature on the power requirements
of SoC systems at the microprocessor level. We believe these results must be
considered in future system energy profiles, especially when running on batteries
and dealing with energy-critical applications. We introduced a new ambient-
temperature-, frequency- and voltage-aware power model, BiTV. Preliminary
experiments on an ARM-based AM572x system suggest that it provides a very
good fit with actual experimental data on a wide spectrum of temperature,
voltage, and frequency settings even across benchmark kernels.

For future work, it would be interesting to experiment with and analyze the
influence of the ambient temperature at levels lower (typically in the [−30, 20]
degree Celsius) than the ones used in the experiments presented in this paper,
in order to cover the range of realistic outdoor temperatures and assess the
generality of the BiTV model in this extended domain.

Another interesting venue for research would be to provide a more scientific
grounding to the BiTV analytical model, in particular the values of its parame-
ters, based on more fundamental physics taking into account aggregation effects.
This is an important issue since, for now, the model parameters are learned from
experimental data; the cost of such experiments can only be justified for products
deployed in large numbers.

Finally, and even though we expect the physical grounding of BiTV to make it
somewhat universal, extending the types of computer boards (and even studying
the impact of the individual differences among boards of the same type) and
benchmarks used to validate and/or extend it is needed. In particular, the test
programs used in this paper are CPU-bound kernels. Studying how well BiTV
can be adapted, via parameter changes or more fundamental generalizations,
to programs that access different memory-cache levels or boards that use more
recent SoCs or other silicon-manufacturing technologies is clearly warranted.
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