
UPGRADING THE IRRAD CONTROL SYSTEM GUIs USING
OPEN-LICENSE AND CROSS-PLATFORM TECHNOLOGIES∗

B. Gkotse†1, A. Abdulhalim, A. S. Mølholm, F. Ravotti
Experimental Physics Department, CERN, Geneva, Switzerland

P. Jouvelot, Mines Paris, PSL University, Paris, France
1also at Mines Paris, PSL University, Paris, France

Abstract
The CERN Proton Irradiation Facility (IRRAD) is a ref-

erence facility in high-energy physics for the qualification
of detectors, materials, and electronic components against
radiation. A proton beam with a momentum of 24 GeV/c is
delivered from the CERN PS accelerator to IRRAD and im-
pinges on the components being tested, placed on remotely
controlled movable stages. This equipment, operated by ded-
icated control systems, allows for the precise positioning of
components in or out of the beam and facilitates the handling
of irradiated components, while minimising the radiation
received by the IRRAD operators.

Originally, the implementation of the Graphical User In-
terfaces (GUIs) of the IRRAD control system was based on
proprietary software, thus limiting it to specific operating
system. To address the issues linked to such dependencies
in terms of openness, ease of development and access to
state-of-the-art technologies, new GUIs have been designed
and developed with open-license cross-platform software.
In this paper, the IRRAD control system software architec-
ture is detailed, and the lessons learned while implementing
these new feature-rich GUIs are presented.

INTRODUCTION
The Proton Irradiation Facility at CERN (IRRAD) is an

infrastructure dedicated to performing radiation hardness
testing (irradiation experiments) on detectors, electronics,
and materials. The IRRAD facility, located in the East Area
of the CERN accelerator complex, receives a proton beam
from the Proton Synchrotron (PS) accelerator with a momen-
tum of 24 GeV/c in spills of 400 ms and a Gaussian shape
typically 12 × 12 mm2 FWHM wide [1]. The components
that need to be tested (Devices Under Test, or samples) can
be placed along the beam trajectory on the top of nine re-
motely movable stages, called IRRAD tables. The IRRAD
tables have three degrees of freedom and can be used to
move the samples horizontally (x-axis), vertically (y-axis) or
rotate them with an angle (𝜃) with respect to the beam axis.
These tables allow for positioning samples in a volume of
up to 20 × 20 × 50 cm3 in and out of beam, or performing a
scan (e.g. asynchronously move the samples across the beam
direction in order to extend the irradiated portion of the sam-
ples). Placing or removing samples on the IRRAD tables
requires accessing the irradiation area, which can be done
∗ This project has received funding from the European Union’s Horizon

2020 research and innovation program under grant agreement no. 654168.
† Blerina.Gkotse@cern.ch

only once per week, when the beam is stopped. However,
for smaller samples with dimensions up to 5× 5× 20 cm3, a
conveyor system (shuttle) can be used; this can move sam-
ples from the outside to the irradiation zone, following a
9m-path without the need of stopping the beam.

During CERN Long Shutdown 1 (2012-2014), a new hard-
ware infrastructure had been put in place at IRRAD and soft-
ware Graphical User Interfaces (GUIs) had been built, based
on CERN-supported proprietary software, for the control of
its tables and shuttle. These GUIs were sufficient for oper-
ating during CERN Run 2 (2014-2018) [2]. Nevertheless,
several restrictions on portability, dependencies on specific
platforms and requests for additional functionalities have
since deemed necessary the upgrade of the control system
GUIs using current open-license and cross-platform tech-
nologies. Presenting and discussing this important transition
is the subject of this paper.

This article first provides an overview of the hardware
components and infrastructure used in the IRRAD control
systems. Then, we describe the open-licence and cross-
platform technologies used for the development of the new
Graphical User Interfaces (GUIs), explaining our software
choices and architecture. Details of the new functionalities,
software architecture and database schemes are provided for
both IRRAD tables and shuttle control systems. Finally, we
discuss the lessons learned during this software transition,
before concluding and introducing future work.

IRRAD CONTROL SYSTEMS HARDWARE
Since the operation of the IRRAD equipment happens

in a radiation environment, the hardware chosen for the ta-
bles, shuttle and associated control systems is custom-made,
had to ensure radiation tolerance and be easily customiz-
able depending on the experimental user requests. For both
systems, some common components have been used but
still certain differences remain. Details about the hardware
infrastructure are provided in the following paragraphs.

IRRAD Tables
Each IRRAD table uses two stepper motors, one for hor-

izontal movement and one for the rotating axis, while an
AC motor is used for vertical movements. Figure 1 shows
3 of the IRRAD tables of the first zone of irradiation in the
IRRAD facility. The three motors are controlled using an
M300 microprocessor. The communication with the micro-
processor is performed through the RS232 serial protocol.
Since there are nine of these tables that require this type



of communication, Ethernet-to-Serial devices have been in-
stalled in the facility, providing multiple RS232 serial ports.
This allows computers running the control system software
to communicate through multiple virtual COM ports. One
control box per IRRAD table containing the microprocessor
and control buttons is installed in the IRRAD control room
for manually controlling the tables. However, this particular
setting requires the presence of operators in the control room
and induces some limitations on the type of actions that can
be performed.

Figure 1: Irradiation tables (front) and shuttle system (back)
in the IRRAD irradiation zone.

Shuttle System
The shuttle system is controlled through two separate mo-

tors. The first one is used for the movement of the shuttle
over the 9m-long path in or out of the irradiation zone, re-
ferred to be the y-axis. The second motor is used for moving
the shuttle in or out of the beam trajectory, named x-axis.
Figure 2 shows the shuttle outside of the irradiation area and
illustrates the two axis it can be moved along. The y-axis
uses an AKD Kollmorgen driver [3], and the communication
is performed through the telnet protocol. The x-axis has a
stepper motor controlled by a M300 microprocessor, and
the RS232 serial communication protocol is used, as for the
control of IRRAD tables.

SOFTWARE TECHNOLOGY AND
ARCHITECTURE

The software technologies used in IRRAD have to be com-
patible with the hardware located in the facility. Moreover,
since IRRAD is a small-scale infrastructure with limited
manpower and software expertise, some lightweight and
easily maintainable control-software solutions are required.
In the first IRRAD run, the control system GUIs that were
used were developed using Windows Forms [4] and coded
in C++ and C#. Even though the interfaces were considered
operational and user-friendly, limitations and dependencies
on specific operating system and proprietary software pre-

Figure 2: Shuttle system, part outside of the irradiation area,
where the samples are loaded.

sented some drawbacks (see Section Discussion), which led
us to consider upgrading the IRRAD control software.

Given the fact that the CERN community widely uses
LabVIEW [5], SCADA [6] and WinCC-AO [7] for control
systems, they were first considered as candidate solutions
for our work. However, dependencies on industrial software,
not easily maintained by a small team, were a challenge not
possible to overcome. Other free and open-source software
tools were also discussed such as EPICS [8] and Tango [9].
However, their communities are rather limited, since they are
used mainly in high-energy physics, making their learning
curve, in the presence of scarce support, too steep. A more
lightweight solution was thus considered.

In the following paragraphs, we describe the software
technology chosen to upgrade the IRRAD control system
architecture and the motivations behind those choices.

PyQt
The PyQt library [10] includes a set of python bindings

for the QT application development platform [11]. More
specifically, for the IRRAD GUIs use case, PyQt5, released
under GNU General Public License (GPL) v3 license, was
used. This choice was not only made because PyQt is a free
software, but also because it combines the flexibility of Qt
for developing fast and interactive user interfaces and the
coding simplicity and effectiveness of python.

pySerial
As mentioned in the previous section, the communica-

tion with the M300 microprocessor has to be performed
serially using the RS232 protocol. For this purpose, pySe-



rial, which is a python module for serial communication
management [12], was used.

MySQL
A back-end database was needed for storing several con-

figuration parameters and position history for the GUIs. The
well-known open-source MySQL framework was deemed
the relational database of choice to host these data [13].
The IRRAD-dedicated database instance is hosted on the
Database-on-Demand (DBOD) infrastructure provided by
CERN, which allows for an easy back-up and maintenance
plan, including regular upgrades [14]. However, the GUIs
can be easily configured with a different database, if need
be.

Software Architecture
A Model-View-Controller architectural software approach

has been adopted for the development of the GUIs, while
the application communicates with the SQL database in the
back end.

IRRAD TABLE CONTROL SYSTEM GUI
The main requirements for the IRRAD Table GUIs were

to allow users to move the samples easily and safely in the
required positions. Other important requirements are that
users should be able to monitor visually their actions, aware
of the position limits and able to intervene any moment by
stopping their actions. Moreover, a history of the performed
movements and positions selected needed to be kept for
logging purposes.

Functionalities
The above mentioned requirements were then translated

into the functionalities described in the following items:
• Setting hardware parameters about each motor (e.g.,

resolution, screw dimensions, offset, etc.);
• Setting communication parameters (e.g., baud rate, par-

ity, COM port, etc.);
• Configuring the sample position, in mm, in the micro-

processor memory (since the microprocessor memory
is limited, only five specific positions can be config-
ured: park, center, left, right and one that is used for
custom positions);

• Moving the IRRAD tables in the configured positions
by sending the corresponding commands to the micro-
processor;

• Visualising the position;
• Calibrating the motors (since stepper and AC motors

are used for the IRRAD tables, a dedicated process
for finding the proper correspondence between step
numbers and distance in mm, which depends on hard-
ware characteristics such as screw dimensions, is used.
For stepper motors, this consists in finding and setting
equal to zero the position of a reference switch placed
at 0 mm distance and then also placing the motor to

the maximum position in mm and with the maximum
number of steps).

The user can select to have the full views of the three axes
displayed, as shown in Fig. 3, or only one at a time.

Database
Dedicated database tables have been designed and used to

save data deemed key for the operation of the GUI and log
positions and movements. More specifically, the database
tables contain information about the following elements.

Stepper Motor These data contain the stepper motor’s
hardware settings such as calibration information, reso-
lution, screw dimensions, maximum position, etc.

AC Motor Since AC motors have different characteristics
than the stepper motors, a dedicated database table is
used for them.

Motor This table contains the names and the motor numbers
and is linked to the two previous tables through foreign
keys.

Custom Position Custom positions are also stored in the
database for each table. In this way, a larger set of
custom positions can be saved and used, overcoming
the microprocessor memory limitations, by creating
visually more buttons with different positions. Never-
theless, in the background, the memory used for storing
the custom position is overwritten each time.

Movement The movements are logged in the system for
tracing performed actions.

Full documentation and manual for the system can be also
found online [15, 16].

IRRAD SHUTTLE CONTROL SYSTEM GUI
Operational safety, precision and usability were the most

important requirements for the development of the shuttle
GUI, given its operation in a radiation environment.

Functionalities
The main functionalities for the shuttle system are:
• Moving the shuttle in the defined position (Reference,

Loading samples, Park and Beam positions);
• Constraining the users on performing certain move-

ments that could affect the precision of the movement
(for example, the user should not be allowed to per-
form certain actions such as going to the Beam position
once the shuttle has moved backwards; in that case, the
shuttle should move to the Reference position before
moving to Beam);

• Monitoring the activity, using two AD6 monitors
placed in the Load and Park position in order to comply
with safety-related procedures (the data of these moni-
tors are logged and should be controlled before moving
the shuttle in the Load position);



Figure 3: IRRAD Tables Control System GUI.

Figure 4: Shuttle GUI.

• Implementing software interlocks, e.g., for not allow-
ing the user to move the table in the Load position if
the activity monitored by the AD6 is not lower than a
specific limit set by the Radiation Protection authority.

• Visualising on a display the shuttle path (moreover,
activity diagrams have been integrated in the interface);

• Monitoring the cumulated proton intensity when the
shuttle is in beam position;

A screenshot of the shuttle interface is shown in Fig. 4.

Database
Currently, the data stored in the database for the shuttle

system contains the movement history and the cumulated
proton intensity for each irradiation run.

Further details and documentation can be also found on-
line [17].

DISCUSSION

Even though IRRAD is a small-scale facility and is
thus supported by few software developers, moving its
experiment-management software from proprietary to more
lightweight, free, open-source and cross-platform technolo-
gies turned out to not be very complicated or time consuming.
It took a team of two short-term interns under the supervi-
sion of one PhD candidate and eight months to come to
some workable solutions. The major challenges consisted of
designing and implementing advanced functionalities for a
robust, safe and user-friendly system that could be easily cus-
tomisable also by non software-experts. Based on a broad
and open-source community and proper documentation [10],
finding solutions when problems arose was relatively easy
and fast.

Comparing the old C++/C# based and new python-based
environments in terms of size, the present choice led to a
significant decrease in the number of lines of code. For
instance, for the IRRAD Table GUI, we went from about
12,300 lines of code to only 5,500 lines; regarding the Shuttle
GUI, the respective numbers are 2,180 and 1,730. This
allows for better readability and faster maintenance in case of
need. Also, having based the new development on the python
language provides the opportunity to extend more easily the
code by importing advanced modules and libraries developed
by the python community, which is moreover growing larger
and larger. Finally, using more recent technologies such as
python helps also to find personnel who have the requested
software skills and can be trained to work on the project
more easily and faster.



In addition, the technology upgrade performed by the
IRRAD team is in sync with the CERN IT policy that rec-
ommends moving towards open-license software as part
of the the license-management MALT project [18], which
encouraged the search for alternative free and open-source
technology solutions to proprietary ones in CERN projects.

Globally, these technologies have increased the portability
and the ease of installation of the GUIs on different operating
systems. In comparison to more advanced and industrial
control system GUI software frameworks such as WinCC-
AO [7] , these interfaces are more lightweight. They seem
more suitable for small-scale experiments and infrastructures
that can be easily used and maintained by non-IT experts.

Finally, these upgrades were also in line with the needs
of the IRRAD facility to cope with a larger demand of user
experiments. Traceability and precision were enhanced by
the newly introduced logging functionalities such as storing
the table movements in a database.

CONCLUSION AND FUTURE WORK
This paper describes the new GUIs developed for the con-

trol systems of the IRRAD proton irradiation facility. The
hardware components and their uses have been described.
For the software development, free, open-source and cross-
platform software technologies such as PyQt, pySerial and
MySQL have been used and the advantages of this move
from proprietary software discussed.

In parallel to these developments, the IRRAD team is
working on new beam-monitor detectors and data acquisition
systems. These detectors will be installed on the IRRAD
tables and used to detect when the tables are exposed to
the beam. Therefore, as future work, we envision that the
data acquired from these systems could be used to operate a
system that would automatically move the tables depending
on the beam conditions.

Another future work could include designing and imple-
menting some web interfaces. Since the back end is already
developed using python, a python web framework such as
Django [19] could be used for this kind of development. In
that case, IRRAD system access could be enabled outside
of the CERN facility. Therefore, ensuring IT security would
be a crucial factor.

REFERENCES
[1] F. Ravotti, B. Gkotse, M. Moll, and M. Glaser, “IRRAD: The

New 24 GeV/c Proton Irradiation Facility at CERN”, in Proc.
AccApp’15, Washington, DC, USA, Nov. 2015, pp. 182-187.

http://accapp15.org/wp-content/data/index.
html

[2] B. Gkotse, M. Glaser, P. Jouvelot, E. Matli, G. Pezzullo, and
F. Ravotti, “Towards a Unified Environmental Monitoring,
Control and Data Management System for Irradiation Facili-
ties: the CERN IRRAD Use Case”, in Proc. RADECS 2017,
Geneva, Switzerland, Oct. 2017, pp. 1-8.
doi:10.1109/RADECS.2017.8696209

[3] AKD Kollmorgen website,
https://www.kollmorgen.com/en-us/developer-
network/akd-drive/

[4] Windows Form documentation,
https://docs.microsoft.com/en-us/dotnet/
desktop/winforms/

[5] LabVIEW website,
https://www.ni.com/it-it/shop/labview.html

[6] A. Daneels and W. Salter, “What Is SCADA?”, in Proc. Inter-
national Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’99), Trieste, Italy, 1999,
pp. 339-343.
https://jacow.org/ica99/papers/mc1i01.pdf

[7] WinCC-OA Service website,
https://readthedocs.web.cern.ch/display/ICKB/
WinCC-OA+Service/

[8] EPICS website, https://epics-controls.org/
[9] TANGO website, https://www.tango-controls.org/

[10] PyQt website, https://pypi.org/project/PyQt5/
[11] Qt website, https://www.qt.io/
[12] PySerial documentation website, https://pyserial.

readthedocs.io/

[13] MySQL website, https://www.mysql.com
[14] Database-on-Demand website,

https://dbod-user-guide.web.cern.ch/

[15] A. S. Mølholm, B. Gkotse, and F. Ravotti, “Python IRRAD
Motor Control Application (PIMCA):How it works”, CERN,
Geneva, AIDA-2020-NOTE-2021-003, 2021,
https://cds.cern.ch/record/2750195

[16] A. S. Mølholm, B. Gkotse, and F. Ravotti, “Python IRRAD
Motor Control Application (PIMCA):How to use”, CERN,
Geneva, AIDA-2020-NOTE-2021-002, 2021,
https://cds.cern.ch/record/2749936

[17] A. Abdulhalim, “GUI implementation for Controlling and
Monitoring of the IRRAD Shuttle System”, CERN, Geneva,
2021,
https://cds.cern.ch/record/2779934

[18] MALT project website, https://malt.web.cern.ch/
[19] Django website, https://www.djangoproject.com


