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ABSTRACT
Languages for loop transformations have been leveraged for differ-
ent type of tools and frameworks in different application domains,
yet they lack formal semantics. As a step towards formal specifica-
tion, this works intends to clarify the underlying concepts of such
languages using a denotational approach.
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Context. Compilers are ill-equipped for optimizing programs
targeting parallel architectures with deep memory hierarchies; is-
sues such as portability or finding relevant and powerful transfor-
mations become increasingly hard to tackle without proper alter-
natives.

Fully automatic alternatives include multi-layer compilation
chains where different levels of expertise are put together to com-
pose a powerful chain, or empirical autotuning tools in which
optimizations are iteratively performed using performance feed-
back until a program variant, suitable for the target architecture, is
found.

As semi-automatic approaches, interactive compilation tools
allow the programmer to directly interact with the compiler, thus
providing hints to help finding efficient optimizations.

Nevertheless, challenges in certain domains may lack convenient
tools. One last resort is then hand-writing optimizations by an
expert.

Such different types of approaches exhibit several needs:
• Empirical autotuning systems must be thoughtfully designed
to properly address the generation of multiple versions of a
program;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3213796

• Ergonomic interfaces are necessary to facilitate interactive
optimization experience;

• The productivity of experts hand-writing optimizations
should be enhanced with languages designed for this pur-
pose;

• Compiler intermediate representations must have the ability
to efficiently compose sequences of transformations.

Regardless of which need, languages for loop transformations
appear to be a groundwork [1, 3–5, 7–9, 13, 14].

They may come in a variety of forms such as scripting languages,
intermediate languages, pragma-based or multi-staged. They may
also rely on different levels of abstractions of the input program.
Yet, they do have one common design principle which is the abil-
ity to express loop transformations using language constructs. As
these languages mainly target compute-intensive programs gen-
erally characterized by deep loop nests (e.g. linear algebra, tensor
computations), typical transformations supported are loop fusion,
tiling, unrolling or index-splitting just to cite a few.

“Is the transformation legal”1? – A fundamental question opti-
mization experts bear in mind when implementing transformations.
However, using language-based approaches introduces another
level of concern: “Can we guarantee the language to actually do
what it says it does?” Language developers may rely on the general
knowledge of what each optimization does but formal semantics
are almost non-existent. Furthermore, they are often implemented
as embedded-DSLs in Python or C++ for instance. Despite the prac-
ticality of relying on embedding languages, this adds a level of
hardship for semantics definition.

Contribution. This work contributes to one aspect of the se-
mantics of languages for loop transformations:

How exactly does such languages transform the input program?
Relying on denotational semantics [12],
• We first define a functional language generalizing features
found in such languages, that is, constructs for the specifica-
tion of arrays, computations and loop transformations.

• We specify the semantics of low level constructs, which is
useful to also deduce, through compositions, those of higher-
level constructs such as tensor operators or more complex
loop transformations.

Applications. Our formalism can serve as a base for more spe-
cific semantics with respect to a given language. For instance,
domain-specific languages (e.g, TVM [1] for deep learning or Halide
[9] for image processing) may require further extensions for more
complete semantics. In the context of empirical autotuning, we may
also use it to formalize optimization search space exploration.

1In other words, does the transformation preserve data dependencies?
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Related Work. Few languages for loop transformations have a
formal definition. Lift [11] is a functional language for optimized
and portable GPU code generation. A denotational semantics of its
core language is defined in [10]. However, it has a completely dif-
ferent approach for abstracting computations and transformations:
computations are expressed using combinators and a set of rewrite
rules are used to transform the program. Clay [2], URUK [4], CHiLL
[3] and Loo.py [6] rely to some extent on the polyhedral formalism
which focuses on the representation, analysis and transformations
of loops. Instead, we consider both program representation (at dif-
ferent levels of abstraction) and loop transformations. To the best
of our knowledge, this is the first work that provides denotational
semantics for tensor operations and classic loop transformations.
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