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Abstract—With the advent of clustered systems, more and
more parallel computing is required. However a lot of program-
ming skills is needed to write a parallel codes, especially when you
want to benefit from the various parallel architectural resources,
with heterogeneous units and complex memory organizations.
We present in this paper a method that generates automatically,
step by step, a task-parallel distributed code from a sequential
program. It has been implemented in an existing source-to-source
compiler PIPS. Our approach provides two main advantages 1)
all the program transformations are simple and applied on source
code, thus are visible by the user, 2) a proof of correctness of the
parallelization process can be made. This ensures that we end up
with a correct distributed-task program for distributed-memory
machines. To our knowledge, it is the first tool that automatically
generates a distributed code for task parallelization.

I. INTRODUCTION

Nowadays, modern computers have more and more proces-
sors. It became cheaper and easier for computer manufacturers
to multiply cores inside chips than to accelerate the processor
itself [1]. So developers have to write parallel programs if
they want to take full advantage of these new architectures.
But parallel programming requires a lot of skills.

It is hard and depends on the target architecture. For
instance, shared memory architectures require the programmer
to take care of data races and race condition [2] to ensure
code correctness, and to detect and avoid false sharing [3] to
achieve good performance. Distributed memory architectures
lead to data consistency issues for each executed process and
often lead to communication bottleneck problems. Accelerator
devices, like GPGPU, must execute exactly the same code with
the minimum of divergent control flows and must do enough
computation to compensate the data transfers between host
and accelerators.

Several parallelization paradigms exist. We focus on two
main paradigms that are used for both shared and distributed
memory. The first one is loop parallelization. In loop par-
allelization, the issue is to minimize dependencies between
each iteration of the loop nest. For this purpose, many trans-
formations can be applied 1) on loop body variables like
privatization or induction variable substitution, or 2) on loop
itself like loop fission/fusion, loop interchange or 3) by fully
rescheduling the loop iteration order. Loop parallelization
issues are well known and many techniques have been pro-
posed to automatically parallelize loop nests [4]. Tools like

Cetus [5][6], Pluto+ [7][8], PPCG [9][10], XFOR [11][12]
or dSTEP [13] handle this case of problems for shared
or distributed memory architectures. Even some production
compilers, like gcc [14], icc [15] or clang [16], make a few
automatic optimizations on loops such as vectorization, strip-
mining, etc. The second paradigm is the task parallelization.
In fact, loop parallelization can be considered as a special case
of task parallelization. Task parallelization needs to minimize
the dependencies between tasks. Control flow graph and data
dependence analyses are used to make this parallelization.
Many task scheduling tools exist [17][18], but they are totally
black boxes and produce object codes directly. There is no
way to check that the executed code is correct as it could be
possible from the sources of parallel codes. These task parallel
codes use standard library or language like OpenMP [19],
TBB [20] or Cilk+ [21] for share memory, or PVM [22][23]
or MPI [24] for distributed memory.

Compilers are organized as sets of passes used to map
the high-level constructs onto simple target machine features
and run-time calls. Most of the current compiler technology
targets sequential cores and parallel, shared or distributed
processors, are handled via run-time calls. We propose new
compiler passes to address distributed targets like sequential
ones with few run-time calls. These passes focus to make
task parallelization. The valid schedule is built by one task
scheduler. Because we aim at performance, we assume a static
mapping. Indeed, in a distributed memory context, a dynamic
mapping would imply a master/slaves mechanism where the
master is the scheduler. This latter becomes a bottleneck since
it has to send and receive the data for and from each slave but
also to send the task to be executed by each of them. Whereas a
static mapping can easily allow a peer-to-peer communication
between each process. The mapping can also be performed
manually if the developer wants to use his/her own mapping.
Our new distributed code is generated by a source-to-source
compiler, step-by-step. It is useful for the user to know how
his/her code is generated, and correctness proofs can be done
after each transformation step. The code is generated in MPI
which is the most popular library for distributed code.

The paper is organized as follows. Section II introduces the
related work on automatic generation of distributed parallel
codes. The tool and analyses that we use are presented
in Section III. Section IV describes the successive transfor-
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mations that we apply to generate the distributed task parallel
code from the sequential source. Section V details our ex-
perimental results. Finally, the conclusion and some possible
future work are presented in Section VI.

II. RELATED WORK

Only few tools generate a distributed parallel code, and very
few perform task parallelization distribution. Some generate
a distributed code from sequential code only for loop nests
such as dSTEP [13], Pluto+ [25] or DMCG [26] and others
expect a parallel description as input and target only specific
architecture machines such as Hypertool [27], PYRROS [28]
or CellSs [29]. In our knowledge, there is no tool that
automatically generates a distributed task parallel code from
a sequential code.

dSTEP, distributed STEP [30], and DMCG generate
directive-based MPI codes and use customized directives to
mark the parallel loops to work on. In dSTEP case, two
pragmas are introduced: dstep distribute is associated
with an array to indicate how it is distributed along the process;
dstep gridify is associated with a loop and describes in
which direction, ie. loop iterator, and which schedule it will
be processed. DMCG permits to indicate the parallel loops
and the partitionings that are applied. In Pluto+, the parts of
the program to be parallelized is encapsulated within scop
and endscop directives. Pluto+ reschedules loop iteration
using a polyhedron model in order to improve data locality,
then generates the distributed code. In these three tools,
customized functions, based on MPI, are introduced to make
the communications.

Hypertool and PYRROS need a direct acyclic graph (DAG)
as input and generate parallel code for specific distributed
architectures. For instance, PYRROS generates code for nCube
or Intel iPSC/2 machine architectures. PYRROS uses a Dom-
inant Sequence Algorithm (DSC) to automatically schedules
and maps tasks. In CellSs, Cell Superscalar framework, anno-
tation on sequential code is done to describe the dependency
between the tasks. CellSs generates a source code that can
only be compiled for Cell architecture.

III. CONTEXT

In this section, we present the tool used to implement our
code transformations. The most important analyses and our
choices for the code generation are also introduced.

A. PIPS, a Source-to-Source Compiler

We use an existing source-to-source compiler for the code
generation, PIPS [31][32]. It offers a wide set of analyses and
transformations over Fortran and C codes. Furthermore, PIPS
uses an integer polyhedral abstraction to represent the domains
of the program variables, which turns out very effective in the
parallelization context.

PIPS contains an automatic task scheduler based on the
BDSC algorithm [33], which is an improvement of DSC. The
BDSC output can be an input of our automatic distribution
of sequential code. This scheduler generates a static schedule

with a static mapping and this static mapping is not an
issue, in case of distributed task parallelization, since we
want to achieve some performances. Moreover, to have a
static mapping, we consider that the number of processes that
execute the parallel code is numerically known in advance.

Among PIPS analyses and transformations, our compilation
process uses data dependence with convex array regions and
dead-code elimination. They are presented in the following
subsection and again in Subsection IV-C.

B. Data Dependencies and Convex Array Regions

One key analysis in parallelization is data dependence.
Three types of data dependence exist: flow (Read after Write),
anti (Write after Read) and output (Write after Write) depen-
dence. To generate distributed code, the important one is flow
dependence, because it determines when a communication is
needed. For anti and output dependencies, since each process
has its own memory space, no conflict occur inside the process
execution. Contrary to the case of shared memory, due to the
usage of the same memory space, synchronization might be
required to avoid data race.

In PIPS, the traditional data dependence graph, constructed
with the previous dependencies, is not required to show
the dependencies. A polyhedral analysis, called convex array
regions [34], is available to show the set of array elements that
are read or written by a statement. This includes also read and
written scalar variables. By extension, PIPS gives out regions
which describe array regions that are written by a statement
and used in the continuation. So out region depict the Write
part of a flow dependence, the part of an array or a scalar
variable that need to be communicated for a following Read.
The convex array regions use a polyhedral representation.
Over-approximations of non-polyhedral set are made in some
cases. For instance, if two non-consecutive elements of an
array are used to make a computation, the read convex array
region is the convex hull of the two elements instead of
just the two elements. This case does not occur often and
when it occurs, the analyses are always correct since they are
conservative.

C. Code Generation

The code is generated in MPI, a well known library for
distributed parallelization. Moreover, MPI is implemented for
many platforms and architectures.

The generated code is the most simple possible. A knowl-
edgeable MPI user can easily review the generated code and
modify it if desired. The code is generated only for fix
number of processors. For different number of processors,
many different codes can be generated.

IV. COMPILATION PROCESS

Our compilation process is composed of four big steps,
described in Figure 1. These big steps are themselves broken
up into different passes. These passes are as simple as possible
to be informative for the user and provable. After each pass,
the code is still correct and can be executed.
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Figure 1: Compilation Process Schema

To illustrate the compilation process, the corner detection
algorithm by Harris and Stephens [35] is used. This algorithm
applies Sobel and Gauss filters, a matrix multiplication and
a coarsity matrix. Listing 1 shows the algorithm code, and
Figure 2 highlights dependencies between tasks.

Listing 1: Harris&Stephens algorithm
int main(int argc, char **argv) {

/* Variable declaration/allocation. */
double in[6000][5900]; /*...*/
/* ...Initialize array... */

SobelX(6000, 5900, Gx, in);
SobelY(6000, 5900, Gy, in);
Multiply(6000, 5900, Ixx, Gx, Gx);
Multiply(6000, 5900, Iyy, Gy, Gy);
Multiply(6000, 5900, Ixy, Gx, Gy);
Gauss(6000, 5900, Sxx, Ixx);
Gauss(6000, 5900, Syy, Iyy);
Gauss(6000, 5900, Sxy, Ixy);
Coarsity(6000, 5900, out, Sxx, Syy, Sxy);
/* ...Print result... */
return 0;

}
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Figure 2: Harris&Stephens task dependence graph

A. Mapping

The task can be mapped automatically from the results
of a task scheduler, like BDSC in PIPS. In addition, it can
be specified manually with some pragma. For this purpose,
the pragma distributed is added with the parameter
on_cluster to indicate on which virtual process the task
must be executed. This pragma has to be only at the

outermost scope of a function. So no task is declared inside a
test case or a loop. In case of loops, a loop unrolling or loop
splitting can be applied to treat each iteration or a group of
iterations as a task.

Unlike some other tools, such as OpenMP 4.0 [36] or
OmpSs [37][38], that need the explicit dependencies between
each task in order to perform an efficient scheduling, our
mapping does not need this information from the user. PIPS
automatically computes this information that is also taken into
account in the array region analyses.

The mapping selected for the corner detection algorithm is
presented in Listing 2 with three processes. Process 0 makes
the initializations and prints the results. The three processes
only work simultaneously during the multiplication and the
application of Gauss filters. Two different processes execute
Sobel filter.

Listing 2: Mapping for Harris&Stephens algorithm
int main(int argc, char **argv) {
/* Variable declaration/allocation. */
double in[6000][5900]; /*...*/

#pragma distributed on_cluster = 0
{ /* ...Initialize array... */ }

#pragma distributed on_cluster = 0
{ SobelX(6000, 5900, Gx, in); }

#pragma distributed on_cluster = 1
{ SobelY(6000, 5900, Gy, in); }

#pragma distributed on_cluster = 0
{ Multiply(6000, 5900, Ixx, Gx, Gx); }

#pragma distributed on_cluster = 1
{ Multiply(6000, 5900, Iyy, Gy, Gy); }

#pragma distributed on_cluster = 2
{ Multiply(6000, 5900, Ixy, Gx, Gy); }

#pragma distributed on_cluster = 0
{ Gauss(6000, 5900, Sxx, Ixx); }

#pragma distributed on_cluster = 1
{ Gauss(6000, 5900, Syy, Iyy); }

#pragma distributed on_cluster = 2
{ Gauss(6000, 5900, Sxy, Ixy); }

#pragma distributed on_cluster = 0
{ Coarsity(6000, 5900, out, Sxx, Syy, Sxy); }

#pragma distributed on_cluster = 0
{ /* ...Print result... */ }
return 0;

}

B. Code Preparation

The Preparation Step formats the code to be parallelized for
our code generation. For this purpose, we chose to allocate to
each process a dedicated copy for each variable of the initial
code. The representation of a communication is done by a copy
statement to the appropriated variable of the target process.
For instance, a communication of variable x from process i
to process j is represented with a copy of x_i to x_j, ie.
x_j=x_i. This step is carried out by a sequence of different
passes.

The first pass declares the dedicated variables in each
process. For instance, for n processes and for variable x, the
dedicated variables x_0 to x_{n-1} are declared by this
pass.

The second pass generates the copy statements that repre-
sent the communications. These copies are useful to guaranty
the memory coherency. They are generated at the end of
each task. This can be done in three different ways. The first



one is the naive approach. It copies every variable for each
process. The memory consistency is easily obtained this way.
Some optimizations must be done afterward to remove the
unnecessary copies. The second one considers the variables
that are written and only generate a copy for them for each
process. It is what traditional data flow analysis can provide.
But in the case of an array, when one cell of the array
is written, all the array elements are copied on the other
processes. In such case, an optimization is also required to
remove extra copies of the array elements. The third one uses
the array regions available in PIPS, more precisely the out
regions resulting from each task. It has two advantages, one is
to copy only the part of the array that is really written, up to
an over approximation that may occur. The other advantage is
that it only considers the variables or array elements that are
written in the task and that are used later in the execution. So
it reduces the number of unnecessary copies generated.

The third pass substitutes the initial variables by the dedi-
cated variables in the computations of the task . It is done by
alpha renaming or variable substitution of the variables used
in the task with the appropriated local variables. Since the
mapping is static, this information is given by the parameter
on_cluster of our pragma.

The last pass consists in removing the initial variables
with a clean declaration transformation. Since the third pass
removes all the use of the original variables, their declarations
are naturally removed from the code. Moreover an additional
identity-copy elimination transformation eliminates statements
with template x=x.

Once the Preparation Step is completed, our Code Gener-
ation Step can proceed, possibly without Optimizations Step.
But the resulting code remains inefficient because too many
unnecessary copies, representing communications, are still
present, even with the restrictive strategy of copy generation
used during the second pass. So additional optimizations are
presented in the following section to improve the code.

The formatting step of Harris&Stephens algorithm is il-
lustrated in Listing 3. New variables for each process are
declared, and initial variables have been removed. At the end
of each task, each variable that is written and useful later in
the program execution has been copied.

C. Optimizations

The optimizations focus on reducing the memory footprint
and the amount of communications generated during the Code
Preparation Step. Three different optimizations are proposed
in this section.

The first optimization removes useless communications that
may occur when a process receives a piece of data but does
not use it. When copies are generated, in Pass 2 of Code
Preparation, the procedure is systematic for all the processes.
Assuming we use out regions to generate the copy statements,
two main cases can occur (see Table I). In the first case, we
consider a task on process P computing the value of x, then
none of the following tasks on process Q do use x, but one
task on process R, different from Q, uses it to make some

Listing 3: Formatting code for Harris&Stephens algorithm
int main(int argc, char **argv) {
/* Variable declaration/allocation. */
double __in_0[6000][5900], __in_1[6000][5900],

__in_2[6000][5900]; /* ... */
#pragma distributed on_cluster = 0
{
/* ...Initialize array... */
{
int PHI1, PHI2;
for (PHI1 = 0; PHI1 <= 5999; PHI1 += 1)
for (PHI2 = 0; PHI2 <= 5899; PHI2 += 1) {
__in_1[PHI1][PHI2]=__in_0[PHI1][PHI2];
__in_2[PHI1][PHI2]=__in_0[PHI1][PHI2];

}
}

}
#pragma distributed on_cluster = 0
{
SobelX(6000, 5900, __Gx_0, __in_0);
/* Copy __Gx_1=__Gx_0 */
/* Copy __Gx_2=__Gx_0 */

}
#pragma distributed on_cluster = 1
{
SobelY(6000, 5900, __Gy_1, __in_1);
/* Copy __Gy_0=__Gy_1 */
/* Copy __Gx_2=__Gy_1 */

}
#pragma distributed on_cluster = 0
{
MultiplY(6000, 5900, __Ixx_0, __Gx_0, __Gx_0);
/* Copy __Ixx_1=__Ixx_0 */
/* Copy __Ixx_2=__Ixx_0 */

}
#pragma distributed on_cluster = 1
{
MultiplY(6000, 5900, __Iyy_1, __Gy_1, __Gy_1);
/* Copy __Iyy_0=__Iyy_1 */
/* Copy __Iyy_2=__Iyy_1 */

}
#pragma distributed on_cluster = 2
{
MultiplY(6000, 5900, __Ixy_2, __Gx_2, __Gy_2);
/* Copy __Ixy_0=__Ixy_2 */
/* Copy __Ixy_1=__Ixy_2 */

}
#pragma distributed on_cluster = 0
{
Gauss(6000, 5900, __Sxx_0, __Ixx_0);
/* Copy __Sxx_1=__Sxx_0 */
/* Copy __Sxx_2=__Sxx_0 */

}
#pragma distributed on_cluster = 1
{
Gauss(6000, 5900, __Syy_1, __Iyy_1);
/* Copy __Syy_0=__Syy_1 */
/* Copy __Syy_2=__Syy_1 */

}
#pragma distributed on_cluster = 2
{
Gauss(6000, 5900, __Sxy_2, __Ixy_2);
/* Copy __Sxy_0=__Sxy_2 */
/* Copy __Sxy_1=__Sxy_2 */

}
#pragma distributed on_cluster = 0
{
Coarsity(6000, 5900, __out_0, __Sxx_0, __Syy_0, __Sxy_0);
/* Copy __out_1=__out_0 */
/* Copy __out_2=__out_0 */

}
#pragma distributed on_cluster = 0
{ /* ...Print result... */ }
return 0;

}



case 1 case 2

task on P
write x_P
x_Q = x_P
x_R = x_P

write x_P
x_Q = x_P
x_R = x_P

task on Q
Q 6=P . . .

read x_Q
write x_Q
x_P = x_Q
x_R = x_Q

task on R
R6={P,Q} read x_R read x_R

Table I: Removing useless copy

computation. The systematic procedure generates a copy of
x on process P for each process including Q. This latter is
useless and has to be eliminated. In the second case, a task
on process P computes the value of x, then the following
tasks on process Q use and modify it, finally another task on
process R different from P and Q uses it. In such example, the
copy of x from P to R will be out of date when R will be
executed because Q will have been updated it. To remove these
useless copies, a dead-code elimination pass [39] is applied.
This classical optimization removes unused statements. In the
first case, since each variable is associated to a process, if
the tasks executed on this process do not need the variable.
No reads of this variable are present, dead-code elimination
removes all the affectations of this variable. Similarly, in the
second case, the dead-code elimination pass considers that the
first affectation is useless and has to be removed.

The second optimization is an improvement of the dead-
code elimination transformation. Because dead-code elimina-
tion only works on statements and variables, if only part of
an array is useful to the following tasks of the program, when
all its elements are computed, no dead-code elimination is
performed. For this purpose, we designed a new optimization
called dead-iteration elimination. This new transformation
follows the same rules as dead-code elimination. It considers
as useless a write that is never read or a write that is rewritten.
Moreover, it works on the iterations of the loop nests by
taking into account the information on the regions of the
arrays that are really useful later in the program execution.
The out regions associated to the loop are used to perform
this optimization. For instance, a loop iterates from n0 to
m0 and modifies each cell of a from n0 to m0. If its out
regions are only the part of array a from n1 to m1, such that
n0<n1<m1<m0, thus our dead-iteration elimination updates
the loop iterator to iterate only from n1 to m1.

The last optimization improves the memory footprint that is
needed for the execution of the program. This optimization is
an array resizing transformation [40]. Unlike Fortran, which
supports array declaration from any starting point or without
any explicit size, arrays in C must always start at 0 and must
have a size that is known numerically, or symbolically in C99
standard. For computing the minimal size necessary to an
array in a program, we have to know which parts of the array
are really used in the program. The read/write regions give
us this information. The computation of the new array size
is deduced from the difference between the upper and lower

bounds of the used array elements. But all the uses, read or
write, of this array have to make a shift corresponding to the
lower bound found. Depending if some tricky optimizations
are present inside the code, the array resizing can be done
for all dimensions of the array or only for the first one, in C
code. For instance, addresses can be directly generated in an
optimized way that disrupt the array resizing.

To conclude this section, thanks to the first two optimiza-
tions, we succeed in reducing considerably the number of
static copies present inside the generated code. Since these
copies would become communications and because commu-
nications are most of the time a bottleneck in distributed
codes, our generated code is more efficient. Additionally, the
last optimization reduces the memory space needed for the
execution of the code. In the case of big data, benchmark
with large data sets, incompatible with a single node, can
be executed. Once the previous optimizations are applied,
the distributed parallel code is generated, as the next section
described.

The result of the optimizations performed on Har-
ris&Stephens algorithm are presented in Listing 4. They
mainly improve communication. For instance, in variable is
only declared for processes 0 and 1, and its initialization is
only copied from process 0 to 1. The results of Sobel filters
are only sent to process 2 from process 0 and 1, since process
0 only needs Gx that it computes itself, same for process 1
with Gy, when 2 needs Gx and Gy for its computations. The
final result in out is no longer copied to processes 1 and
2 because they do not need it. At the end, only five copy
statements remained in this optimized code.

Listing 4: Optimized code for Harris&Stephens algorithm
int main(int argc, char **argv) {
/* Variable declaration/allocation. */
double __in_0[6000][5900], __in_1[6000][5900]; /* ... */

#pragma distributed on_cluster = 0
{
/* ...Initialize array... */
{
int PHI1, PHI2;
for (PHI1 = 0; PHI1 <= 5999; PHI1 += 1)
for (PHI2 = 0; PHI2 <= 5899; PHI2 += 1) {
__in_1[PHI1][PHI2]=__in_0[PHI1][PHI2];

}
}

}
#pragma distributed on_cluster = 0
{
SobelX(6000, 5900, __Gx_0, __in_0);
/* Copy __Gx_2=__Gx_0 */

}
#pragma distributed on_cluster = 1
{
SobelY(6000, 5900, __Gy_1, __in_1);
/* Copy __Gx_2=__Gy_1 */

}
#pragma distributed on_cluster = 0
{ MultiplY(6000, 5900, __Ixx_0, __Gx_0, __Gx_0); }

#pragma distributed on_cluster = 1
{ MultiplY(6000, 5900, __Iyy_1, __Gy_1, __Gy_1); }

#pragma distributed on_cluster = 2
{ MultiplY(6000, 5900, __Ixy_2, __Gx_2, __Gy_2); }

#pragma distributed on_cluster = 0
{ Gauss(6000, 5900, __Sxx_0, __Ixx_0); }

#pragma distributed on_cluster = 1
{
Gauss(6000, 5900, __Syy_1, __Iyy_1);
/* Copy __Syy_0=__Syy_1 */



}
#pragma distributed on_cluster = 2
{
Gauss(6000, 5900, __Sxy_2, __Ixy_2);
/* Copy __Sxy_0=__Sxy_2 */

}
#pragma distributed on_cluster = 0
{ Coarsity(6000, 5900, __out_0, __Sxx_0, __Syy_0, __Sxy_0); }

#pragma distributed on_cluster = 0
{ /* ...Print result... */ }
return 0;

}

D. Code Generation

This last step performs the generation of the distributed
code in two passes. The first one translates the formatted
sequential code into a distributed code. The second one applies
an optimization to the code, that might be performed during
the previous translation, but is done afterwards to keep the
translation as simple as possible.

The first thing we do for generating the distributed code
is to add a parallel context. For MPI, we add 1) call to
MPI_Init that is required for MPI execution; 2) call to
MPI_Comm_rank to know which process is actually running
the code, and to associate the tasks to each corresponding
processes; and 3) call to MPI_Comm_size to check that we
really have the required minimum processes to run the code.
After this, the translation of the sequential code can begin. The
transformation is done task by task. Since the computations
and the copies, which represent communications, are indepen-
dent, the computations can be associated to a process without
any trouble. For each copy, two statements are generated: a
send with MPI_Send and a receive with MPI_Recv. The
send statement is associated to the same process as the related
task, and it sends the value of the rhs, right hand side, of the
copy statement. The receive statement receives the value on the
lhs, left hand side, of the copy statement. Since each variable
is associated to a unique process, with the lhs, the receive
statement can be associated to the proper process. When the
copy is inside a loop, this loop is replicated on each process.
This translation is done for all the copies of the tasks, and
for each task of the program. At the end of the generated
code, before the return statement, a call to MPI_Finalize,
required for all MPI program, is added.

In order to improve the performance of the distributed code
execution, a final optimization is applied: the aggregation of
the communications for arrays. This communication aggrega-
tion is related to send and receive statements present inside a
loop and communicating array elements. The array elements
to be communicated must be adjacent. Otherwise some other
more complex optimizations could be performed, but they are
more or less efficient depending of the MPI implementation, so
we do not presented them here. Under the assumption of array
elements adjacency, a loop nest related to communications is
replaced by a unique corresponding communication, send for
a send and receive for a receive. Instead of performing the
communication element-by-element, this new communication
instruction communicates the pack of initial elements together.
Since during the generation of the distributed code, the loops

related to communications are strictly the same on the receiver
and sender sides, the transformation occurs on both sides and
no incoherent communication can appear. This optimization
can also be applied on existing MPI code that programmer
have written.

This last step finalized our automatic generation of a task
distributed parallel code. Moreover this code is a source code
readable by any programmer who has experience in MPI.

The generated code of Harris&Stephens algorithm using
MPI library is presented in Listing 5.

Listing 5: MPI distributed code for Harris&Stephens algorithm
int main(int argc, char **argv) {
MPI_Status status0;
int size0, rank0;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size0);
MPI_Comm_rank(MPI_COMM_WORLD, &rank0);
/* ...Check number of process running... */
/* Variable declaration/allocation. */
double __in_0[6000][5900], __in_1[6000][5900]; /* ... */
if (rank0 == 0) {
/* ...Initialize array... */
init_array(6000, 5900, __in_0);
MPI_Send(&__in_0[0][0], 6000 * 5900, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if (rank0 == 1) {
MPI_Recv(&__in_1[0][0], 6000 * 5900, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD, &status0);
}
if (rank0 == 0) {
SobelX(6000, 5900, __Gx_0, __in_0);
MPI_Send(&__Gx_0[0][0], 6000 * 5900, MPI_DOUBLE, 2, 0,

MPI_COMM_WORLD);
}
if (rank0 == 2) {
MPI_Recv(&__Gx_2[0][0], 6000 * 5900, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD, &status0);
}
/* ... */
if (rank0 == 0)
CoarsitY(6000, 5900, __out_0, __Sxx_0, __Syy_0, __Sxy_0);

if (rank0 == 0)
{ /* ...Print result... */ }

MPI_Finalize();
return 0;

}

V. EXPERIMENTS AND RESULTS

The experimental results of our method of automatic code
generation are given in this section. Our hardware configura-
tion and the selected benchmarks are first described. Then our
experimental results are presented and discussed.

A. Hardware Configuration

The experiments are executed on a cluster of eight nodes
each with a Intel(R) Xeon(R) CPU X5450 @ 3.00GHz pro-
cessor and 16 Go RAM. The inter-node communications use a
one gigabit Ethernet. All the clusters run Linux 2.6.32 64-bits.
The MPI implementation is Open MPI 1.6.2 [41]. All codes
are compiled with gcc 4.4.7 and optimization option ’-O3’
has been used. For the experiments, in order to fully take into
account the communications through the different nodes, only
one core runs on each node.



B. Benchmark

To evaluate the performance of our method, we performed
the experiments on some linear C-BLAS kernels: gemm,
gemver, gesummv, symm, syr2k, syrk and trmm. For
the latter, we used the Polybench v4.2 implementation [42].
Polybench benchmarks include the infrastructure to compute
the program execution time without the initialization step
of arrays, and print the results to enable the verification of
computations. For the BLAS, we increased the problem size
proposed in Polybench, to obtain interesting and representative
problems for distributed machines. We used sizes of 3840
for mono-dimensional arrays and 3840x3000, 3840x4000 or
3000x4000 for bi-dimensional arrays, all in doubles. For a
good estimate of the execution time, each test is run five times,
the lowest and fastest times are removed and the average of
the remaining three execution times is given.

The target codes are generated for 2, 4 and 8 processes for
the BLAS kernels. Since BLAS kernels are composed of for
loops, a simple approach has been used to generate the tasks:
Loops are split by the number of target processes and each
new loop is assigned to a process.

C. Results

The execution times are summarized in Table II, and their
corresponding speed-ups are illustrated in Figure 3.
gemm and gesummv are close to a perfect scaling with

the increase in the number of used processes. This good
performance is obtained because the outermost loop is fully
parallel. Moreover, the accesses to the arrays follow the
outermost loop iterations on the first dimension, that enables
to fully take advantage of the cache.
syrk and syr2k also scale with the number of processors

with a good speed-up, and trmm has a little speed up.
Like gemm and gesummv, their outermost loop iterations
are independent. But the arrays are accessed both along the
outer and the inner loop iterators. So cache reloads are more
frequent. Moreover in trmm case, these accesses are done on
the array that is updated.

An execution onto a distributed architecture for gemver
and symm do not improve their performance. This is due
to the fact that the generated code is sequential. Therefore,
communications only add execution time. In symm, depen-
dencies exist between each iteration of the outermost loop, so
splitting the loop is not enough to generate several independent
tasks. A rescheduling or a new tiling of the loop nest must
be performed to introduce an independent outermost loop
iteration before mapping the different tasks. For gemver,
four successive loops are present in the computation kernel.
These four loops have flow dependences, so they cannot be
considered as independent tasks being able to be executed
simultaneously. Moreover, in gemver, the reads and writes on
array elements in the successive loop nests are not done in the
same loop iterator order. For instance, the first loop computes
new values for A[i][j], but the second loop accesses
elements A[j][i], so all loops have to communicate their
results to each other.

gemm gemver gesummv symm syr2k syrk trmm
0

1

2

3

4

5

6

7

8

Speed up

sequential

2 procs

4 procs

8 procs

Figure 3: Performances of the automatic parallelization

benchmarks sequential 2 processors 4 processors 8 processors
gemm 104,4091 52,5408 26,7061 13,7405
gemver 0,8917 4,4416 3,2143 NA

gesummv 0,0644 0,0368 0,0180 0,0096
symm 182,6694 223,2030 186,5294 188,0440
syr2k 157,8145 123,9313 69,3526 37,1894
syrk 84,8091 64,9078 37,6302 20,2551
trmm 459,5931 432,4614 397,6002 278,3207

Table II: Execution time of the benchmarks (in s)

D. Limitations

These experiments show that our compilation process gener-
ates automatically a correct parallel distributed code for task
parallelization from a sequential code. For good candidates
suitable to the distribution, the generated code scales with the
number of used processors, do not forget that only one core
is used by node to force the communication inter node.

But, some performance problems remain. These issues come
mainly from an inefficient naive distributed mapping applied to
the initial code. Some improvements on this mapping must be
done to show better results on all the benchmarks, for instance
by adding a rescheduling of the loops.

VI. CONCLUSION

This article presents a compilation process to automatically
generate a parallel task code executable onto distributed mem-
ory machines from a sequential code. This compilation process
is based on a small-step approach. It has many advantages: 1)
all the transformations are as simple as possible in order to
enable a proof of their correctness, that are under processes, 2)
the source of the transformation results represent an important
informative support for the user, 3) each transformation pass
can be replaced by another equivalent one if a better solution
exists, for instance the initial mapping pass can be replaced,
4) new transformations can be added during the optimization
step or after the generation of the distributed code. The mod-
ularity allows an easy testing of new optimizations (additional
source-to-source polyhedral optimizations, etc.) or different
options of the target codes (asynchronous communications,
other libraries, etc.). The experimental results present some
benchmarks with good execution times, scaling with the
number of processors.



In the near future, a new pragma to process for loops
is considered. Its goal is to automatically map the intended
blocks of iterations into tasks. Associated with this pragma,
loop rescheduling can be performed to ensure that the itera-
tions of the outermost loop are not dependent. This can be
done by applying PIPS transformations or by using another
tool like Pluto+. Another optimization is to group the state-
ments executed on the same process into a single test case, then
to outline them into separate functions, one for each process.
This last optimization would take full advantages of the array
resizing optimization.

In the future, the generation of asynchronous communi-
cations is planed, or a transformation from synchronous to
asynchronous communications.
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