The Energy/Frequency Convexity Rule of Energy Consumption for Programs:

Modeling, Thermosensitivity, and Applications

Karel De Vogeleer

Ph.D. defense September 4th, 2015

A Green IT Thinking

Off-line, including

- transistor design,
- circuit design,
- architecture,
- software design,
- software coding,
- compiler optimization;
- on-line, including
 - system reconfiguration,
 - compiler optimization,
 - context placement.

- Energy consumption analysis for computer systems:
 - ► analytical model,
 - Energy/Frequency Convexity Rule,
 - supportive measurement data;
- temperature/power relationship demystified:
 - supportive measurement data,
 - guidelines for power measurement;
- transient thermal model for microprocessors:
 - analytical model including radiation,
 - approximations,
 - applicability analysis.

- Energy consumption analysis for computer systems:
 - analytical model,
 - Energy/Frequency Convexity Rule,
 - supportive measurement data;
- temperature/power relationship der
 - supportive measurement data.
 - guidelines for power measurement
- analytical model including radiations

 approximations transient thermal model for micropi

 - applicability analysis.

- Energy consumption analysis for computer systems:
 - ► analytical model,
 - Energy/Frequency Convexity Rule,
 - supportive measurement data;
- temperature/power relationship demystified:
 - supportive measurement data,
 - guidelines for power measurement;
- transient thermal model for microprocessors:
 - analytical model including radiation,
 - approximations,
 - applicability analysis.

- Energy consumption analysis for computer systems:
 - analytical model,
 - Energy/Frequency Convexity Rule,
 - supportive measurement data;
- temperature/power relationship der
 - supportive measurement data,
 - guidelines for power measurement
- transient thermal model for micropi
 - analytical model including radiation
 - approximations,
 - applicability analysis.

- energy consumption analysis for computer systems:
 - analytical model,
 - Energy/Frequency Convexity Rule,
 - supportive measurement data;
- temperature/power relationship demystified:
 - supportive measurement data,
 - guidelines for power measurement;
- transient thermal model for microprocessors:
 - ► analytical model,
 - approximations,
 - applicability analysis.

Presentation's Outline

- Introduction
- Energy Model
- Practical Example
- Parameter Sensitivity
- Case Studies
- Conclusion

- Introduction
- 2 Energy Model
- Practical Example
- Parameter Sensitivity
- Case Studies
- Conclusion

Preliminary Evidence of Energy/Frequency Curves

System Energy Consumption Model (E_{sys})

ullet System's energy consumption E_{svs} definition

$$E_{\text{sys}} = \int_{0}^{\Delta t} P_{\text{sys}} dt$$

$$= \int_{0}^{\Delta t} (P_{\text{cpu}} + P_{\text{back}}) dt;$$

- Examples of P_{back} include:
 - ▶ LCD screen.
 - radio interface,
 - sensors (e.g. GPS);
- If $P_{\rm cpu}$ and $P_{\rm back}$ are constant over Δt :

$$E_{\text{sys}} = (P_{\text{cpu}} + P_{\text{back}}) \cdot \Delta t.$$

September 4th, 2015

Microprocessor Power Model

CPU power $P_{\rm cpu}$ consists of:

- dynamic power $P_{\rm dyn}$,
- leakage current $P_{\rm leak}$,
- short-circuit current $P_{\rm sc}$,

$$P_{\text{cpu}} = P_{\text{dyn}} + P_{\text{leak}} + P_{\text{sc}}$$

$$= (1 + \gamma V) \cdot \eta \alpha C V^{2} f$$

$$= (1 + \gamma V) \cdot \xi V^{2} f.$$

Execution Time Model

Execution time Δt depends on:

- cc_b code size in clock cycles,
- f CPU clock frequency,
- f_k frequency thieves,
- ullet eta slack time per clock cycle,

$$\Delta t = cc_{\rm b} \left(\frac{1}{f - f_{\rm k}} + \beta \right).$$

Optimal Clock Frequency (f_{opt})

System's energy consumption model

$$\begin{split} E_{\rm sys}(f) &= (P_{\rm cpu} + P_{\rm back}) \cdot \Delta t \\ &= ([1 + \gamma V] \xi V^2 f + P_{\rm back}) \cdot cc_b \left(\frac{1}{f - f_k} + \beta\right), \end{split}$$

where $\{\gamma, \xi, P_{\text{back}}, cc_{\text{b}}, f_{\text{k}}, \beta\} \in \mathbb{R}^+$;

• a single minimum for $E_{\text{sys}}(f)$ exists at f_{opt} when

$$\left(\frac{\partial E_{\mathrm{sys}}}{\partial f}\right)_{f=f_{\mathrm{out}}} = 0$$
, and $\frac{\partial^2 E_{\mathrm{sys}}}{\partial f^2} > 0$ holds;

• V is approximately an affine map of $f: V \to m_2 f + m_1$.

Supply Voltage/Frequency Relationship

A linear trend between V and f is observed: $V = m_2 f + m_1$.

- Introduction
- 2 Energy Model
- Opening a series of the ser
- Parameter Sensitivity
- Case Studies
- Conclusion

Benchmark and Testbed

Benchmark: bit-reverse algorithm, part of the DFT algorithm:

```
void bitreverse_gold_rader
    (int N, complex *data) {
  int n = N, nm1 = n-1:
  int i = 0, j = 0;
  for (; i < nm1; i++) {
    int k = n \gg 1;
    if (i < j) {
      complex temp = data[i];
      data[i] = data[j];
      data[j] = temp;}
    while (k \le j) {
      i -= k; k >>= 1;}
    i += k :
```

- testbed: Samsung Galaxy SII;
- power Measurement: Monsoon.

Benchmark and Testbed

 Benchmark: bit-reverse algorithm, part of the DFT algorithm:

```
void bitreverse_gold_rader
    (int N, complex *data) {
  int n = N, nm1 = n-1;
  int i = 0, j = 0;
  for (; i < nm1; i++) {
    int k = n \gg 1;
    if (i < j) {
      complex temp = data[i];
      data[i] = data[j];
      data[j] = temp;}
    while (k \le j) {
      i -= k; k >>= 1;}
    i += k :
```

- testbed: Samsung Galaxy SII;
- power Measurement: Monsoon.

Benchmark and Testbed

• Benchmark: bit-reverse algorithm, part of the DFT algorithm:

```
void bitreverse_gold_rader
    (int N, complex *data) {
  int n = N, nm1 = n-1;
  int i = 0, j = 0;
  for (; i < nm1; i++) {
    int k = n \gg 1;
    if (i < j) {
      complex temp = data[i];
      data[i] = data[j];
      data[j] = temp;}
    while (k \le j) {
      i -= k; k >>= 1;}
    i += k :
```

- testbed: Samsung Galaxy SII;
- power Measurement: Monsoon.

The Energy/Frequency Convexity Rule

Energy consumption versus CPU clock frequency shows convex properties.

- Introduction
- 2 Energy Model
- Practical Example
- Parameter Sensitivity
- Case Studies
- Conclusion

Energy Model's Parameter Sensitivity Analysis

Energy consumption model under analysis:

$$\begin{split} E_{\rm sys} &= ([1+\gamma V] \cdot {\color{red}\xi} V^2 f + {\color{red}P_{\rm back}}) \cdot c c_{\rm b} \left(\frac{1}{f-f_{\rm k}} + \beta\right), \\ & \left(\frac{\partial E_{\rm sys}}{\partial f}\right)_{f=f_{\rm out}} = 0; \end{split}$$

- The aim is to find the conditions under which f_{opt} is exploitable;
- The following parameters will be looked at in more detail:
 - ► frequency thieves (overhead) f_k,
 - ► background power P_{back},
 - \triangleright power gain ξ ,
 - ▶ temperature $\gamma(T)$;
- Analysis based on energy profile of the Exynos 4210.

Influence of frequency thieves f_k on f_{out}

$$E_{\text{sys}} = ([1 + \gamma V] \cdot \xi V^2 f + P_{\text{back}}) \cdot cc_b \left(\frac{1}{f - f_k} + \beta\right)$$

Influence of Background Power P_{back} on f_{opt}

$$E_{\mathrm{sys}} = ([1 + \gamma V] \cdot \xi V^2 f + P_{\mathrm{back}}) \cdot cc_{\mathrm{b}} \left(\frac{1}{f - f_{\mathrm{k}}} + \beta\right)$$

(h) $P_{\rm back}/P_{\rm cpu}$ ratio at $f_{\rm opt}$

Influence of *Power Gain* $\xi(s)$ on f_{opt}

$$E_{\mathrm{sys}} = ([1 + \gamma V] \cdot \frac{\xi}{\xi} V^2 f + P_{\mathrm{back}}) \cdot \mathit{cc}_{\mathrm{b}} \left(\frac{1}{f - f_{\mathrm{k}}} + \beta \right)$$

- Cooperative microprocessors on the same die:
 - power-efficient: Cortex A7,
 - v high-performance: Cortex A15;
- ξ is scaled by s between its lower and upper bound: $s \in \{1, 2\}$;
- Exynos 5410 power model.

Numbers on the lines represent the background power for that line.

Influence of *Temperature* $\gamma(T)$ on f_{opt}

$$E_{\mathrm{sys}} = ([1 + \frac{\gamma}{V}] \cdot \xi V^2 f + P_{\mathrm{back}}) \cdot \mathit{cc}_{\mathrm{b}} \left(\frac{1}{f - f_{\mathrm{k}}} + \beta \right)$$

- ullet γ is a function of temperature;
- temperature/power model of Exynos 5410 is used;
- temperature/power shows exponential behavior;

 $\Delta f_{
m opt} pprox 200 \, {
m MHz}$ when $25^{\circ}{
m C} < T < 85^{\circ}{
m C}$.

- Introduction
- 2 Energy Model
- Practical Example
- Parameter Sensitivity
- Case Studies
- Conclusion

Case Study 1: f_{opt} Classification

$$\begin{array}{c|c}
1 & \\
2 & \max(f_{\min}, f_{k}) \\
3 & f_{\max}
\end{array}$$

$$f_{
m opt}$$
 $f_{
m opt}$

$$f_{\max}$$

 $\left| \begin{array}{cccc} f_{\mathrm{opt}} & < & \max(f_{\min}, f_{k}) \\ \max(f_{\min}, f_{k}) & \leq & f_{\mathrm{opt}} & \leq & f_{\max} \\ f_{\max} & < & f_{\mathrm{opt}} \end{array} \right| \text{ the slower, the better chase } f_{\mathrm{opt}}$

Case Study 2: f_{opt} and Multi-core Code Execution

Clock frequency scheduling schemes:

- on-demand: binary (high/low) as work arrives;
- selfish: each core is individually energy optimized;
- **1 thread-cooperation**: all cores are collectively energy optimized.

Case Study 2: f_{opt} and Multi-core Code Execution contd.

Problem statement:

- *n* threads executed in parallel with common deadline t_{max} ;
- threads individually clock frequency f_i scalable;
- $E_{\text{tot}}(f_i): \mathbb{R}^m \to \mathbb{R}$ to be minimized over f_i :

$$E_{\rm tot}(f_i) = P_{\rm back}t_{\rm max} + \sum_{i=0}^n \left[\frac{cc_{{\rm b},i}}{f_i}P^+ + \left(t_{\rm max} - \frac{cc_{{\rm b},i}}{f_i}\right)P^\circ\right],$$

subject to
$$\forall i, \quad \frac{cc_{\mathrm{b},i}}{f_i} \leq t_{\mathrm{max}} \quad \text{and} \quad f_{\mathrm{min}} \leq f_i \leq f_{\mathrm{max}};$$

- $\{cc_{\rm b}, f_i, t_{\rm max}, P_{\rm back}, P^{\circ}, P^{+}\} \in \mathbb{R}^+;$
- active power (P^+) and idle power (P°) are generated by the Exynos 5410 power model.

Case Study 2: f_{opt} and Multi-core Code Execution contd.

Performance evaluation of 4 clock frequency scalable parallel threads.

Case Study 3: big-LITTLE Heterogeneous Computing

- Optimal clock frequency for cooperative microprocessors:
 - power-efficient: Cortex A7,
 - igh-performance: Cortex A15;
- f_{opt} is chosen on the core yielding best efficiency;
- Exynos 5410 power model used.

Numbers on the lines represent the background power for that line.

- Introduction
- 2 Energy Model
- Practical Example
- Parameter Sensitivity
- Case Studies
- Conclusion

Conclusion

- System's energy consumption shows convex properties over f;
- rules of thumb for an exploitable f_{opt} :
 - \triangleright $P_{\rm back}$ should be smaller than $P_{\rm cpu}$,
 - overhead (f_k) should be limited,
 - slack time β should be limited,
 - power profile (ξ) has minimal effect,
 - ▶ code size (ccb) has no effect;

- energy gains could be from 10% up to 50% at fixed temperature;
- temperature/Power relationship shows exponential behavior;
- radiation can be omitted for small devices.

Future Work

Including:

- apply results to other domains:
 - multi-core,
 - HPC.
 - clock modulation.
 - interactive/performance;
- exploit the thermal behavior;
- better understanding of how much energy can practically be gained.

The Energy/Frequency Convexity Rule of Energy Consumption for Programs:

Modeling, Thermosensitivity, and Applications

Karel De Vogeleer

Ph.D. defense September 4th, 2015

Publications

- K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, "The Energy/Frequency Convexity Rule: modeling and experimental validation on mobile devices," in Proceedings of the 10th Conference on Parallel Processing and Applied Mathematics. Springer Verlag, Sep. 2013.
- K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, "Modeling the temperature bias of power consumption for nanometer-scale CPUs in application processors," in 14th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Jul. 2014, pp. 172-180.
- K. De Vogeleer, P. Jouvelot, and G. Memmi, "The impact of surface size on the radiative thermal behavior of embedded systems," CoRR, vol. abs/1410.0628, 2014, (submitted to IEEE TMC in 2014).
- K. De Vogeleer, G. Memmi, and P. Jouvelot, "Parameter Sensitivity Analysis of the Energy/Frequency Convexity Rule for Nanometer-scale Application Processors," CoRR, vol. abs/1508.07740, 2015, (in submission to The Elsevier Journal of Parallel and Distributed Computing, 2015).

References I

FAN, X., ELLIS, C. S., AND LEBECK, A. R. The synergy between power-aware memory systems and processor voltage scaling. In *Proceedings of the Third international conference on Power - Aware Computer Systems* (Berlin, Heidelberg, 2004). Springer-Verlag. pp. 164–179.

HAGER, G., TREIBIG, J., HABICH, J., AND WELLEIN, G. Exploring performance and power properties of modern multi-core chips via simple machine models. *Concurrency and Computation: Practice and Experience* (2013), n/a-n/a.

LE SUEUR, E., AND HEISER, G. Dynamic voltage and frequency scaling: the laws of diminishing returns. In *Proceedings* of the 2010 international conference on *Power aware computing and systems* (Berkeley, CA, USA, 2010), HotPower'10, pp. 1–8.

SNOWDON, D. C., RUOCCO, S., AND HEISER, G. Power management and dynamic voltage scaling: Myths and facts. In 2005 WS Power Aware Real-time Comput. (New Jersey, USA, Sept. 2005).