
Term inference for Dedukti

Gaëtan Gilbert, supervised by Arnaud Spiwack,
Équipe Deducteam at Inria Paris Rocquencourt

September 11, 2015

The general context

Dedukti is an experimental language designed to write proof checkers
for various logics. It is used to implement independent proof checkers for
proof assistants such as Coq and Isabelle and trace checkers for automated
deduction tools such as Zenon and iprover modulo.

The logic underlying Dedukti is called λΠ-modulo: it is an extension of
λΠ, the simplest form of dependently typed λ-calculus (also called λP), with
user-defined rewriting rules for type equality (a.k.a. conversion) [5].

The research problem

Dedukti proofs require information to be made explicit when it could be
deduced from the rest of the proof. This makes writing and reading real
world proofs difficult.

Proof assistants such as Coq solve this problem by inserting a term in-
ference phase before type checking. Given its small code base and low re-
quirements for backward compatibility, Dedukti provides an opportunity to
define a well-understood type inference implementation.

Your contribution

I designed and implemented the various parts necessary for term infer-
ence, notably extensions to the syntax and, self-contained with respect to
each other, a safe unification kernel, an extensible unification engine making
use of complex heuristics, and a constraint generating elaboration procedure,
along with a specification of their semantics. The entire term inference sys-
tem is expressed through a monadic interface to abstract certain operations.

Summary and future work

My implementation has been seen to behave well on small examples in-
cluding code directly translated from Coq, which infers many non-trivial type
annotations. Its code is modular and writing it was fairly painless, which is
promising for future extensions.

Dedukti has two kinds of statements, declarations and patterns. Term
inference currently only works for the first, patterns having subtly different
semantics which involve unification. These semantics need to be clarified
with regards to term inference before it can be expended to cover all Dedukti
statements.

The proof assistant Matita provides implicit arguments as first-class el-
ements of the syntax through a feature of its term inference [1]. Stéphane
Lengrand has also used these co-variables in his unification algorithm [4]. It
should be possible to extend Dedukti’s term inference to cover that use case
as well.

Finally the presentation of the unification heuristics as logical rules or-
dered by priority leaves open the possibility of allowing user-provided ex-
tensions to the unification through a system such as unification hints. That
system, most famously implemented in Matita, is known to be able to emu-
late high level Coq features such as canonical structures and type classes.

Contents

1 Lambda Pi Calculus Modulo / Dedukti 4

2 Monads 6
2.1 State monad . 6
2.2 Definition . 7
2.3 Backtracking monad . 8
2.4 Monad transformers . 8

3 Safe unification 9
3.1 Unification problem . 9

3.1.1 Metavariables . 10
3.1.2 Guards . 11
3.1.3 Meta-substitution . 12
3.1.4 Unification problems 12

3.2 Safe operations . 14
3.2.1 Simple operations . 14
3.2.2 Forcibly typed metavariable 15
3.2.3 Constraint simplification 15

4 Elaboration 16

5 Unification resolution 18

6 Implementation notes 19
6.1 Typing . 19
6.2 Polymorphic term type . 19
6.3 Code organisation . 20

Appendices 22

A Typing rules 22

B Elaboration rules 23

C Constraint decomposition 24

D Unification heuristics 24

E References 26

3

1 Lambda Pi Calculus Modulo / Dedukti

Lambda Pi (λΠ) Calculus is a dependently typed λ−calculus, i.e. a
calculus where types may contain values.

Dependent type calculi use computation inside types to shorten and clar-
ify proofs, and makes proof verification more efficient. The computation ap-
pears in a conversion rule, usually β−conversion or βη−conversion. In λΠ−
calculus modulo we may add rewrite rules to the conversion.

Consider a proof of 2+2 = 4. In first order logic with the axioms of Peano
arithmetic, it requires multiple uses of transitivity and of the (S x) + y =
S(x + y) axiom. In λΠ−modulo the latter axiom is replaced by a rewrite
rule, making 2 + 2 and 4 convertible. Then 2 + 2 = 4 has a one-step proof
which is efficient to check.

Let x, y, z be variable symbols and c, d constant symbols. We use a
presentation where types are a subset of terms. The terms (including the
types) of λΠ calculus modulo are produced by the following grammar:

t, u,A ::= x | c | Kind | Type | t u | λx : A.t | Πx : A.t

The terms Kind and Type are called sorts and classify types.
This grammar produces ground terms, which we will later extend with

other constructors to support implicit terms and term inference.
Typing contexts associate types with variables:

Γ ::= [] | Γ, x : A

Alpha conversion, capture avoiding substitution t[x← u] and β−reduction
are defined as usual for λ−calculus. Parallel substitutions are partial func-
tions from variables to terms:

σ ::= ∅ | σ, x← t

They may be applied to a term as σ(t) and to a context as σ(Γ) by
applying it to each term within the context.

Typing requires a signature Σ which associates types to constants via an
operation denoted c : A ∈ Σ. The signature also provides term reduction
B and its equivalence closure the conversion ≡. Since it is not modified
throughout term inference, we assume a signature Σ verifying certain prop-
erties throughout this report.

We will define several properties by inference rules such as A B
C ,

read as “from A and B we may deduce C”. The properties defining typing
are the following:

4

• Γ ` typing context Γ is well-formed.

• Γ ` t = ∗ term t is a sort under typing context Γ (for ground terms
this is equivalent to t ∈ {Kind, Type}. In section 3 we will consider
extended terms for which this judgement will be less trivial.)

• Γ ` t : T term t has type T under typing context Γ.

• Γ ` σ : ∆ substitution σ is a well-formed substitution between typing
contexts Γ and ∆.

The following are defined in terms of the previous properties:

• Γ ` t : ∗ term t is a well-formed type under typing context Γ, defined
as Γ ` t = ∗ or ∃T,Γ ` T = ∗ and Γ ` t : T . (For extended terms this
judgement will also be modified.)

• Γ ` t term t is well-formed under typing context Γ, defined as Γ ` t = ∗
or Γ ` t : ∗ or ∃T,Γ ` t : T .

Σ is required to verify properties such that:

• If Γ ` and Γ ` t then the reduction B is confluent and strongly nor-
malising on t. Then we can decide conversion.

• If Γ ` any terms in Γ may be reduced without invalidating the judge-
ment. If Γ ` and Γ ` t : T or Γ ` t : ∗ or Γ ` t = ∗ any terms in Γ, t
and T may be reduced without invalidating the judgements.

• If Γ and Γ ` σ : ∆ and ∆ ` t : T then Γ ` σ(t) : σ(T), with analogous
properties for ∆ ` t : ∗ and ∆ ` t = ∗.

• If Γ ` and Γ ` t : T then Γ ` T : ∗.

Finally the definitions:

Well-formed typing context

[] `

Γ ` Γ ` A : Type

Γ, x : A `

Variables must have a type sorted by Type, but constants may have a
type sorted by Kind.

5

Sorts

t ∈ {Kind, Type}
Γ ` t = ∗

Typed substitutions

Γ ` ∅ : []

Γ ` σ : ∆ Γ ` t : A
Γ ` (σ, x← t) : (∆, x : A)

Typing The typing rules are normal for dependent λ−calculus, resembling
the following one. The complete list is found in appendix A.

Γ ` f : T T BΠx : A.B Γ ` u : A

Γ ` f u : B[x← u]

2 Monads

2.1 State monad

A function to count the nodes in a tree is easy to define in imperative
style, and that definition can be translated to a functional language:

l et count t = l et rec count acc = function
| Node (l e f t , r i g h t) −> l et acc1 = acc+1 in

let acc_ l e f t = count acc1 l e f t in
count acc_ l e f t r i g h t

| Leaf −> acc
in count 0 t

The variable acc is a counter incremented at each Node. We need to pass
it explicitly at each explicit call, and a simple typing error could result in
passing an outdated counter, for instance acc instead of acc1 when computing
acc_left.

We can automatise this operation by providing the following type and
functions:

type ’ a t = in t −> ’ a∗ i n t

l et r e turn (x : ’ a) : ’ a t = fun s −> x , s
l et (>>=) : (m: ’ a t) −> (f : ’ a −> ’b t) : ’b t =

6

fun s −> l et x , s ’ = m s in f x s ’

l et get : i n t t = fun s −> s , s
l et s e t : (n : i n t) : un i t t = fun _ −> () , n

Then the count function becomes

l et count t = l et rec count : t r e e −> unit t = function
| Node (l e f t , r i g h t) −> get >>= fun acc −>

se t (acc+1) >>= fun () −>
count l e f t >>= fun () −>
count r i g h t

| Leaf −> return ()
in let () , n = count 0 in

n

The counter is now passed implicitly and we ensure that it is always up
to date.

Of course, we can provide the same functions by using an arbitrary type
state instead of int. Other implementations are also possible if the type
is made abstract, although we then need a function run : α t → state →
α ∗ state to use the result.

2.2 Definition

The previous construct can be generalised to functionalities other than
providing a state in a functional setting.

A monad is a structure representing computations along with ways to
combine them. In Ocaml, a monad is the combination of the following ele-
ments:

type ’ a t
val r e turn : ’ a −> ’ a t
val (>>=) : ’ a t −> (’ a −> ’b t) −> ’b t

Values of type α t represent computations producing a value of type α.
Such computations can be produced from a value of type α by the function
return, and computations are combined by the function >>= (also called
bind, as it binds the result of the first computation inside the second).

The functions should verify the monad identities:

bind (re turn x) f = f x
bind m return = m
bind m (fun x −> bind (f x) g) = bind (bind m f) g

7

2.3 Backtracking monad

A backtracking monad provides a way to raise errors of type err and
backtrack depending on them with the following functions:

val zero : e r r −> ’ a t
val plus : ’ a t −> (e r r −> ’ a t) −> ’ a t

zero raises an error and plus inserts a backtracking point: with plus m f ,
if computation fails with an error e in m or while using the output of m, we
compute using f e instead.

They verify equations such as

p lus (ze ro e) f = f e
p lus (p lus a b) c = plus a (fun e −> plus (b e) c)
zero e >>= f = zero e
(p lus a b) >>= f = plus (a >>= f) (fun e −> b e >>= f)

Values are extracted with

type ’ a out = | Ni l of e r r | Cons of ’ a ∗(e r r −> ’ a out)
val run : ’ a t −> ’ a out

If we don’t consider errors, a value of type α out is a list of values of type
α such as we could obtain from a nondeterministic computation.

Backtracking monads are defined in depth in [3].

2.4 Monad transformers

To provide term inference we will use a monad with both state effects
and backtracking. Although we could simply define such a monad, monad
transformers are a relatively generic way of combining monad definitions.
Note that composing monads t1 and t2 by taking type α t = α t1 t2 does
not work: it does not have a monad structure in general.

A monad transformer is an operation taking a monad with type α m and
producing a monad α t with the ability to produce computations in the later
from those in the former, i.e. a function

val l i f t : ’ a m −> ’ a t

It should verify

l i f t (r e turn x) = return x
l i f t (m >>= k) = l i f t m >>= fun x −> l i f t (k x)

8

The identity monad, where computations of type ′a are values of type
α, serves as a basic monad from which others are constructed with monad
transformers.

It is possible to define a monad transformer adding a state to a monad,
as well as a transformer adding backtracking. However, when the state
transformer is applied to a monad which has backtracking operations, those
operations are not immediately available to the resulting monad. We need to
write specific code depending on the implementation of the state transformer
to lift the backtracking operations through it. Since this work needs to be
done for each combination of effect and monad transformer except when the
effects are simple enough to be passed through the lift function, monad
transformers may not scale to a large number of effects.

For our purposes, two effects (state and backtracking) are sufficient, so
monad transformers are an acceptable solution.

The order in which monad transformers are applied matters: applying
the backtracking transformer to a state monad produces a monad where
backtracking does not reset the state, whereas applying the state transformer
to a backtracking monad produces a monad where backtracking does reset
the state. We will use the latter.

3 Safe unification

During type inference, we will at times have a term t which we know has
type A while we need a term with type B (for instance when inferring the
type of f x, with f : B → C and x : A inferred). In that case, making the
terms A and B convertible solves the problem: we call this unification.

In this section, we describe what information is contained in a unification
problem and what properties it should verify. We introduce the constructs
of guards and of metavariables with explicit substitutions and describe their
purpose. Finally we describe how to manipulate unification problems while
preserving their semantics.

3.1 Unification problem

Ground terms are extended into “extended terms” by two new construc-
tors and typing rules are added to cover them. Typing rules for extended
terms involve an implicit unification problem Θ (to be inferred from context,
or we may say for example “Γ ` t : T under Θ”. In the implementation it
is accessed through the monadic interface.) whose operations are defined
below, and use an extended reduction and conversion.

9

3.1.1 Metavariables

Definition 3.1 (Partial term). Partial terms are ground terms extended by
a constructor to support implicit terms:

t ::= ... | ?

The placeholder term ? is intended to be replaced by a different ground
term, possibly capturing variables, for each appearance in a partial term.

Partial terms cannot be typed.

Definition 3.2 (Metavariable). A metavariable is an extended term ?i[σ]
where ?i is a name and σ a substitution of extended terms.

Metavariable terms contain a substitution to express dependencies, i.e.
the variables which may be used when replacing the metavariable by a term.

Consider a partial term (λx : A.?) y which we unify with y. We may
replace the placeholder with x (which is captured by the abstraction) or
with y. However if we reduce to ? that information is lost and only the later
solution can be found.

By adding the substitution, before reduction we have (λx : A.?[x← x, y ← y]) y
and after we have ?[x← y, y ← y], retaining the capture information.

In formal terms, we will in a moment define functions θ which we call
meta-substitutions. Finding a solution to a unification problem is equivalent
to finding the right meta-substitution. Having explicit substitution attached
to metavariables makes it so that meta-substitutions are compatible with
reduction: if t B t′ then θ(t) B θ(t′). See for instance [2] for a detailed
analysis of explicit substitutions.

Definition 3.3 (Metavariable typing declaration). A metavariable typing
declaration is a statement of the form Γ `?i : T or Γ `?i : ∗ or Γ `?i = ∗
where Γ is a typing context, ?i is a metavariable name and T is a term.

Unification problems contain at most one metavariable typing declaration
for each metavariable name. We write for instance (Γ `?i : ∗) ∈ Θ when ?i
is a type under context Γ and unification problem Θ.

When a unification problem Θ contains a typing declaration for a metavari-
able ?i, ?i is said to be declared in Θ.

Definition 3.4 (Metavariable typing). The typing rules are extended with
rules of the form

(∆ `?i : T) ∈ Θ Γ ` σ : ∆

Γ `?i[σ] : σ(T)

There is one for each kind of declaration, as detailed in the appendix A.

10

3.1.2 Guards

Definition 3.5 (Unification constraint). A unification constraint is a state-
ment Γ ` A ≡ B where Γ is a typing context and A and B are terms.

It is read as “A and B need to be unified under context Γ”.

During inference, we may have a term t which we know verifies x : X `
t : A when we need a term verifying x : X ` t : B. This creates a unification
constraint x : X ` A ≡ B.

Let Ω = (λx :?.x x) (λx :?.x x). There is no way to give it a type and
reduction on it does not terminate. When typing the term λy : Ω : y y we
will need to check that the type of y converts to a product type. Without
specific precautions, we must make sure that we have detected that Ω should
not be reduced before doing that check. Since Ω cannot be typed due to the
lack of solutions to the equation ? ≡ Πz :?.?′ which appears when checking
either half of Ω, we have to check constraints in a certain order and they
cannot be delayed.

With guards, we create a “guarded constant” p of type X → A → B
to which we associate the constraint x : X ` A ≡ B, then we can use
x : X ` p x t : B.

If we successfully unify A and B, we can then safely replace p by λ x y.y
so that p x t reduces to t.

For compactness, we internalise the context x : X as a substitution (used
only for typing) and reduce p[σ] t to t in one step.

This is of course generalisable to contexts with more than one variable,
as we will do in section 4.

Guards make it so that solving separate constraints can be interleaved
or even parallelized (if they involve separate metavariables). However this
is future work: the current algorithm does not make use of that capability
to solve more cases or to execute faster but only to make the code slightly
cleaner.

Definition 3.6 (Guarded term). A guarded term is an extended term p[σ] t
where p is a guard name, σ a substitution and t an extended term.

Definition 3.7 (Guard typing declaration). A guard typing declaration is
a statement of the form Γ ` p : A → B where Γ is a typing context, p is a
guard name and A and B are terms.

Unification problems contain at most one typing declaration for each
guard name, which is then said to be declared for that problem.

Definition 3.8 (Guard typing). The typing rules are extended with a rule

11

(∆ ` p : A→ B) ∈ Θ Γ ` σ : ∆ Γ ` t : σ(A)

Γ ` p[σ] t : σ(B)

3.1.3 Meta-substitution

Definition 3.9. A metavariable definition is a statement ?i := t where ?i is
a metavariable name and t a term. ?i is said to depend on every metavariable
appearing in t.

Definition 3.10 (Meta-substitution). A meta-substitution θ is a collection
of metavariable definitions ?i := ti and of pass-through guards pj.

Definition 3.11 (Terminating meta-substitution). A meta-substitution θ is
terminating if for each metavariable defined in θ it does not depend directly
or through other metavariables on itself.

In other words, the directed graph whose nodes are the metavariables
defined in θ and with arcs from each metavariable to those it depends on has
no cycles.

Definition 3.12 (Applying a meta-substitution). A meta-substitution θ in-
duces a (partial) function on terms also denoted θ defined inductively:

• for the ground term constructors simply apply θ to each subterm, e.g.
θ(f u) := θ(f) θ(u).

• θ(?i[σ]) := θ(σ(ti)) if (?i := ti) ∈ θ. (This is not always valid, e.g. if
ti =?i[].)

• θ(?i[σ]) :=?i[θ ◦ σ] otherwise.

• θ(p[σ] t) := θ(t) if p ∈ θ.

• θ(p[σ] t) := p[θ ◦ σ] θ(t) otherwise.

Lemma 3.13. If a meta-substitution θ is terminating then the induced func-
tion is total.

3.1.4 Unification problems

Definition 3.14 (Unification problem). A unification problem is a list of
metavariable declarations, metavariable definitions and guard declarations
each associated with a list of unification constraints.

12

Definition 3.15 (Induced substitution). A unification problem Θ induces a
meta-substitution θ formed by the collection of the metavariable definitions
and the guards associated with no constraints in Θ.

The reduction used when type checking extended terms is modified so
that t B θ(t) where θ is the induced meta-substitution of the implicit unifi-
cation problem. The conversion is extended to match.

Definition 3.16 (Valid metavariable declaration). A metavariable declara-
tion Γ `?i : ∗ (resp. Γ `?i = ∗, resp. Γ `?i : T) is valid for a unification
problem Θ when ?i is not declared in Θ and Γ is a valid typing context under
Θ (resp. idem, resp. idem and Γ ` T : ∗ under Θ).

Definition 3.17 (Valid metavariable definition). A metavariable definition
?i := t is valid for a unification problem Θ when one of the following is true:

• (Γ `?i : T) ∈ Θ and Γ ` t : T

• (Γ `?i : ∗) ∈ Θ and Γ ` t : ∗

• (Γ `?i = ∗) ∈ Θ and Γ ` t = ∗

Additionally ?i must not depend on itself when considering the definitions
in Θ as well as the one being considered.

Definition 3.18 (Valid guard declaration). A guard declaration Γ ` p : A→
B associated with a list of unification constraints (Γi ` ui ≡ vi)i<n is valid
for a unification problem Θ when all the following are true:

• p is not declared in Θ

• For each i < n and Θ′ formed from Θ by adding valid metavariable
definitions, if for every j < i Θ′ unifies uj and vj, then under Θ′ Γi is
a valid typing context such that Γi ` ui and Γi ` vi.

• For each Θ′ formed by adding valid metavariable definitions to Θ, if
for each i < n Θ′ unifies ui and vi then Θ′ unifies A and B.

Definition 3.19 (Valid unification problem). A unification problem is valid
when each metavariable declaration and definition and each guard declaration
added to the prefix Θ0 is valid under Θ0.

Lemma 3.20. A valid unification problem induces a terminating meta-
substitution.

13

Theorem 3.21. If Θ is a valid unification problem inducing meta-substitution
θ and under which Γ ` t : T (resp. Γ ` t : ∗, resp. Γ ` t = ∗), then
θ(Γ) ` θ(t) : θ(T) (resp. θ(Γ) ` θ(t) : ∗, resp. θ(Γ) ` θ(t) = ∗).

Theorem 3.22. If Θ is a valid unification problem under which Γ ` t : T
(resp. Γ ` t : ∗, resp. Γ ` t = ∗) and Γ, t and T contain no metavariables
and no guards, then Γ ` t : T (resp. Γ ` t : ∗, resp. Γ ` t = ∗) with the
standard λΠ calculus modulo rules.

Definition 3.23 (Restriction of a problem). If Θ1 and Θ2 are valid unifi-
cation problems, Θ2 is a restriction of Θ1 when for all Γ, t and T such that
Γ ` t : T (resp. Γ ` t : ∗, resp. Γ ` t = ∗) under Θ1, it is also true under
Θ2.

Remark 3.24. The order of the components of a unification problem has no
effect on the semantics, we only care that there exists a valid order.

The overall inference algorithm can now be described: from a partial
term t0 and the empty unification problem, we produce extended terms t
and T and a valid unification problem Θ0 such that [] ` t : T under Θ0. We
compute a restriction Θ of Θ0 by solving constraints, with induced meta-
substitution θ removing all metavariables and guards. Then [] ` θ(t) : θ(T)
under Θ.

We will obtain ground terms t∗ := θ(t) and T ∗ := θ(T) such that [] ` t∗ :
T ∗ by the rules of λΠ calculus modulo.

3.2 Safe operations

Given a valid problem, how can we produce a valid restriction of it?

3.2.1 Simple operations

Lemma 3.25. A valid unification problem is a restriction of itself.

Lemma 3.26. Adding valid declarations and definitions to a unification
problem produces a restriction of it.

Adding a valid metavariable definition is also called metavariable refine-
ment.

Corollary 3.27 (Metavariable narrowing). If ?i is a metavariable with dec-
laration Γ `?i : T (resp. Γ `?i : ∗, resp. Γ `?i = ∗), ?j a fresh metavariable
name, ∆ a valid context formed by selecting only certain variables from Γ
and such that all free variables of T appear in ∆, we may add a declaration
∆ `?j : T (resp. ∆ `?j : ∗, resp. ∆ `?j = ∗) and a definition ?i :=?j [id∆].

14

Metavariable narrowing prevents the use of some variables in valid defi-
nitions of a given metavariable.

3.2.2 Forcibly typed metavariable

Lemma 3.28. If ?i is declared and not defined in Θ, we can form a restric-
tion of Θ where ?i is typed:

• If (Γ `?i : T) ∈ Θ no change is necessary.

• If (Γ `?i : ∗) ∈ Θ, let ?k a fresh metavariable name. We replace the
declaration for ?i with the 2 following declarations:

Γ `?k = ∗ and Γ `?i : ?k[id]

• If (Γ `?i = ∗) ∈ Θ, we replace the declaration for ?i with the 2 following
elements:

Γ `?i : Kind and ?i := Type

If ?i is declared and defined, a similar operation may be possible. For
instance, if ?i declared as a type is defined by ?j also declared as a type and
not itself defined, we force ?j to be typed and then use its type for ?i. How
often this problem occurs in practice has not been investigated.

3.2.3 Constraint simplification

Lemma 3.29. If p is a guard associated with a list of constraints beginning
by Γ ` u ≡ v, we may replace that first constraint:

• if u and v are unified, by no constraint.

• by Γ ` u′ ≡ v′ with uB∗ u′ and v B∗ v′.

• by a decomposition if u and v have the same head shape, e.g. both are
applications or both are abstractions.

In the application case Γ ` f u ≡ g v is replaced by Γ ` f ≡ g and
Γ ` u ≡ v.
See appendix C for all cases.

Remark 3.30. Some of these transformations are invertible.

15

4 Elaboration

We define several functions to transform partial terms into extended
terms. A valid unification problem Θ is threaded throughout the definitions
and is safely modified.

The following functions are wrappers around safe operations:

Definition 4.1 (New Γ ` ?i : T). This function declares a new metavariable.
Inputs Γ and T , outputs ?i.
Precondition: Γ ` T : ∗.
Postconditions: Γ `?i : T , ?i fresh metavariable.
It is implemented by adding a new metavariable declaration. The rule

corresponding to type metavariable declarations is also available.

Definition 4.2 (Γ ` u : A
C
 v : B). This function ensures that a term has

a certain type.
Inputs Γ, u, A and B, outputs v.
Preconditions: Γ ` u : A and Γ ` B : ∗.
Postcondition: Γ ` v : B.
It is implemented by adding a new guard declaration and applying the

guard to u.

Definition 4.3 (Γ ` u : A
C

∗
v : s). This function ensures that a term is

typed by a sort.
Inputs Γ, u and A, outputs v and s.
Precondition: Γ ` u : A.
Postconditions: Γ ` v : s and Γ ` s = ∗.
It is implemented by declaring a new sort metavariable, then a guard with

the metavariable as the target type.

Definition 4.4 (Γ ` t 6= Kind). This function ensures that a term will not
be unified with Kind.

Inputs: Γ and t, outputs only the implicit unification problem.
Precondition: Γ ` t.
Postcondition: there exists a term T such that Γ ` t : T .
t being well-formed, if it is a metavariable we can force it to be typed,

otherwise either it is Kind and typing fails, or it cannot be unified with
Kind.

The following functions are mutually recursive:

16

Definition 4.5 (Γ ` t ⇑ u : T). Type inference.
Inputs Γ and t, outputs u and T .
Precondition: Γ valid typing context.
Postcondition: Γ ` u : T .

Definition 4.6 (Γ ` t : T ⇓ u). Type forcing.
Inputs Γ, t and T , outputs u.
Precondition: Γ ` T : ∗.
Postcondition: Γ ` u : T .

Type forcing inserts a guard:

Γ ` t ⇑ u : A Γ ` u : A
C
 v : B

Γ ` t : B ⇓ v

Type inference
Some rules are trivial, such as the one for variables (the full list can be

found in appendix B):

x : A ∈ Γ
Γ ` x ⇑ x : A

This leaves simple rules for products and abstractions:

Γ ` a : Type ⇓ A Γ, x : A ` b ⇑ B0 : s0 Γ, x : A ` B0 : s0
C

∗
B : s

Γ ` Πx : a.b ⇑ Πx : A.B : s

Γ ` a : Type ⇓ A Γ, x : A ` t ⇑ u : B Γ, x : A ` B 6= Kind

Γ ` λx : a.t ⇑ λx : A.u : Πx : A.B

Holes are replaced by metavariables:

New Γ ` ?k : ∗ New Γ ` ?j : ?k[id]

Γ `? ⇑ ?j [id] : ?k[id]

This rule is the main source of type metavariables.
Applications use one of two rules depending on the type of the application

head:

Γ ` f ⇑ g : T T Bwhnf Πx : A.B Γ ` u : A ⇓ v
Γ ` f u ⇑ g v : B[x← v]

17

Γ ` f ⇑ g0 : T

Γ ` A0 : s

New Γ, x : A ` ?s = ∗

TBwhnf ?i[σ] t1...tn

Γ ` A0 : s
C
 A : Type

New Γ, x : A ` ?k : ?s[id]

Γ ` u ⇑ v0 : A0

Γ ` v0 : A0
C
 v : A

Γ ` g0 : T
C
 g : Πx : A. ?k[id]

Γ ` f u ⇑ g v : ?k[x← v]

If the type of the head of the application is a metavariable, we first infer
the type of the argument. As the type of the argument of a function, it
must be of type Type. Once this is assured, we unify the type of the head
with a Π whose first component if the type of the argument and the second
component is left indeterminate, i.e. a metavariable typed by a sort.

Remark 4.7. Since the pre- and post-conditions do not relate the input and
output terms, we could modify the terms arbitrarily in the C

 function. For
instance, it could be replaced by a coercion system which could default with
inserting a unification guard.

5 Unification resolution

We make progress in solving a unification problem by applying one of the
constraint simplification operations. In order to be able to eliminate con-
straints, we usually need to narrow or refine metavariables, and introducing
new guards may be needed to do the later.

The first decision to make before modifying a unification problem is which
constraint should be considered. My current implementation in Dedukti is
naive, which results in the entire algorithm only making use of the constraint
delaying capability which guards provide in the inversion operation presented
below.

Once a constraint is selected, we attempt to apply certain heuristics to
it, backtracking if we fail. The heuristics are heavily inspired by [6].

Essentially, we try to reduce constraints to matching problems, which
are decidable. This is achieved through decomposing constraints, reducing
in constraints and narrowing metavariables to remove dependencies.

The heuristics are presented as inference rules, transforming a constraint
in the conclusion into none or some constraints in the premisses. For instance
in the following rule we use metavariable narrowing to solve a constraint:

(Γ `?i : T) ∈ Θ ∆ = σ1 ∩ σ2

Narrow meta ?i to ∆ `?j : T

FV (T) ⊆ ∆
−−−−−−−−→
Γ ` tn ≡ un

meta-same
Γ ` ?i[σ1]

−→
tn ≡ ?i[σ2] −→un

18

Specifically, when we encounter a constraint ?i[σ1]
−→
tn ≡ ?i[σ2] −→un, we

forbid the use of the variables in ∆ which are given different values in σ1 and
σ2 to define ?i. Then ?i[σ1] ≡?j [σ

′] ≡?i[σ2] where σ′ is the common part of
the other substitutions, and we only have to unify the arguments ti and ui
respectively.

The other rules are described in appendix D.
Certain operations, such as removing solved constraints or replacing a

constraint equating two abstractions by the decomposed constraints, can
be done without loss of generality. They are applied eagerly and without
inserting backtracking points.

6 Implementation notes

This section describes two ways in which we reuse code, as well as some
high level information on code organisation.

6.1 Typing

Type inference is implemented as an extension of type checking. Dedukti
uses type checking for three purposes:

• for partial terms, to produce extended terms and a unification problem
which needs to be solved, as described in section 4.

• for extended terms under an arbitrary unification problem, to make
metavariable refinement safe.

• for ground terms, to ensure that soundness errors in the unification
implementation are caught.

All can be implemented as elaboration parametrised by the non-recursive
functions, the presence or absence of a unification problem being hidden by
the monadic presentation. For instance, type checking for ground terms
replaces the “guard term” operation Γ ` t : A

C
 u : B by a conversion check

between terms A and B.

6.2 Polymorphic term type

Parametric elaboration is made easier by using an open type to represent
terms:

19

type ’ a term = Kind | Type | . . .
| Extra of ’ a tk ind ∗ ’ a

The type tkind is a GADT which allows us to do generic operations over
open terms: without it functions like printing would need an extra argument
to print Extra values.

Then the extra types are:

type ground = { ex f a l s o : ’ r . ’ r }
type p a r t i a l = uni t
type extended =

| Meta of meta_name∗ extended sub s t i t u t i o n
| Guard of guard_name∗ extended sub s t i t u t i o n ∗ extended term

They describe which extensions need to be made over ground terms:
ground terms have no extensions over themselves, so we use the empty type
encoded in Ocaml. Partial terms have one extension, the placeholder term ?,
encoded as the unit type. Extended terms have two extensions, metavariables
which consist of a name and a substitution, and guarded terms consisting of
a name, a substitution and an extended term.

For instance, the term S ?i[∅] where S is a constant is encoded as

App (Const S) (Extra Partial Meta(i, ∅))

(give or take a few details).
Open terms allow us to only deal with the extra values relevant to the

kind of type inference we are doing. For instance, when typing ground terms,
we have something like

match t : ground term with
| Kind −> . . .
. . .
| Extra (Ground , ex) −> ex . e x f a l s o

as opposed to using assert false on the metavariable constructor.

6.3 Code organisation

The important changes are divided across six implementation/interface
file pairs, five of which are new, although a larger proportion of the code had
to be superficially touched to deal with extensions to the syntax and changes
to the term type.

20

• typing.ml (329 LOC to 447 LOC, of which 66 are an unrelated exper-
iment not used by the program) and typing.mli (63 LOC to 88 LOC):
the original type checking code for ground terms was adapted into the
shared part of type checking as well as the functions specific to ground
terms.

• refine.ml (100 LOC) and refine.mli (12 LOC): contains the functions
specific to elaborating partial terms to extended terms.

• msubst.ml (128 LOC) and msubst.mli (37 LOC): implements meta-
substitutions.

• monads.ml (207 LOC) and monads.mli (109 LOC): implements the
monad transformers adding state and backtracking effects to a monad,
as well as basic monad infrastructure.

• unif_core.ml (632 LOC) and unif_core.mli (88 LOC): defines unifica-
tion problems and safe transformations upon them in monadic style.
Only the safe operations are exposed to the rest of the program.

It implements the functions specific to type checking for extended
terms, as they are necessary to make the refinement operation safe.
It also implements the transformations which we eagerly apply so as
to make them transparent to the rest of the program.

• unifier.ml (214 LOC) and unifier.mli (15 LOC): implements the high-
level unification heuristics.

Conclusion

Please refer to page 2 for a summary of results and future prospects.

21

Appendices

A Typing rules

Given a signature Σ and a unification problem Θ, typing rules define the
following judgements:

• Γ ` s = ∗ read "term s is a valid sort under typing context Γ"

• Γ ` T : ∗ read "term T is a valid type under typing context Γ"

• Γ ` t : T read "term t has type T under typing context Γ"

• Γ ` σ : ∆ read "substitution σ is between typing contexts Γ and ∆"

Ground terms
Valid sort:

Γ ` Type = ∗

Γ ` Kind = ∗

Valid type:

Γ ` s = ∗
Γ ` s : ∗

Γ ` T : s Γ ` s = ∗
Γ ` T : ∗

Typed:

x : A ∈ Γ
Γ ` x : A

c : A ∈ Σ
Γ ` c : A

Γ ` Type : Kind

Γ ` A : Type Γ, x : A ` t : B

Γ ` λx : A.t : Πx : A.B

Γ ` A : Type Γ, x : A ` B : s Γ ` s = ∗
Γ ` Πx : A.B : s

22

Substitutions

Γ ` ∅ : []

Γ ` σ : ∆ Γ ` u : σ(A)

Γ ` (σ, x← u) : ∆, x : A

Guards

(∆ ` p : A→ B) ∈ Θ Γ ` σ : ∆ Γ ` t : σ(A)

Γ ` p[σ] t : σ(B)

Metavariables

(∆ `?i = ∗) ∈ Θ Γ ` σ : ∆

Γ `?i[σ] = ∗

(∆ `?i : ∗) ∈ Θ Γ ` σ : ∆

Γ `?i[σ] : ∗

(∆ `?i : A) ∈ Θ Γ ` σ : ∆

Γ `?i[σ] : σ(A)

B Elaboration rules

Γ ` t ⇑ u : A Γ ` u : A
C
 v : B

Γ ` t : B ⇓ v

T Bwhnf Πx : A.B Γ, x : A ` t : B ⇓ u
Γ ` λx :?.t : T ⇓ λx : A.u

x : A ∈ Γ
Γ ` x ⇑ x : A

c : A ∈ Σ
Γ ` c ⇑ c : A

23

Γ ` Type ⇑ Type : Kind

Γ ` a : Type ⇓ A Γ, x : A ` b ⇑ B0 : s0 Γ, x : A ` B0 : s0
C

∗
B : s

Γ ` Πx : a.b ⇑ Πx : A.B : s

Γ ` a : Type ⇓ A Γ, x : A ` t ⇑ u : B Γ, x : A ` B 6= Kind

Γ ` λx : a.t ⇑ λx : A.u : Πx : A.B

New Γ ` ?k : ∗ New Γ ` ?j : ?k[id]

Γ `? ⇑ ?j [id] : ?k[id]

Γ ` f ⇑ g : T T Bwhnf Πx : A.B Γ ` u : A ⇓ v
Γ ` f u ⇑ g v : B[x← v]

Γ ` f ⇑ g0 : T

Γ ` A0 : s

New Γ, x : A ` ?s = ∗

TBwhnf ?i[σ] t1...tn

Γ ` A0 : s
C
 A : Type

New Γ, x : A ` ?k : ?s[id]

Γ ` u ⇑ v0 : A0

Γ ` v0 : A0
C
 v : A

Γ ` g0 : T
C
 g : Πx : A. ?k[id]

Γ ` f u ⇑ g v : ?k[x← v]

C Constraint decomposition

Original constraint Resulting constraint(s) Invertible
Γ ` f u ≡ g v Γ ` f ≡ g and Γ ` u ≡ v If f and g have rigid heads.

Γ ` λx : A.u ≡ λy : B.v Γ ` A ≡ B and Γ, x : A ` u ≡ v[y ← x] Yes.
Γ ` Πx : A.u ≡ λy : B.v Γ ` A ≡ B and Γ, x : A ` u ≡ v[y ← x] Yes.

D Unification heuristics

A statement
−→
Sn is read as the list of statements S1 ... Sn. For instance

t
−→
tn is the term t applied to the terms t1 ... tn in that order.
The following rule is read as "we may replace a constraint Γ ` A ≡ B by

a list of constraints
−−−−−−−−−−→
∆n ` Cn ≡ Dn when the property P is verified". There

may be any number of resulting constraints and of premisses.

P
−−−−−−−−−−→
∆n ` Cn ≡ Dn

Γ ` A ≡ B

24

During unification, the various rules are tried in a certain order, back-
tracking when no rule can be applied. Backtracking is restricted in an ad-hoc
manner.

The rules used at this time are the following:

A ≡ B pair-conv
Γ ` A ≡ B

−−−−−−−−→
Γ ` tn ≡ un meta-same-same

Γ ` ?i[σ]
−→
tn ≡ ?i[σ] −→un

(Γ `?i : T) ∈ Θ ∆ = σ1 ∩ σ2

Narrow meta ?i to ∆ `?j : T

FV (T) ⊆ ∆
−−−−−−−−→
Γ ` tn ≡ un

meta-same
Γ ` ?i[σ1]

−→
tn ≡ ?i[σ2] −→un

Here σ1 ∩ σ2 is the greatest subset of Γ their common domain where the
images of σ1 and σ2 are syntactically equal.

(∆ `?i : T) ∈ Θ t′ = t−ξ1,ξ2;?i Γ ` t′ : T ′ Γ ` t′ : T ′ C u : T Refine ?i with u
meta-inst

Γ `?i[ξ1] ξ2 ≡ t

ξ2 is a list of variables, and ξ1 is a substitution where the non-variable
images are ignored. The operation t−ξ1,ξ2;?i is a complex inversion which
performs the occurs check for ?i and produces a term unifying the goal
constraint if it succeeds. It is more fully described in [6].

0 < n Γ ` ?i[σ] ≡ u
−→
u′m

−−−−−−−−→
Γ ` tn ≡ u′′n meta-fo

Γ ` ?i[σ]
−→
tn ≡ u

−→
u′m
−→
u′′n

(∆ `?i : T) ∈ Θ σ′ unique variables from σ

Narrow ?i to ∆′ `?j : T

∆′ = ∆ ∩ σ′ ∆′ ` FV (T) ⊆ ∆′

Γ `?j [σ
′]
−→
tn ≡ u meta-deldeps

Γ `?i[σ]
−→
tn ≡ u

In this rule we remove the dependencies on all variables which make
inversion harder. Then meta− inst is more likely to succeed.

The constraint decompositions and step by step reduction are also rules.

25

E References

[1] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and En-
rico Tassi. A bi-directional refinement algorithm for the calculus of
(co)inductive constructions. Logical Methods in Computer Science, 8(1),
2012.

[2] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order
unification via explicit substitutions. Information and Computation,
157(1–2):183 – 235, 2000.

[3] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry.
Backtracking, interleaving, and terminating monad transformers: (func-
tional pearl). SIGPLAN Not., 40(9):192–203, September 2005.

[4] Stéphane Lengrand. Normalisation & Equivalence in Proof Theory &
Type Theory. Theses, Université Paris-Diderot - Paris VII ; University
of St Andrews, December 2006. Commencée en Septembre 2003.

[5] Ronan Saillard. Towards explicit rewrite rules in the λΠ-calculus modulo.
In IWIL - 10th International Workshop on the Implementation of Logics,
Stellenbosch, South Africa, December 2013.

[6] Beta Ziliani and Mathieu Sozeau. A predictable unification algorithm for
coq featuring universe polymorphism and overloading. ICFP, 2015.

26

	Lambda Pi Calculus Modulo / Dedukti
	Monads
	State monad
	Definition
	Backtracking monad
	Monad transformers

	Safe unification
	Unification problem
	Metavariables
	Guards
	Meta-substitution
	Unification problems

	Safe operations
	Simple operations
	Forcibly typed metavariable
	Constraint simplification

	Elaboration
	Unification resolution
	Implementation notes
	Typing
	Polymorphic term type
	Code organisation

	Appendices
	Typing rules
	Elaboration rules
	Constraint decomposition
	Unification heuristics
	References

