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1 INTRODUCTION

THE CloudSafetyNet project investigates the potential
of Information Flow Control (IFC) for distributed

and cloud computing; [1] gives an overview of IFC
models and implementations although none have dis-
cussed cloud deployment. Concern about data leakage
is holding back more widespread adoption of cloud
computing by companies and public institutions alike.
There is an increasing volume of legislation [16], but
ensuring and demonstrating compliance with the leg-
islation by cloud service providers and third parties is
problematic. We believe that the deployment of IFC to
augment traditional security technologies will make a
substantial contribution to the security of distributed and
cloud systems, both through enforcement mechanisms
and demonstration of compliance through audit. Note
that we will use the term IFC generally, to subsume
Decentralised (D)IFC, see §3.

IFC can be provided independently of cloud-provider
software, either as a language feature [17], [31] or
through a library [20], [23], [35]. A great deal of work has
been carried out at this level, including storage/database
integration [29]. But the trust assumptions of this level of
deployment are huge. First, correctness depends entirely
on the application implementing the policy correctly, and
this is where most errors arise. Also, even if the cloud
provider is assumed to be trustworthy, data leakage
could still occur within the cloud implementation due
to bugs, over-permissive data access policies or attacks
of various kinds. We therefore decided to investigate the
provision of IFC within the cloud software itself.

We considered IFC provision at a number of levels
in the cloud software stack: within Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) clouds. In order to enforce IFC for

IaaS we would need to implement IFC in the hypervisor.
However, VM isolation techniques are strong at this level
and there would most likely be reluctance to rely on IFC
instead. IFC mechanisms akin to those discussed in this
paper could be put in place by tenants in their own VMs.
It is becoming relatively easy to use a hardware-verified
hypervisor substrate [13] and we would hope to build
on such a layer.

We believe that the logical place to provide IFC for
PaaS and SaaS is within the OS and middleware layer,
while aiming to make it transparent at the cloud appli-
cation level. This removes the reliance on applications
being implemented correctly and supports intra-tenant
as well as inter-tenant data sharing and data protection.

We first present FlowK (Information Flow Control
Kernel Module), a kernel module for enforcing IFC
within a standard Linux OS, as used by most cloud
service providers. FlowK intercepts all system calls that
create information flows and enforces the FlowK IFC
constraints on those flows. IFC is achieved by associating
labels with data and the entities that process them. Labels
comprise a number of tags that describe the nature
and/or source of the data such as healthcare, personal,
government-information etc. Flows are permitted only if the
labels match, as defined in §5.

Our FlowK label model follows that used in IFC
systems since 1997 [17], following best practice, not
requiring OS change and minimising changes needed
in cloud applications. The design of FlowK follows the
principle of “policy-mechanism separation”, in that the
FlowK kernel module is concerned only with enforcing
rules relating to entities’ labels. Labels are assigned to
entities after successful authorisation. Any application
that does not use IFC is unaffected (subject to a small
performance hit on system calls of around 10%, see §10).
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Traditionally, (principal/role-specific) access control is
applied at policy enforcement points within applications,
after which no further control is exercised on where
that data flows in the system. It is therefore subject to
leakage and misuse through misconfiguration, bugs or
malicious intent. IFC augments access control so that
data flows are monitored continuously, in context, to
enforce more general policy, capturing properties of the
data as well as the authorised principal. The challenge
in integrating access control policy with IFC is to create
labels that express policy accurately, concisely, naturally
and efficiently, and in a way that makes policy changes
easy to implement.

We have considered how labels can be used to enforce
certain laws and regulations, such as “data originating in
the EU must not leave its boundaries, except to certain
Safe Havens” [16]. A simple tag EU can be used for this
purpose. We found access control policies to have more
richness and complexity, and difficulties arise in repre-
senting some policies via IFC labels. Essentially, prob-
lems arise when some software can access all data items
of a certain kind, for example to generate statistics or
anonymise, and other software is restricted to access only
one such item. In work on Role-Based Access Control
(RBAC), by ourselves [2] and others, parametrised roles
were used in these circumstances to avoid proliferation
of the number of required roles.

We decided that some modifications were needed to
improve the expressiveness of tags and to express cor-
rectly the trust that should be placed in entities according
to the Principle of Least Privilege (PoLP). The FlowK2
label model comprises two-component tags to represent
the concern of data and a specifier for an item of that
kind, for example 〈medical , bob〉 for Bob’s medical record.
A subtyping relation allows us to use 〈medical , ∗〉 for
all principals’ medical data and 〈∗, bob〉 for data of any
kind tagged as Bob’s. Such labels more closely reflect the
policy maker’s intent than previous models, and current
single-component tags can easily be expressed in this
way, such as 〈location,EU 〉 or 〈regulation,EU111 〉. We
will consider incorporating this tag model as part of
future work on a tag naming scheme for distributed IFC.

The point at which IFC is enforced in FlowK is the
natural place to create an audit of allowed and forbidden
flows. We have designed and deployed a proof of con-
cept audit tool, see §7. The aims are: (1) to support post-
hoc digital forensics; (2) to demonstrate compliance with
tenant/provider contracts; (3) to detect bugs in programs
that try to perform illegitimate operations; and (4) to
evaluate policies and detect unaccounted flows.

To demonstrate application integration with FlowK
we have adapted a framework for cloud-deployed web
services to be IFC-compliant. An implication of this work
is that untrusted/unverified applications can be run on a
trusted cloud platform without compromising their end-
users’ data, without using strong isolation between users
of an application.

To extend IFC to system-wide operation we have
extended our SBUS middleware [32], [33] to include IFC
enforcement. SBUS is a messaging middleware and IFC
labelling is incorporated within structured messages at
the attribute (field) level. The FlowK architecture com-
prises a kernel module with User-Space Helper processes
(Ushers); each process has such a helper to support
external communication.

The contributions of CloudSafetyNet are (1) FlowK:
an implementation of a current-practice IFC label model,
modified to minimise the reengineering required by its
users and to support SoD [22]. (2) Creation of an audit
log and processing tools together with the ability to
specify access control and IFC policy for the log. (3)
FlowK2: an enhanced but compatible label model that
captures trust and application policy more precisely. (4)
Integration with the application level via an IFC-adapted
webworkers architecture [22], and (5) integration of IFC-
enabled middleware as a basis for cloud-wide, inter-
cloud and general, distributed communication.

We first state our trust assumptions in §2, then intro-
duce related work in §3, outlining IFC models, mech-
anisms and previous deployments. We also summarise
authorisation policy. In §4 we motivate two-component
tags in FlowK2. In §5 we present the basic FlowK
IFC model, integrating the enhancements needed for
matching two-component tags in FlowK2. In §6 we give
details of the implementation of FlowK and FlowK2.
In §7 we describe how we have supported audit in the
FlowK kernel module. In §8 we demonstrate how web
applications can use FlowK. §9 discusses the integration
of our SBUS-IFC middleware with FlowK. §10 provides
and discusses performance measurements. §11 discusses
work in progress, summarises and concludes.

2 TRUST ASSUMPTIONS

We assume the cloud provider to be non-malicious and
bound through legal requirements to do its best to
protect its tenants’ (end-users’) data. Even so, the cloud
provider infrastructure could be misconfigured and leaks
could happen through shared infrastructure.

We assume that tenants running applications in the
cloud do not actively try to leak their users’ data. Even
so, an application provided by a tenant may contain bugs
that can be abused to steal users’ data or intentionally
leak data. In current infrastructure, a tenant’s data store
containing all its users’ data, may not be securely iso-
lated; bugs might cause inter-tenant or intra-tenant leaks.

Among the most common attacks on web servers
are URL interpretation attacks, malicious file execution,
injection attacks and buffer overflow. IFC compartmen-
talises risk by confining the effects of such attacks. This
is achieved by restricting the flow of data an application
instance is allowed, according to its security context. This
security context can be defined on a per-user basis or
may correspond to roles, as most appropriate for the
application, thus reducing the potential attack surface.
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IFC can also be used to enforce the integrity of data
used by the application, preventing for example script
injection or SQL injection, see §5.

In the web server architecture in §8, we do not address
insider attacks. However, we believe this risk could be
addressed with a combination of encryption techniques
and IFC, but this is beyond the scope of the work
presented here. We also do not protect individuals or
end-users’ machines. These are the target of social engi-
neering, cross site scripting, cross site request forgery and
exploitation of browser vulnerability. Existing techniques
can help prevent such attacks contributing to overall
security. The integration of IFC-enabled middleware with
cloud software provides the possibility of end-to-end
IFC, including end-user systems.

Our aim is that applications with a requirement for
data confidentiality and integrity, such as those handling
medical records could be safely hosted on a trustworthy
public cloud. In previous work [21] we used IFC in
building a web portal for brain cancer patients with the
background database hosted on a secure server farm,
exclusive to the UK’s NHS.

3 BACKGROUND AND RELATED WORK

The CloudSafetyNet project is investigating the poten-
tial of IFC enforcement end-to-end, system-wide: within
and between containers and Virtual machines (VMs);
intra-cloud and inter-cloud; and between end-users and
clouds. In this section we give a brief evolution of IFC,
describe work on IFC enforcement at the OS level then
outline approaches to distributing IFC. To our knowl-
edge, cloud deployment of IFC has not been addressed.

3.1 IFC Models

In 1976, Denning [9] proposed a Mandatory Access
Control (MAC) model to track and enforce rules on
information flow in computer systems. In this model,
entities are associated with security classes. The flow of
information from an entity a to an entity b is allowed
only if the security class of b (denoted b) is equal to or
higher than a. This allows the no-read up, no-write down
principle of Bell and LaPadula [3] to be implemented
to enforce secrecy. By this means a traditional military
classification public, secret, top secret can be implemented.
A second security class can be associated with each entity
to track and enforce integrity (quality of data) during any
reading down and writing up, as proposed by Biba [5]. A
current example might allow input of information from
a government website in the .gov.uk domain but forbid
that from “Joe’s Blog”. Using this model we are able
to control and monitor information flow to ensure data
secrecy and integrity.

In 1997 Myers [18] introduced a Decentralised IFC
model (DIFC) that has inspired most later work, in-
cluding FlowK. This model was designed to meet the
changing needs of systems from global, static, hierar-
chical security levels to a more flexible system, able

to capture the needs of different applications. In this
model each entity is associated with two labels: a secrecy
label and an integrity label, to capture respectively the
privacy/confidentiality of the data and the reliability of
a source of data. Each label comprises a set of tags,
each of which represents some security concern. Data
are allowed to flow if the security label of the sender is
a subset of the label of the receiver, and conversely for
integrity. We describe in §5 the model we use in FlowK
that derives from this general idea.

3.2 IFC in Operating Systems

Other research projects have implemented IFC con-
straints at the OS level, most notably in Flume [14].
Here, a model similar to Myers’ original one [18] is used,
and the entities considered are files, pipes, sockets and
processes. In Flume, monitored (labelled) processes have
access to a restricted set of system calls, and some (such
as fork and pipe) are completely replaced by IFC-specific
ones. This means that Flume applications running under
IFC constraints need to be rewritten, even when they do
not need to manipulate IFC labels during their life-cycles.

The Asbestos OS [11] implements the send and receive
label paradigm, while also proposing a solution to im-
prove the performance of IFC, which relies heavily on
the fork operation to build applications. Asbestos is a
rewritten OS rather than an imported module, requiring
substantial changes in software that uses it. HiStar [37]
extended Asbestos with security enhancements and a
user-space library to emulate a Unix-like OS interface.

In Aeolus [6] and Laminar [27], an IFC aware operating
system is used to enforce inter-process IFC constraints
and a modified Java Virtual Machine ensures intra-
process isolation via programming language objects.
Again, it is necessary for application developers to be
IFC-aware and to rewrite their Java programs.

3.3 IFC in Distributed and Cloud Systems

There has been some work considering the communica-
tion aspects of IFC. Component Information Flow [30]
is a design framework for component-based system
architectures where security constraints (labels) can be
specified on communication interfaces. It provides tools
for model validation and code generation.

To achieve communication more dynamically, DIFCA-
J [36] modifies Java bytecode to enforce IFC throughout
the JVM, including remote method calls. External objects
(files, databases) can be labelled, in order to regulate
flows to and from the JVM. Aeolus [6] uses abstractions
to control data flows in a distributed system, where IFC
is enforced against interactions between Aeolus nodes
(isolated applications), boxes (shared objects) and the
custom (label-aware) filesystem. Interactions with enti-
ties (files, applications, etc.) outside these abstractions are
untrusted, thus unlabelled. In DStar [38], each machine
has a dedicated exporter component, through which
all inter-machine communication occurs. Leveraging an
IFC-compliant OS, e.g. Flume [37], the exporter translates
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between local machine and global labels, to regulate
flows across machines.

Our focus is unique in that it aims to integrate IFC
functionality into a general, distributed communications
middleware, SBUS [32], [33]. Further, we see that work
on IFC in networked environments tends to impose con-
straints on system design, architecture, implementation
and/or the operating environment. A deliberate design
decision was not to impose a structure on system design;
but rather to integrate IFC functionality into the kind
of communications infrastructure already common to
enterprise systems. In addition, we also aim to provide
more flexible, finer-grained control, by enforcing IFC at
the level of message-attributes (data fields), cf. other
work that concerns the entire channel or message.

4 POLICY REQUIREMENTS FOR IFC
In this section we consider how IFC labels can embody
application policy. We assume a cloud computing envi-
ronment and envisage that our model will ultimately
be used across a whole cloud platform. In such a sce-
nario there is likely to be a large amount of user data
with persistent labels stored in files, databases, key-
value stores etc. In a company context, data records
may relate to individual employees; in a public health
context, data may be the medical records of patients; in
an educational context, data may relate to students, staff
etc. Specifying and enforcing access to only one, some
specified subgroup or all data records of a given type is
a common requirement of authorisation policy.

Our experience is that enforcing access to a specified
subgoup of entities’ data is best carried out as part of
authorisation [2]. For example, doctors may be able to
access only the records of the patients they are cur-
rently treating; teachers, those students they are currently
teaching, etc. Temporally separated instantiations of the
application are likely, i.e. to one patient’s record at a time.
Each time, current authorisation policy is enforced and
is translated into the labels required by an instance of
application software to access one patient’s data. Indeed,
separation between the patients’ data is desirable; there
is no need for subgroup enumeration to be represented in
the runtime labels. Also, note that since a doctor’s group
of patients under treatment changes, and student groups
change, a lookup of current patients/students will ensure
that a label is created only for access to a current patient
or student record (assuming that is the policy), selected
at runtime from the entire database. The FlowK model
can be used, together with application-level policy, to
implement such subsets.

The remaining requirements from access control are
specifying and enforcing access through labels, at run-
time, as follows:

1) To one principal’s data, as for a parametrised role,
e.g. medical(bob) at authorisation policy level. The
basic IFC model achieves this by associating the
separate tags medical and bob with the data.

2) To records of a given type for all principals, as for
a parametrised role, e.g., medical(*). The basic IFC
model can only achieve this by enumeration of all
the principal’s tags that have the medical tag.

3) To be able to express e.g. “all Bob’s personal data
of any kind”. The basic model can only achieve
this by enumerating all the tags that are associated
with the tag bob in any label being matched.

4) To access all data in some naming context.

Examples of requirement 2) arise from the need to
support software to perform computations across large
numbers of data records whereas other software is au-
thorised only to access records on behalf of a single
individual. Taking medical data as an example, data will
be tagged with both medical and bob for Bob’s record.
An entity carrying out statistical analysis of medical
data would need to have not only the medical tag, but
also a tag corresponding to every patient’s data. This is
computationally and administratively infeasible as well
as raising consistency issues regarding the enumerated
tags compared with the stored data. In practice such soft-
ware would most likely run with IFC disabled. Similar
problems would arise in “big data” processing, when
setting up a MapReduce job. Mappers require access to
all data of a certain type and set up tags on their output
data for Reducers. Reducers might create output with a
tags such as medical, statistics in the S label, depending
on the application’s naming scheme for tags.

Requirement 4) arises when a system log as described
in §7 contains records from all running applications
relating to large numbers of principals. The requirement
here is that access can be granted to all or selected parts
of the log as appropriate. For example, digital forensics
after system penetration is suspected may be required
to check all the log for attacks or malpractice, in role
notation *(*); in practice, such software would most likely
run with IFC disabled. Applications may audit their own
records in the log for all their users app(*); individuals
may be authorised to access only their own records
across all applications they have used *(bob).

The examples above (in parametrised role nota-
tion) show the benefit of having two-dimensional
tags, able to represent 〈tag type, specifier〉 to at least
mirror parametrised roles in RBAC. Examples are
〈medical , bob〉, 〈employee, bob〉, 〈student , bob〉, etc. More
general examples are 〈∗, bob〉, 〈∗, ∗〉, 〈medical , statistics〉,
〈medical , anonymised〉 etc.

In §5 we describe the basic FlowK model where the
flow rules carry out matching of tags, each representing
a single security concern. For each rule we show the
extension required to match two-component tags in place
of atomic tags. In practice, having this extended tag
model allows policy to be expressed more concisely as
well as more accurately.

This idea is extensible to a general n-component
scheme for tags, thus carrying through to runtime the full
expressiveness of parametrised RBAC, see [2], such as
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medical(hospital ID, doctor ID, patient ID, allow research).
However, such a scheme adds complexity to the label
matching algorithm and could well impact performance.

5 FLOWK AND FLOWK2 IFC MODELS

IFC extends (principal/role-specific) authentication and
authorisation by enforcing dynamically, that only per-
mitted flows of information can take place, adding data
characteristics and context as aspects of flow control.

Flows are enforced by means of labels. We assume that
labels are associated with entities after successful autho-
risation and here define how labels control information
flow. We introduce a notation for the different operations
related to information flow, which we use to describe
succinctly the behaviour of an IFC system.

A tag within a label’s set of tags represents a particular
security concern for a category of data. In our IFC model
two labels are associated with every entity A: a secrecy
label S(A) and an integrity label I(A). The current state of
these labels (sets of tags) is an entity’s security context.

In this section we define a secure system.

Definition 1. The IFC system is secure if and only if all
allowed information flows are safe (Definition 2) all allowed
label changes are safe (Definition 3) and all privilege delegation
is safe (Definitions 4 and 5).

In all previous models, tags have been atomic, rep-
resenting a property of the data or an allowed context,
e.g. medical, personal-bob, encrypted, anonymised, user-input,
and flow controls have checked subset relations in source
and destination labels’ tags. In FlowK2 we have extended
our tag structure to capture application policy require-
ments more precisely (to capture trust in accordance with
the PoLP), and to avoid tag enumeration, as motivated
and defined in §4.

We propose to decompose a tag t into a pair 〈c, s〉
with c the concern of type C and s a specifier of type S ;
i.e. FlowK2 has two-component (2D) tags. For example,
the pair 〈medical , bob〉 represents Bob’s medical data.
A statistical analysis over a set of patients’ medical
data is represented as 〈medical , statistical analysis〉 and
anonymised medical records as 〈medical , anonymised〉. A
major improvement of this policy is the ability to specify
all data of a certain kind without enumerating all tags
which meets the requirements of §4. For this we use e.g.
〈medical , ∗〉 to represent the medical data of all principals
and 〈∗, bob〉 to represent all Bob’s data of any kind.

To achieve this, for any concern c and specifier s we
establish the following subtyping relation:

〈c, s〉

〈∗, s〉〈c, ∗〉

〈∗, ∗〉� �

��

That is, a tag t = 〈c, s〉 is a subtype of t′ = 〈c, ∗〉 and
t′′ = 〈∗, s〉 which are themselves subtypes of t′′′ = 〈∗, ∗〉.
For instance, 〈medical , bob〉 (Bob’s medical data) is a

subtype of both 〈medical , ∗〉 (medical data) and 〈∗, bob〉
(Bob’s data), which are both subtypes of 〈∗, ∗〉 (all data
in the current naming context).

We now consider Definition 1 of FlowK IFC as a safe
system. For each contributing sub-definition we elabo-
rate on any extended tag matching required in FlowK2.

5.1 Enforcing Information Flow via Labels

The purpose of IFC is to prevent data leakage by con-
trolling exchange of information.

Definition 2. A flow of information A → B is safe if and
only if:

A→ B, iff
{
S(A) - S(B)

I(B) - I(A)
(1)

where, in our original FlowK model the preorder -
denoted mere inclusion ⊆.

In rule (1), the subrule concerning secrecy labels en-
sures that an entity only passes information to an entity
that is allowed to receive it, thus enforcing the “no read
up, no write down” policy of the Bell-LaPadula model
[3]. The subrule concerning integrity labels enforces qual-
ity of data during reading down and writing up, as
proposed by Biba [5]. It is therefore possible to represent
traditional security requirements as IFC constraints, al-
though we use labels for more general security contexts.

To extend rule (1) for 2D tags for the flow A→ B, we
need only redefine the - binary relation between sets of
tags X and Y as follows:

X - Y iff ∀t ∈ X ∃t′ ∈ Y : t � t′ (2)
Together with rule (1), this entails that a flow A → B
is allowed if and only if for all secrecy tags of A there
exists a supertype in the secrecy tags of B

Together with rule (1), this entails that a flow A→ B is
allowed if and only if for all secrecy tags of A there exists
a supertype in the secrecy tags of B, and for all integrity
tags of B there exists a supertype in the integrity tags
of A. For example, an entity A labelled with S(A) =
{〈medical , bob〉, 〈legislation,EU 〉} is able to send data to
an entity B with S(B) = {〈medical , ∗〉, 〈legislation,EU 〉}.
5.2 Creation of an Entity

We define A⇒ B as the operation of the entity A creating
the entity B. An example is creating a process in a Unix-
style OS by fork. We have the following rules for creation:

if A⇒ B, then
{
S(B) := S(A)

I(B) := I(A)
(3)

That is, the created entity inherits the labels of its creator.

5.3 Privileges for Managing Tags and Labels

Certain active entities (processes) have privileges that
allow them to modify their labels. This is needed to
support application management and for declassification
as described below. An entity has two sets of privileges
for removing tags from its secrecy and integrity labels
(P−S for S and P−I for I), and two sets for adding tags
to these labels (P+

S for S and P+
I for I). That is, for an
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entity A to remove the tag ts ∈ S(A), it is necessary that
ts ∈ P−S (A), similarly to add the tag ti to the label I(A)
it is necessary that ti ∈ P+

I (A). That is, for any entity A,
label X(A) and tag t:

Definition 3. A label change denoted A A′ is safe if and
only if all label updates respect:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A) or

X(A) := X(A) \ {t} if t ∈ P−X (A)
(4)

For example, in order to receive information from an
entity B, an entity A will need to set its labels (if it has
the privilege) such that the flow constraints expressed by
the tags in B’s labels are respected, that is, such that the
flow B → A respects the subrules in rule (1).

In FlowK/2 (as in Flume or HiStar) only the process
itself is able to change its secrecy and integrity labels and
must request this explicitly. Indeed, it has been shown
that implicit label changes can lead to covert channels [9],
[37]. Our main difference compared with these systems
is the separation of privilege over S and I.

In more detail, for 2D tags, rule (4) becomes:
X(A) := X(A) ∪ {t} if ∃t′ ∈ P+

X (A) : t � t′ or
X(A) := X(A) \ {t} if ∃t′ ∈ P−X (A) : t � t′

(5)

We also add special privileges noted 〈c,∆〉, 〈∆, s〉 and
〈∆,∆〉 that allow removal only of the labels 〈c, ∗〉, 〈∗, s〉
and 〈∗, ∗〉 respectively. See “declassification” below for
an important motivation for ∆.

We propose the following notation: for a process and
its labels (A,S, I) (A,S′, I ′) is the modification of the
process labels following rule 4.

Declassification. An important example of changing
security context is declassification. For example, (1) plain-
text data may be secret and tagged accordingly whereas
the same data when encrypted may flow more freely
(2) the flow of personal medical data may be restricted
whereas anonymised data derived from sets of medical
records may be made available to medical researchers.
Processes such as anonymisers and decrypters must be
trusted to have the privilege to declassify the derived
anonymised/decrypted data, i.e., to create data without
the tags indicating secrecy/privacy.

For example, the encrypting process starts off with
a tag such as 〈government , restricted〉 in S, reads data
with tags 〈government , restricted〉 in its S, encrypts the
data, changes its own security context by removing the
〈government , restricted〉 tag from S (for which it has the
privilege) then writes the encrypted data with a tag such
as 〈government , encrypted〉.

More generally, a process A, with the privilege
P−S (A) = {〈medical ,∆〉} and the label S(A) =
{〈medical , ∗〉, 〈medical , anonymised〉} is able to declassify
to S(A) = {〈medical , anonymised〉}. The use of ∆ priv-
ileges allows the trust placed in a certain entity to
be precise and is particularly useful when specifying
declassifier privileges. Without it, we would have had
P−S (A) = {〈medical , ∗〉} and no guarantee that the pro-
cess would not declassify to S(A) = ∅ (also removing

〈medical , anonymised〉).
Endorsement. An example concerning integrity labels
is endorsement. Input data may need to be verified before
it can safely be used, e.g., that input into a software
library is from a trusted source, such as directly from
RedHat. An endorser has an integrity label that allows
it to input untrusted data, perhaps adding a tag to its
verified output data to indicate that the data is endorsed.
Creation and Privileges. On creation, labels are auto-
matically inherited by a created entity from its creator
(rule 3), but privileges are not. If the child is to be given
privileges over its labels, they must be passed explicitly.
We denote the flow generated by an entity A giving

selected privileges t±X to an entity B as A
t±X
↪→ B (for

example allowing t to be removed from S, would be

denoted A
t−S
↪→ B).

Definition 4. A privilege delegation is safe if and only if:

A
t±X
↪→ B only if t ∈ P±X (A) (6)

i.e. a process can only delegate a privilege it owns.
Extending for 2D tags, rule (6), becomes:

A
t±X
↪→ B only if ∃t′ ∈ P±x (A) : t � t′

5.4 Conflict-of-Interest Groups

A policy maker may need to specify a separation of
duty (SoD) or conflict-of-interest (CoI) between princi-
pals and/or roles [28]. An example of SoD is that an
auditor may not audit their own actions. A CoI may
arise when a principal could give professional advice to
a number of competing companies.

CoI support in IFC is unique to FlowK/2. We define
a set C of tags that represents some specified conflicting
interests. In order for the configuration of an entity A to
be valid with respect to C, rule (7) must be respected:

Definition 5. A process B does not violate a CoI C if and
only if:∣∣∣(S(A)∪I(A)∪P+

S (A)∪P+
I (A)∪P−

S (A)∪P−
I (A)

)
∩C

∣∣∣≤1 (7)

That is, an entity is non-conflicting in this context if
the set of its potential tags (past, present and future)
contains at most one element from the set of tags within
the related CoI group. In detail, by potential tags we
mean the tags in its current S and I labels and those tags
that it has the privilege to add to S(A) (i.e. P+

S (A)) and
to I(A) (i.e. P+

I (A)) or that it may have removed from
S(A) (i.e. P−S (A)) and from I(A) (i.e. P−I (A)). CoI rules
should be checked every time a privilege is granted.

Taking a simple example first, suppose a conflict
C = {〈car ,fiat〉, 〈car , ford〉, 〈car , audi〉, ...} and some
data is labelled FiatData[S = {〈car ,fiat〉}, I = ∅] and
FordData[S = {〈car , ford〉}, I = ∅]. The CoI described
ensures that it is not possible for a single entity (e.g. a
process) to have access to both FordData and FiatData
either simultaneously or sequentially, i.e. enforcing that
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FordData and FiatData are processed separately.
For 2D tags there are three types of policy we must
express: constraints applied to whole tags, to concerns
and to specifiers. We define, accordingly, three operations
on a tag’s pair, the identity function id and the two
projections π1 in C , π2 in S .

π1 : C×S → C π2 : C×S → S
π1(〈c, s〉) = c π2(〈c, s〉) = s

(8)

We extend these operations to sets, such that:
π1 : ℘(C×S )→ ℘(C ) π2 : ℘(C×S )→ ℘(S )

π1(T ) = {π1(t) | t ∈ T} π2(T ) = {π2(t) | t ∈ T}
= {c | 〈c, s〉 ∈ T} = {s | 〈c, s〉 ∈ T}

(9)
For an entity A we note the union of its labels and
privileges:

SU(A)=S(A)∪I(A)∪P+
S (A)∪P−

S (A)∪P+
I (A)∪P−

I (A) (10)
A conflict of interest is denoted PCoI (f,G) where f is

π1, π2 or id and G is a set of conflicting tags. Rule 7 can
be expressed as (where C is a CoI group):

PCoI (f, C), |f(SU(A)) ∩ C| ≤ 1 (11)
Intersection and cardinality interfer with subtyping as
follows:
• {a, b, c} ∩ {∗} = {a, b, c};
• {〈a, b〉, 〈a, d〉, 〈c, d〉} ∩ {〈a, ∗〉} = {〈a, b〉, 〈a, d〉};
• |{∗}| =∞, |{a, ∗}| =∞ and |{∗, a}| =∞.
As an example, the conflict of interest rule

PCoI (π1, {medical, private}) means an entity can
handle the concern medical or private but not both.
PCoI (id, {〈private, ∗〉}) means an entity can only ever
manipulate the private data of a single user.

For the car data example, a issue with previous label
models with explicitly enumerated tags is that if a new
company was to use the application, a new tag would
need to be added to the CoI group. This could prove
problematic for a more rapidly changing set.

Using FlowK2, we have processes labeled [S =
{〈car , ford〉}, I = ∅], [S = {〈car ,fiat〉}, I = ∅] etc. and
the CoI policy is expressed as: PCoI (id, {〈car , ∗〉}). This
is simple to read and understand (i.e. a process can
manipulate information for only one specifier of concern
car ) and this policy will not change over time.

6 KERNEL IMPLEMENTATION

In §5 we discussed the constraints that must be enforced
by FlowK/2 in order to ensure the secrecy and integrity
of information within our system. Here we describe how
FlowK is implemented, mentioning the differences for
tag storage and matching for FlowK2.

In a Linux-like OS, the entities defined in the model
are processes, files, pipes and sockets. Information flows
A → B are usually generated through system calls. If
we assume that there is no shared memory between
processes, for the four types of entity (process, pipe,
socket and file) the only possible information flow is
through system calls.

Process, pipe and socket labels are stored in kernel
memory in FlowK and follow the lifecycle of their asso-
ciated entities. File labels are made persistent and stored

FlowK Loadable Kernel Module

FlowK Library

User Space

Kernel Space

Application Process

Kernel

Intercepted IFC Management

APISystem Calls

Unmonitored

System Calls

Local Machine

Remote Machine

User Space Helper

Central Storage

Fig. 1: Kernel Module Architecture Overview.

on disk alongside the file as part of its metadata (using
extended attributes in a fashion similar to SELinux).

Privileges as defined in §5.3 are only associated with
active entities, i.e. processes. Certain processes have priv-
ileges allowing them to change their labels, meaning they
are able to change their security context A  A′. As
discussed in §5, label change is an explicit action taken
by the entity itself, therefore passive entities (files, pipes and
sockets) have immutable labels and no privileges.

Files are the only persistent entity; their labels are
made persistent through file system extended attributes.
Any file stored on a file system that does not support
extended attributes will be considered unlabelled, and
IFC constraints enforced accordingly. How applications
can make their labels and privileges persistent across
several executions is discussed in the next section.

All labelled entities are allocated their labels when they
are created. For a process A creating some entity E the
subrules associated with the flow A ⇒ E in rule (3) are
respected, that is, E inherits A’s labels. See §8 for how
this could be used in a PaaS-hosted web-based service.

There are several options for providing IFC, through:
1) system call interception [14], [22]; 2) a Linux Security
Module (LSM) [14]; 3) a user-space library [19].

FlowK uses system call interception through a Linux
Kernel Module [10]. Although this approach has some
limitations [12], [34], we selected it for a proof-of-concept
exploration of IFC provision. At present, building a ded-
icated LSM for IFC enforcement has some composition
challenges with SELinux [25]. If SELinux is not required,
or if current work leads to compositionality of SELinux
and IFC, this would become the solution of choice.
Little change would be required to FlowK since only
the system call interception mechanism would vary. User
space interposition, while offering more portability, does
not provide as strong security guarantees [24].

6.1 Enforcing IFC by System Call Interposition

In FlowK, we provide IFC to the OS through a kernel
module that intercepts system calls [10] to enforce IFC
constraints, while relying on the underlying system calls,
as shown in Fig. 1. We assume that exchange of informa-
tion between active entities (processes) occurs through
passive entities (files, sockets and pipes) and we prevent
shared memory between processes. We present a short
overview of our implementation, for more detail see [22].

Our kernel module maintains a map between entity
identifiers (processes, pipes etc.) and their respective
labels and privileges. In system calls such as write or send,
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the security context of the process and of the entity as-
sociated with the provided file descriptor (i.e. socket, pipe
or file) are retrieved, evaluated and compared to decide
whether the call is authorised (and respectively for read
and recv). System calls not generating information flow
are left untouched.

Tags are represented in FlowK as 64 bit integers and la-
bels are a sorted list of tags. In FlowK2 a 64-bit integer is
used for each component of the tag, 〈concern, specifier〉.
The overhead on system calls consists of the interception
overhead plus the enforcement of IFC constraints. On
read or write for example, Definition 2 is enforced.

6.2 User-Space Helpers (Ushers)

User-Space Helper processes (Ushers)have three func-
tions: 1) persisting an application’s security context
across multiple executions; 2) saving the correspondence
between local (FlowK) and global tag representations; 3)
assisting in inter-process message-passing.
Security Context Persistence: Recall that a process’s
security context comprises the tag sets in its S and
I labels and its privileges over S and I tags (§5). In
order to build an effective system it is necessary for
such contexts to persist over several executions of the
same application/principal. Krohn et al. introduced such
a scheme in [14]. A context persistence helper, when
invoked, allows a process to save its security context.

On a flowk save context call, the kernel module invokes
an Usher and transmits to this helper the current security
context of the caller. The Usher saves this context in an
append-only database where this (immutable) context is
associated with a unique security context token. When an
application starts and wants to retrieve a particular secu-
rity context, it calls flowk restore context with this token as
parameter. FlowK uses this to retrieve the corresponding
context and set it up for the caller, provided that the
resulting context does not violate CoI constraints.

For our proof-of-concept implementation we assume
this context database is associated with the WebWork-
ers Application Framework. In future work, a context
database network will be required within and between
clouds, accessible by the Ushers. These helpers may in
practice act as local context caches (which is reliable,
since a saved context is immutable).
Global to Local Name Mapping: A second function of
the Usher is to translate local names to global names.
The global name for each tag is a unique flat string,
whereas in kernel space, tags are represented as a locally
unique 64 bit identifier. The Usher maps between each
tag’s string and 64 bit representations.

When a new tag is created (by a privileged application-
management process) the Usher checks that the string
is unique before associating it with a local 64-bit ID.
A similar scheme, described in more detail, was intro-
duced by Zeldovich et al. [38]. With the integration of
an IFC-enabled middleware with FlowK, we have the
capability to create distributed systems with intra-cloud,
inter-cloud and end-system-cloud communication. Such
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System Calls
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FlowK Loadable Kernel Module

Fig. 2: FlowK architecture, integrating messaging middleware.

a system would require a global naming specification,
beyond the scope of the current work. One can en-
visage that application names are concatenated with
application-specific and user-instance-specific names to
create application domains, for example. For this reason,
we are not yet incorporating FlowK2’s naming scheme
into our standard FlowK although we have implemented
and tested the IFC matching algorithm.

Within some application domain, application in-
stances can be spawned within a certain context by a
trusted managing process through the FlowK system call
flowk execute in context which executes a new application
instance in the context specified by a provided context
token. If an application has a secret context token, it
can restore a previously saved security context. If an
application does not have such a token, it can create a
context and save it.
Inter-Process Message Passing: Inter-machine commu-
nication generally occurs through some form of socket.
However, in IFC systems, sockets connected to remote
machines are generally considered public and do not
carry labels. Zeldovich et al. [38], in DStar, were the
first to introduce an inter-machine message passing
scheme for distributed IFC systems. Our current project
integrates a message-passing middleware layer using a
similar approach and providing additional features. A
trusted Usher process is attached by the kernel module
to each application process that makes a library call to
use the external messaging functionality.

For a tag t we note the machine-local representation
of this tag (on machine A) as tA and its global repre-
sentation tG. Fig. 2 shows a process p on machine A
sending a message to a process q (such that tG ∈ S(q))
on machine B. For simplicity we assume process p’s
security context comprises only tag t, S(p) = {t}. In
outline, the messaging helper: 1) receives the message
from its attached process; 2) translates the tag from its
local representation to its global representation (see §6.2);
3) attaches the label to the message and sends it over
the network. 4) Once the message is received the label is
translated to its local representation tB (assuming this
already exists for tG, otherwise is is created) and the
message sent to the receiving process. For details of IFC
enforcement during send and receive, and any possible
security context changes required by processes, see §9.

Our middleware SBUS [32], [33] has been extended
with IFC. SBUS-IFC expects structured messages and
provides attribute-level labelling. Each attribute a can
have its own labels provided that, for message M ,
S(M) - S(a) and I(a) - I(M). The attributes that cannot
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flow to a particular process are nullified, e.g. allowing
fine-grained medical record policies [15].

7 SUPPORT FOR AUDIT

Our kernel module is where OS flows are checked and
enforced and is therefore the natural point at which
audit logs can be generated. Audit logs can be used
for several purposes. Firstly, they can be used by the
cloud provider to demonstrate compliance with tenant/
user Service Agreements, particularly when third parties
may be involved. Allocation of responsibility when a
cloud service provider makes use of external services is
problematic [16]. Secondly, to check that application-level
policy has been correctly specified and enforced. Thirdly,
to investigate claims of data leaks by cloud tenants or
end-users of tenants’ cloud-hosted services. Fourthly, to
guard against and investigate general cyber-attacks on
the system. Each FlowK component creates an audit log.
Our future work will include developing tools to query
these logs as outlined below.

FlowK enforces IFC constraints as specified by policy,
but this may not reflect the intention of the policy maker,
or a misconfiguration may have been made. An audit
tool is needed to help determine whether there are cir-
cumstances in which information may potentially have
flowed from one security context to another. Conversely,
if a claim is made that a leak has occurred, an audit
tool may be able to determine that such a flow did not
happen (at this level of the system).

Any monitored system call issued by a labelled process
is logged. Operations on labels are also recorded. Opera-
tions from unlabelled processes are only recorded if they
represent an interaction with a labelled entity. We have
defined several different types of flow as part of our IFC
model (see §5), namely data flow, creation flow, security
context change and privilege delegation. These different
types of flow may be important in security forensics and
are recorded as part of the audit log.

A log entry is as follows:
Elements Information
Outgoing Flow Entity identifier, secrecy label, integrity label
Incoming Flow Entity identifier, secrecy label, integrity label
Flow Operation timestamp, system call name, permitted?

This recorded information allows us to understand better
the behaviour of the system. For example, the log can
be searched to find whether a suspicious number of
forbidden flows is recorded for some entity. If a leak is
claimed or suspected, the logs record all flows involving
labelled entities that have taken place.

To investigate information leaks, we propose an audit
tool that processes the logs in response to an authorised
user’s query. The information contained in the log allows
a directed graph of permitted flows to be built. Nodes are
composed of [entity identifier, security context] and the
edges are composed of [system call name, timestamp].
This is illustrated in Fig. 3.

All public entities are represented by a single node

Information Exchange

Create
Security Context Change

t0

t1

t3
t4

t7

t2 t5
t6

P3[S
′′, I]

P2[S
′′, ∅]

P3[S, I]F1[S, I]

P1[S, I] P1[∅, I]

Public[∅, ∅]F2[S
′, I ′]

Fig. 3: Audit directed graph (the disclosure path is shown in
red between the contexts S′, I ′ and S′′, ∅).
representing the public domain, as our system is not
able to provide guarantees on information flow between
unlabelled entities.

Suppose that an information leak is suspected be-
tween different security contexts L1[S, I] and L2[S′, I ′].
Determining whether such a leak can occur is equiv-
alent to discovering whether there is a path in the
graph between the two contexts. If the leak occurred,
there must be a path between some entity Ei such that
S(Ei) = S ∧ I(Ei) = I and another entity Fi such that
S(Fi) = S′ ∧ I(Fi) = I ′.

The existence of such a path demonstrates that a leak
is possible. To investigate whether a leak occurred it is
important to consider the timestamps associated with the
edges comprising the path. We denote by te, the last in-
coming edge to the entity under investigation with labels
[S′, I ′]; only edges such that t < te should be considered.
When applied to all nodes along a path, this rule ensures
strictly monotonically increasing timestamps from the
first node to the last. Fig. 3, shows in red a possible
data disclosure path, from file F2, from a very simple
audit graph. We know from the timestamps t0 and t1
that the data disclosure did not occur through file F1 and
process P3, but through P1’s declassification. If the data
disclosure was unintentional, it could be a sign that a
laundry attack has occurred (the attacker gained control
of P1’s declassification mechanism through, for example,
a vulnerability in the software). All P1’s declassifications
should then be checked, and the application in general.

An example of the use of IFC audit is that adherence
to a “cease and desist” order on some principal such as
a cloud-hosted service provider is hard to demonstrate
in current systems. Similarly, a user may request that
their data is deleted. In our system, every principal has
a unique label and demonstrating compliance with this
rule is simple: it must be shown that there is no edge
with a timestamp greater than the time of the “cease and
desist” enforcement that connects the principal’s nodes
to other nodes.

The issue of derived data (metadata) is problematic
in current systems. A cloud-hosted application or cloud
service provider may gather data on its users and sell it
to advertisers. This could even continue for users who
have asked to be deleted from the system. When IFC is
used, advertising data could only be derived explicitly
through some form of declassifier. This would have to
be part of the service-providers’ policies and its contract



10

with users. Compliance with the users’ wishes could
more easily be tracked and enforced.

Allocation of responsibility for data is also highlighted
by IFC audit. The cloud provider might demonstrate
that application policy was enforced as defined, and that
if a leak occurred it was through a legitimate channel
(such as a declassifier). That is, the data leakage is the
responsibility of the tenant-provided software and not
the cloud provider. The tenant’s software may have been
penetrated, did not correctly respect declassifying re-
quirements, or tenant-provided policies did not provide
the intended effects for their end-users. We believe that
the possibility of investigation via an IFC audit system
should allow better allocation of responsibility between
the parties involved in cloud applications.

8 APPLICATION-LEVEL INTEGRATION

In this section we describe application-level integration
with FlowK. First, persistent storage is needed. We have
already seen how a file service interface is provided
by FlowK. Here we discuss briefly how databases, key-
value stores etc. can be made IFC-compliant. We then
outline how we have modified a standard webworkers
framework for running web applications to make it IFC-
aware; details are in [22].

8.1 Integrating with Persistent Storage

A first technique to provide IFC with data stores comes
directly from work on library-provided IFC [4], [7],
[8], [22]. Here, the tags are stored within the database
alongside the data and a trusted software component
ensures that when information is read from the database,
the corresponding labels are applied. In FlowK [22] we
propose a similar system where we interface with a key-
value store through a trusted FUSE interface (see Fig. 4).
In Flume [14], a trusted application provides the interface
between untrusted applications and the database.

More recent work has seen the emergence of databases
that natively understand IFC concepts and can enforce
IFC policies [29]. Our SBUS-IFC work allows the inte-
gration of messaging middleware with database queries
which, coupled with IFC-aware databases, could provide
a clean implementation with a minimum TCB. With
the recent resurgence of interest in IFC at the OS and
application level, it is likely that new and better solutions
will emerge in the near future.

8.2 A Cloud-Deployed Web Service Framework

In [22] we presented the design of a framework for web
applications to run above FlowK, in order to demonstrate
application-level integration with FlowK, see Fig. 4.
Cloud applications are run by IFC-constrained workers.
End-user clients send their requests to a reverse proxy,
the Security Context Router (SCR). The request may
contain a security context token that is used by the
reverse proxy to 1) instantiate a new worker if needed;
2) route the request to the appropriate worker.

An implication of the design is that “untrusted” ap-

S Label Atomic tag set FlowK2 tag set
Stopsecret {protected, secret, topsecret} {〈govt , protected〉, 〈govt , secret〉, 〈govt , topsecret〉}
Ssecret {protected, secret} {〈govt , protected〉, 〈govt , secret〉}
Sprotected {protected} {〈govt , protected〉}
Sunclassified ∅ ∅

TABLE 1: Atomic and FlowK2 tag sets corresponding to the
“Government Protective Marking Scheme”.

plications can be supported on an IFC-enabled cloud. To
achieve this we allow end users to create new, persistent
security contexts (see §6.2). When sending a request, the
user may ask for the token associated with a context it
owns. The request will be executed within the persistent
context associated with the token.

In Fig. 4, we see that the SCR replaces the load balancer
present in a more traditional architecture (although, we
could envisage a load balancer upstream to several
SCRs). Each worker is constrained to work within a well
defined security context as specified by the end-user
request. The SCR is implemented as an Apache httpd
server used as a reverse proxy running a custom-made
module. The SCR runs as a trusted process and thus
can use the flowk execute in context FlowK system call to
spawn a new worker for a user-specified security context.

Following the IFC definitions given in §5 and assum-
ing that the cloud provider guarantees that no declas-
sification occurs without user consent, we ensure that
the data sent through a server request associated with a
security context are bound by this security context. The
end-user is thus able to specify data-bound policy that
will be enforced by the cloud provider, regardless of the
application implementation.

9 MIDDLEWARE INTEGRATION

SBUS [32], [33] is a messaging middleware in which data,
events, etc., are encapsulated within messages. IFC in
a cloud-integrated middleware is potentially concerned
with flows intra-cloud, inter-cloud and between clouds
and users’ end-systems. The support in SBUS-IFC for
IFC within messages is fine-grained, in that individual
attributes are labelled. Below, we outline how flows are
authorised according to the labels of the messages and
the processes between which they flow.

We have seen how IFC labels are allocated to processes
as part of their initialisation. In addition, any process that
requires external communication will, implicitly, make a
library call (that includes a system call to FlowK) which
in turn instantiates its SBUS Usher, see §6.2 and Fig. 2.

9.1 A System-Wide IFC Model

To demonstrate a system-wide IFC labelling scheme
with corresponding flow rules we chose the hierarchical
scheme unclassified, protected, secret, top-secret used by the
UK government until April 2014: “Government Protec-
tive Marking Scheme”.1 The label model was chosen for
its wide applicability to many Governmental and other
large organisations. Such schemes can be captured in

1. The current version is available via:
https://www.gov.uk/government/publications/
government-security-classifications

https://www.gov.uk/government/publications/government-security-classifications
https://www.gov.uk/government/publications/government-security-classifications


11

Cloud Storage

Worker WorkerWorker

Load Balancer

Cloud Storage

Worker WorkerWorker

Data Store Interface

IFC Constrained IFC Constrained IFC Constrained

Context A Context B Public Context

Security Context Router

Fig. 4: A scalable webserver worker process design running multiple identical instances of an application. We reduce the attack
surface by running the multiple instances in different security contexts.

SELinux hierarchies. Equally, we could have defined a
label set for healthcare and lifestyle or environmental
monitoring with associated flow rules, as in §5. For
simplicity of exposition we consider only the secrecy
labels S and assume the integrity labels I are null.

We define tags protected, secret, topsecret. In order to
communicate, processes must hold a label with appro-
priate tags from the above set to describe their current
runtime privilege level. Translating this hierarchical IFC
security classification into the (D)IFC label models de-
fined in §5, process labelling for atomic tags and FlowK2
2D tag model are illustrated in table 1.

The rules of §5 then enforce the no read up, no write
down policy described in §3 and §5. Note that if we
wanted to define a scheme with an arbitrarily tall hi-
erarchy with new layers added over time, the topmost
layer, equivalent to top-secret in this example, could
be expressed using the 2D tag model of FlowK2 as:
S = {〈govt , ∗〉}

The assignment of labels within messages is defined
below, followed by the rules for IFC enforcement when
messages are sent between components.

9.2 IFC in SBUS Messages

The role of IFC in middleware is to manage the flow of
messages, and the data encapsulated within. SBUS mes-
sages are strongly typed, comprising a set of attributes. In
a message, an attribute comprises a name, primitive-type,
and value. Each attribute is assigned an IFC label S, as
defined above (see Fig. 5 for example message instances).
This assignment is determined by:
Static definition: The attribute label can be defined
statically within the message type schema. This sets the
attribute’s IFC label for all message instances of the
type,2 i.e. applications cannot change this.
Applications: The application producing a message can
set the security labels for the attributes. If the application
does not assign a label to an attribute, the middleware
sets this label to the component’s current label, subject
to any static definition.

9.3 IFC Enforcement

IFC enforcement requires the evaluation of the message
against the receiving component’s S label, in accordance
with the no read up, no write down policy. That is, for:

2. It is encoded as a first-class definition within the message type.

IFC Enforcement on Receive: If the receiving compo-
nent’s S label is below that required to read an attribute,
the attribute value is removed from (made null in) the
message. This is enforced by the SBUS Usher when a
component receives a message, before it is delivered to
the application.
IFC Enforcement on Send: A sending component
cannot emit a value for an attribute where the attribute’s
S label is at a lower level than the S of the component.
This is enforced by the SBUS Usher when an application
attempts to send a message, by removing the values
for any attributes violating this policy, before message
propagation.

This enforcement involves the SBUS Usher inspecting
all attributes of a message, testing for compliance, on
receiving and sending.

As described in §5, there are situations where a process
should be able to write down, after declassification. This
is possible if the process has the privilege to remove the
tag(s) from its S label, and changes its security context
correspondingly, before sending the message.

Components cannot in general see the original la-
bels for the messages they receive. This prevents side-
channels, in that though they are privileged to see the
content, they need not know (and thus be able to infer)
specifics about the sending process. However, this pre-
vents more complex networks from being built, e.g. those
with brokers making routing decisions in the application
layer, since the labels are effectively lost between hops.

Therefore, we define an additional label-visibility priv-
ilege that components can hold, which enables a com-
ponent to see the labels for the messages it receives.
We use this to facilitate functionality as in content-
based routers. Such components would probably be part
of managed infrastructure (e.g. in a Government-wide
service), perhaps operating on behalf of other “sensitive”
(topsecret) components.

9.4 SBUS-IFC Experiments

We used SBUS-IFC in a system monitoring and admin-
istration scenario: (1) To demonstrate the functionality
of an integrated IFC-middleware. (2) To indicate the
performance overheads that IFC functionality imposes.
A summary of the overhead imposed on message pro-
cessing during send and receive are described in §10.3.
An example of the transmission of syslog messages is
given in Fig. 5 showing attributes being removed after
security context checking.
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Message sent by syslog process running at secret level, where all
fields except for process and content are declassified to level protected

<syslog>
<priority lbl="P">4</priority>
<timestamp lbl="P">

23:17:59.00, 15/04/2014
</timestamp>
<host lbl="P">morena</host>
<process lbl="PS">locd[69]</process>
<content lbl="PS">

SSLHandshake failed 192.168.1.43:22412
</content>

</syslog>

Message received by remote process running at protected level

<syslog>
<priority>4</priority>
<timestamp>

23:17:59.00, 15/04/2014
</timestamp>
<host>morena</host>
<process />
<content />

</syslog>

Fig. 5: Example of a message, receive-mediated by an SBUS
Usher, for a process running at level protected.

System Calls Native FlowK Difference FlowK Flume
Linux Multiplier Multiplier

open (r/w)
–create 1.9µs 15.8µs 13.9µs 8.3 16
–exists 1.4µs 15.4µs 14µs 11 34.5
–does not exist 5.1µs 18.9µs 13.8µs 3.7 23.6
close 0.8µs 0.9µs 0.1µs 1.1 1.3
write (file) 1.2µs 7.2µs 6µs 6 NA
read (file) 0.3µs 6.4µs 6.1µs 21.3 NA
fork 28.7µs 225.4µs 196.7µs 7.9 NA
pipe latency 4.4µs 7.8µs 3.4µs 1.8 8.2

TABLE 2: Some system call overheads compared with Flume
as reported in [14]

10 EVALUATION

The CloudSafetyNet project is at an early stage and work
is in progress. Implementations tend to be for proof-of-
concept and performance optimisation has not yet been
done. This section aims to give an order of magnitude
idea of performance compared with equivalent solutions.
Performance evaluation of FlowK has been carried out
on a quad-core 2.2Ghz Intel i7 with 6GiB of RAM run-
ning Fedora 20 (kernel version 3.14).

10.1 System Calls Interposition Overhead

We used a micro-benchmark to measure the performance
of our system compared to standard Linux. The results
are presented in Table 2. We also provide the perfor-
mance of Flume as reported in [14] for comparison. In
Flume, all data transfers are via an intermediate process,
leading to multiple context switches. FlowK only uses
an intermediate process (the SBUS Usher, see §6.2) for
external message passing.

Another question is the influence of the label complex-
ity over performance. In Fig. 6, we present the overhead

0 20 40 60 80 100
0.5

1
1.2
1.4

Fig. 6: Pipe performance multiplier (for unmonitored and 0–
100 tags, normalised over native (y=1.0) performance)

10 20 30 40 50
50
60
70
80
90

Fig. 7: Performance of our worker architecture (§8) with
(red/square) and without (blue/circle) FlowK running. Y-axis:
latency in ms for 90th percentile, X-axis: number of concurrent
requests. Results are averaged over 10,000 requests.

on pipe latency against the number of tags composing a
label. The performance overhead increases linearly with
the label complexity. However, in practice it is unlikely
that the most complex label will exceed ten or so tags.

10.2 Web application interface

We created a situation similar to the one presented in
[21]. An application allows patients to retrieve their med-
ical records from a database on request. They are then
placed in a temporary data store. We have 50 records
of around 9KB in a key-value store from which records
are selected at random. We measure the latency in ms
as a function of the number of concurrent requests, see
Fig. 7. A single security context is used for all requests in
order to allow a comparison against a system with FlowK
switched off. Our aim is to outline the interposition cost
induced by FlowK.

The overhead measured from 1 to 50 concurrent re-
quests varies from 5% to 23%. The overheads measured
are of the order of magnitude expected for similar OS-
level IFC implementations [11], [14].

10.3 SBUS-IFC Evaluation

To indicate the overheads that IFC imposes, we com-
pared the SBUS-IFC implementation with the non-IFC
(standard) SBUS implementation. Using a workload of
5000 syslog messages, 20% of which were randomly
subjected to attribute declassification (in line with that
of Fig. 5), over 20 trials, we measured (refer to Fig. 8):
(1) The standard SBUS implementation with no IFC
capability on send or receive, resulting in both read and
write data leakage.
(2) SBUS-IFC message processing on receive, where some
attribute values of incoming messages are not delivered
to the receiver.
(3) SBUS-IFC message processing on send, where certain
attribute values are nulled before sending because the
sender has insufficient privileges to send them.
Note that though IFC is enforced both on message send-
ing and receipt, for (2) all messages sent were authorised
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Fig. 8: Performance Comparison between SBUS and SBUS-IFC
(x-axis time in ms)

by IFC policy (the messages were not perturbed on send-
ing), and for (3) all messages received were authorised
(thus not perturbed on receipt).

In summary, the results indicate that IFC enforcement
introduces ∼13% overhead in performance time for
the workload over standard SBUS. For the three over-
head scenarios, the workload transmission in bytes for
the receive IFC (where all message content is transmit-
ted) was approximately 1.91MB, and for non-IFC was
approximately 1.84MB for all trials. This means that
attaching IFC labels to message attributes introduced
3.6% extra traffic. The write scenario prevents certain
attribute values from propagating—thus transmission in
that scenario was ∼1.52MB (a reduction in traffic of
∼17% over the non-IFC scenario for this workload).

11 CONCLUSIONS AND FUTURE WORK

Our CloudSafetyNet project is investigating the poten-
tial and feasibility of providing IFC as part of cloud
computing. If massive reengineering by cloud providers
and/or cloud tenants was necessary for IFC to be incor-
porated into cloud services, it would be unlikely to be
adopted. Therefore, our design choices aim to minimise
any changes to existing systems when IFC is deployed,
while adopting current best-practice where possible.

As proof-of-concept of the feasibility of IFC deploy-
ment end-to-end, we have designed, implemented and
evaluated (1) an OS kernel module (FlowK) to enforce
IFC, (2) a standard, application-level web services archi-
tecture adapted to use IFC via FlowK, and (3) an IFC-
enabled messaging middleware (SBUS-IFC) integrated
with FlowK, giving the potential to create IFC-aware
distributed systems comprising clouds, multi-clouds and
end-systems. Our middleware is capable of integration
with other security systems including SELinux, giving
the potential for heterogeneous IFC-enabled systems.

FlowK is solely concerned with IFC enforcement, sys-
tem calls are unchanged, and unmonitored processes
are not affected by its existence, apart from a small
performance overhead. The limitations of providing IFC
at the OS level in the cloud must be made explicit. We
cannot guarantee that users’ data could not be leaked
through techniques based on VM co-residency [26], [39].
Any research in this area, would strengthen our solution.

FlowK has privileged User-Space Helper processes
(Ushers) to assist in starting up applications and applica-
tion instances from saved security contexts. A dedicated
SBUS Usher is created for every process that participates
in external communication to mediate sent and received

messages according to the processes’ security contexts.
Since public cloud services are provided by relatively

few large companies, and applications are myriad, we
believe the former are more likely to be trusted. Incorpo-
rating IFC into public cloud services would make them
more trustworthy; we suggested a mechanism whereby
cloud-hosted web-application end-users could establish
security contexts in which to run on public clouds.

We have carried out preliminary work on applica-
tion policy expression. We proposed FlowK2 with two-
component tags, to allow more precise expression of
required policy and trust, especially for “big data” pro-
cessing. The space and time overhead of 2D tags over
atomic tags is negligible for up to a dozen or so tags and
in our experience to date, the need for more is unlikely.

Further work is needed on global tag naming before
we finalise our tag design. To extend IFC to whole
clouds, multi-clouds and distributed systems in general,
many issues have to be considered in detail. There is
a wealth of law and regulation regarding cloud service
provision [16] that would need to be incorporated into
any naming scheme, for example to include jurisdiction
and geographical location.

We believe that IFC provides an important means to
assist cloud service providers to demonstrate compliance
with regulations on cloud computing, thereby increasing
the trust of potential cloud users. CloudSafetyNet has
carried out some initial work to demonstrate that IFC
provision is feasible within clouds, between clouds and
between clouds and end-user systems.
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