# Translation of Lyapunov Stability Proofs to Machine Arithmetic 

Vivien Maisonneuve



Eighth meeting of the French community of compilation
Nice, July 2014

## Embedded Systems

An embedded system is a computer system with a dedicated function, within a larger mechanical or electrical system.

Constraints:

- Power consumption;
- Performance (RT);
- Safety;
- Cost.

Uses a low-power processor or a microcontroller.
Commonly found in consumer, cooking, industrial, automotive, medical, commercial and military applications.

## Example

Quadricopter, DRONE Project, MINES ParisTech \& ÉCP $\Longrightarrow$ Parrot AR.Drone.


ATMEGA128: $16 \mathrm{MHz}, 4 \mathrm{~KB}$ RAM, 128 KB ROM


## Control-Command System



## Levels of Description

| Formalization: |
| :--- |
| - System conception; |
| - Constraint specification; |
| - Physical model of the |
| environment; |
| - Mathematical proof that |
| the system behave |
| properly. |
| MATLAB, Simulink |

Realization: very low-level C program

- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

Gradual transformations

## Levels of Description

## Formalization:

- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behave properly.

MATLAB, Simulink

Realization: very low-level C program

- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

Gradual transformations
How to ensure that the executed program is correct?

## Levels of Description



How to ensure that the executed program is correct?

## Stability Proof

Show that the system parameters are bounded during its execution.
Essential for system safety.


- Open loop stability: $u_{c}$ bounded $\Longrightarrow x_{c}$ bounded (hence $y_{c}$ bounded)
- Closed loop stability: $y_{d}$ bounded $\Longrightarrow x_{c}, x_{p}$ bounded (hence $y_{c}, y_{p}$ bounded)


## Stability Invariant

Lyapunov theory provides a framework to compute inductive invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.


Static analysis to show that the invariant holds from source code.

## Stability Invariant

Lyapunov theory provides a framework to compute inductive invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.


Static analysis to show that the invariant holds from source code.

## Numerical Precision

Lyapunov theory applies on a system with real arithmetic.
In machine implementations, numerical values are approximated by binary, limited-precision values.

## Numerical Precision

Lyapunov theory applies on a system with real arithmetic.
In machine implementations, numerical values are approximated by binary, limited-precision values.

- Floating point (IEEE 754):

- Fixed point:

$$
(-1)^{s} \times e+2^{-24} \times m
$$

- Rationals using pairs of integers.


## Numerical Precision

Lyapunov theory applies on a system with real arithmetic.
In machine implementations, numerical values are approximated by binary, limited-precision values.
(1) Constant values are altered;
(2) Rounding errors during computations.
$\Longrightarrow$ Stability proof does not apply, invariant does not fit.
How to adapt the stability proof?

## Example System

```
Ac = [0.4990, -0.0500;
    0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
    yc = max(min(y - yd, 1), -1);
    u = Cc*xc + Dc*yc;
    xc = Ac*xc + Bc*yc;
    send(u, 1);
    receive(y, 2); receive(yd, 3);
end
```


## Example System

## [Feron ICSM'10]:

 mass-spring system.

Open-loop stability: $x_{c}$ bounded.

$$
\begin{aligned}
& \mathrm{Ac}=[0.4990,-0.0500 ; \\
& \quad 0.0100,1.0000] ; \\
& \mathrm{Bc}=[1 ; 0] ; \\
& \mathrm{Cc}=[564.48,0] ; \\
& \mathrm{Dc}=-1280 ; \\
& \mathrm{xc}=\mathrm{zeros}(2,1) ; \\
& \text { receive }(\mathrm{y}, 2) ; \text { receive }(\mathrm{yd}, 3) ; \\
& \text { while }(1) \\
& \text { yc }=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1) ; \\
& \mathrm{u}=\mathrm{Cc} * \mathrm{xc}+\mathrm{Dc*yc} ; \\
& \mathrm{Xc}=\mathrm{Ac} * \mathrm{xc}+\mathrm{Bc} * \mathrm{yc} ; \\
& \text { send }(\mathrm{u}, 1) ; \\
& \text { receive }(\mathrm{y}, 2) ; \text { receive }(\mathrm{yd}, 3) ; \\
& \text { end }
\end{aligned}
$$

## Example System: Stability Ellipse

Lyapunov theory $\Longrightarrow x_{c}=\binom{x_{c_{1}}}{x_{c_{2}}}$ belongs to the ellipse:

$$
\begin{gathered}
\mathcal{E}_{P}=\left\{x \in \mathbb{R}^{2} \mid x^{T} \cdot P \cdot x \leq 1\right\} \quad P=10^{-3}\left(\begin{array}{ll}
0.6742 & 0.0428 \\
0.0428 & 2.4651
\end{array}\right) \\
x_{c} \in \mathcal{E}_{P} \Longleftrightarrow 0.6742 x_{c_{1}}^{2}+0.0856 x_{c_{1}} x_{c_{2}}+2.4651 x_{c_{2}}^{2} \leq 1000
\end{gathered}
$$



## Example System

```
Ac = [0.4990, -0.0500;
    0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
    % xc}\in\mp@subsup{\mathcal{E}}{P}{
    yc = max(min(y - yd, 1), -1);
    u = Cc*xc + Dc*yc;
    xc = Ac*xc + Bc*yc;
    send(u, 1);
    receive(y, 2); receive(yd, 3);
    % x
end
```



## Example System: Invariants

$$
\begin{aligned}
& \mathrm{xc}=\operatorname{zeros}^{2}(2,1) ; \\
& \% x_{c} \in \mathcal{E}_{P} \\
& \text { receive }(\mathrm{y}, 2) ; \operatorname{receive}(\mathrm{yd}, \mathrm{3}) ; \\
& \% x_{c} \in \mathcal{E}_{P} \\
& \text { while }(1) \\
& \% x_{c} \in \mathcal{E}_{P} \\
& \mathrm{yc}=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1) ; \\
& \% x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} \leq 1 \\
& \%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu}=\left(\begin{array}{cc}
\mu P & 0 \\
0 & 1-\mu
\end{array}\right), \quad \mu=0.9991 \\
& \mathrm{u}=\operatorname{Cc} * \mathrm{xc}+\mathrm{Dc} * \mathrm{yc} ; \\
& \%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}} \\
& \mathrm{xc}=\mathrm{Ac} * \mathrm{xc}+\mathrm{Bc} * \mathrm{yc} ; \\
& \% x_{c} \in \mathcal{E}_{R}, \quad R=\left[\left(A_{c} B_{c}\right) Q_{\mu}^{-1}\left(A_{c} B_{c}\right)^{\mathrm{T}}\right]^{-1} \\
& \operatorname{send}(\mathrm{u}, 1) ; \\
& \% x_{c} \in \mathcal{E}_{R} \\
& \mathrm{receive}(\mathrm{y}, 2) ; \operatorname{receive}(\mathrm{yd}, 3) ; \\
& \% x_{c} \in \mathcal{E}_{R} \\
& \% x_{c} \in \mathcal{E}_{P} \\
& \text { end }
\end{aligned}
$$

## Example System: Invariants

$\% x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} \leq 1$
$\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu}=\left(\begin{array}{cc}\mu P & 0 \\ 0 & 1-\mu\end{array}\right), \quad \mu=0.9991$

$\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}$
$\mathrm{xc}=\mathrm{Ac} * \mathrm{xc}+\mathrm{Bc} * \mathrm{yc}$;
$\% x_{c} \in \mathcal{E}_{R}, \quad R=\left[\left(\begin{array}{ll}A_{c} & B_{c}\end{array}\right) Q_{\mu}^{-1}\left(\begin{array}{ll}A_{c} & B_{c}\end{array}\right)^{\mathrm{T}}\right]^{-1}$

## Example System

Using limited-precision arithmetic:

```
Ac = [0.4990, -0.0500;
```

Ac = [0.4990, -0.0500;
0.0100, 1.0000];
0.0100, 1.0000];
Bc = [1; 0];
Bc = [1; 0];
Cc = [564.48, 0];
Cc = [564.48, 0];
Dc = -1280;
Dc = -1280;
xc = zeros(2, 1);
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
receive(y, 2); receive(yd, 3);
while (1)
while (1)
% xc
% xc
yc = max(min(y - yd, 1), -1);
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bc*yc;
xc = Ac*xc + Bc*yc;
send(u, 1);
send(u, 1);
receive(y, 2); receive(yd, 3);
receive(y, 2); receive(yd, 3);
% xc}\in\mp@subsup{\mathcal{E}}{P}{
% xc}\in\mp@subsup{\mathcal{E}}{P}{
end

```
end
```


## Example System

```
А \(\mathrm{Ac}=[0.4990,-0.0500 ;\)
    0.0100, 1.0000];
\(\mathrm{Bc}=[1 ; 0]\);
Cc \(=[564.48,0]\);
[ Dc = -1280;
xc \(=\operatorname{zeros}(2,1)\);
receive(y, 2); receive(yd, 3);
while (1)
    \(\% x_{c} \in \mathcal{E}_{P}\)
    \(\mathrm{yc}=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1)\);
    u = Cc*xc + Dc*yc;
    \(\mathrm{xc}=\mathrm{Ac} * \mathrm{xc}+\mathrm{Bc} * \mathrm{yc}\);
    send ( \(u, 1\) );
    receive(y, 2); receive(yd, 3);
    \(\% x_{c} \in \mathcal{E}_{P}\)
end
```

Using limited-precision arithmetic:
(1) Constant values are altered

## Example System

```
Ac = [0.4990, -0.0500;'
    0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
    % x &\mathcal{E}
    yc = max(min(y - yd, 1), -1);
    u = Cc*xc + Dc*yc;
    xc = Ac*xc + Bc*yc;
    send(u, 1);
    receive(y, 2); receive(yd, 3);
    % xefep
end
```

Using limited-precision arithmetic:
(1) Constant values are altered
$\Longrightarrow \mathcal{E}_{P}$ no longer valid;

## Example System

```
Ac=[0.4990,-0.0500;
    0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
    % x \inf &
    yc =max (min}(y - yd, 1), -1)
    |u = Cc*xc + Dc*yc;
    xc=Ac*xc + Bc*yc;
    send(u, 1);
    receive(y, 2); receive(yd, 3);
    % xefer
end
```

Using limited-precision arithmetic:
(1) Constant values are altered
$\Longrightarrow \mathcal{E}_{P}$ no longer valid;
(2) Rounding errors during computations.

## Example System

```
Ac= [0.4990, -0.0500;'
    0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
    % x \inf &
    yc =max (min}(y - yd, 1), -1)
    |u = Cc*xc + Dc*yc;
    xc=Ac*xc + Bc*yc;
    send(u, i);
    receive(y, 2); receive(yd, 3);
    % xefer
end
```

Using limited-precision arithmetic:
(1) Constant values are altered
$\Longrightarrow \mathcal{E}_{P}$ no longer valid;
(2) Rounding errors during computations.

Adapt invariants.

## Theoretical Framework

Transpose code + invariants in two steps:

| Real |
| :--- |
| $\% d$ |
| $i$ |
| $\%$ |$d^{\prime}=\theta(d, i)$

## Theoretical Framework

Transpose code + invariants in two steps:


Code: constants converted into machine numbers

Invariants recomputed using the same propagation theorem $\theta$

## Theoretical Framework

Transpose code + invariants in two steps:


Code: constants converted into machine numbers

Invariants recomputed using the same propagation theorem $\theta$

Code: real functions +, *... replaced by their machine counterparts
Invariants enlarged to include rounding error
Preserve invariant shape for propagation

## Example System, 32-bit Floating-Point Numbers

```
Ac = [0.4990, -0.0500;
    0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
...
```

(1) Convert constants:

```
Acf = [0.498999999999999999111182158029987476766109466552734375,
    -0.05000000000000000277555756156289135105907917022705078125;
    0.01000000000000000020816681711721685132943093776702880859375,
    1.0000]
Bcf = [1; 0];
Ccf = [564.48000000000001818989403545856475830078125, 0]
Dcf = -1280
```


## Example System, 32-bit Floating-Point Numbers

```
\(\mathrm{xc}=\operatorname{zeros}(2,1) ;\)
\(\% x_{c} \in \mathcal{E}_{P}\)
receive(y, 2); receive(yd, 3);
\(\% x_{c} \in \mathcal{E}_{P}\)
while (1)
    \(\% x_{c} \in \mathcal{E}_{P}\)
    \(\mathrm{yc}=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1)\);
    \(\% x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} \leq 1\)
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu}=\left(\begin{array}{cc}\mu P & 0 \\ 0 & 1-\mu\end{array}\right)\)
    \(\mathrm{u}=\mathrm{Cc} * \mathrm{xc}+\mathrm{Dc} * \mathrm{yc}\);
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}\)
    \(\mathrm{xc}=\mathrm{Ac} * \mathrm{xc}+\mathrm{Bc} * \mathrm{yc}\);
    \(\% \quad x_{c} \in \mathcal{E}_{R}, \quad R=\left[\left(\begin{array}{ll}A_{c} & B_{c}\end{array}\right) Q_{\mu}^{-1}\left(\begin{array}{ll}A_{c} & B_{c}\end{array}\right)^{\mathrm{T}}\right]^{-1}\)
    send (u, 1);
    \(\% x_{c} \in \mathcal{E}_{R}\)
    receive(y, 2); receive(yd, 3);
    \(\% x_{c} \in \mathcal{E}_{R}\)
    \(\% x_{c} \in \mathcal{E}_{P}\)
end
```


## Example System, 32-bit Floating-Point Numbers

```
\(\mathrm{xc}=\operatorname{zeros}(2,1) ;\)
\(\% x_{c} \in \mathcal{E}_{P}\)
receive(y, 2); receive(yd, 3);
\(\% x_{c} \in \mathcal{E}_{P}\)
while (1)
    \(\% x_{c} \in \mathcal{E}_{P}\)
    \(\mathrm{yc}=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1)\);
    \(\% x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} \leq 1\)
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu}=\left(\begin{array}{cc}\mu P & 0 \\ 0 & 1-\mu\end{array}\right)\)
    \(\mathrm{u}=\mathrm{Cc} * \mathrm{xc}+\mathrm{Dc} * \mathrm{yc}\);
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}\)
    \(\mathrm{xc}=\mathrm{Acf} * \mathrm{xc}+\mathrm{Bcf} * \mathrm{yc}\);
    \(\% \quad x_{c} \in \mathcal{E}_{R}, \quad R=\left[\left(\begin{array}{ll}A_{c} & B_{c}\end{array}\right) Q_{\mu}^{-1}\left(\begin{array}{ll}A_{c} & B_{c}\end{array}\right)^{\mathrm{T}}\right]^{-1}\)
    send(u, 1);
    \(\% x_{c} \in \mathcal{E}_{R}\)
    receive(y, 2); receive(yd, 3);
    \(\% x_{c} \in \mathcal{E}_{R}\)
    \(\% x_{c} \in \mathcal{E}_{P}\)
end
```


## Example System, 32-bit Floating-Point Numbers

```
\(\mathrm{xc}=\operatorname{zeros}(2,1) ;\)
\(\% x_{c} \in \mathcal{E}_{P}\)
receive(y, 2); receive(yd, 3);
\(\% x_{c} \in \mathcal{E}_{P}\)
while (1)
    \(\% x_{c} \in \mathcal{E}_{P}\)
    \(\mathrm{yc}=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1)\);
    \(\% \quad x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} \leq 1\)
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu}=\left(\begin{array}{cc}\mu P & 0 \\ 0 & 1-\mu\end{array}\right)\)
    \(\mathrm{u}=\mathrm{Cc} * \mathrm{xc}+\mathrm{Dc} * \mathrm{yc}\);
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}\)
    \(\mathrm{xc}=\mathrm{Acf} * \mathrm{xc}+\mathrm{Bcf} * \mathrm{yc}\);
    \(\% \quad x_{c} \in \mathcal{E}_{S}, \quad S=\left[\left(\begin{array}{ll}A_{c f} & B_{c f}\end{array}\right) Q_{\mu}^{-1}\left(\begin{array}{ll}A_{c f} & B_{c f}\end{array}\right)^{\mathrm{T}}\right]^{-1}\)
    send (u, 1);
    \(\% x_{c} \in \mathcal{E}_{S}\)
    receive(y, 2); receive(yd, 3);
    \(\% x_{c} \in \mathcal{E}_{S}\)
    \(\% x_{c} \in \mathcal{E}_{P}\)
end
end
```

In the rest of the code:

- $A_{c}, B_{c}$ replaced by $A_{c f}, B_{c f}$;
- $R$ depends on $A_{c}, B_{c}$, replaced by $S$;


## Example System, 32-bit Floating-Point Numbers

```
\(\mathrm{xc}=\operatorname{zeros}(2,1) ;\)
\(\% x_{c} \in \mathcal{E}_{P}\)
receive(y, 2); receive(yd, 3);
\(\% x_{c} \in \mathcal{E}_{P}\)
while (1)
    \(\% x_{c} \in \mathcal{E}_{P}\)
    \(\mathrm{yc}=\max (\min (\mathrm{y}-\mathrm{yd}, 1),-1)\);
    \(\% x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} \leq 1\)
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu}=\left(\begin{array}{cc}\mu P & 0 \\ 0 & 1-\mu\end{array}\right)\)
    \(\mathrm{u}=\mathrm{Cc} * \mathrm{xc}+\mathrm{Dc} * \mathrm{yc}\);
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}\)
    \(\mathrm{xc}=\mathrm{Acf} * \mathrm{xc}+\mathrm{Bcf} * \mathrm{yc}\);
    \(\% \quad x_{c} \in \mathcal{E}_{S}, \quad S=\left[\left(\begin{array}{ll}A_{c f} & B_{c f}\end{array}\right) Q_{\mu}^{-1}\left(\begin{array}{ll}A_{c f} & B_{c f}\end{array}\right)^{\mathrm{T}}\right]^{-1}\)
    send (u, 1);
    \(\% x_{c} \in \mathcal{E}_{S}\)
    receive(y, 2); receive(yd, 3);
    \(\% \%_{x_{c}} \in \overline{\mathcal{E}}_{S}\);
    \(1 \% x_{c} \in \mathcal{E}_{P}\) !
end
```

In the rest of the code:

- $A_{c}, B_{c}$ replaced by $A_{c f}, B_{c f}$;
- $R$ depends on $A_{c}, B_{c}$, replaced by $S$;
- Check if $\mathcal{E}_{S} \subset \mathcal{E}_{P}$.


## Example System, 32-bit Floating-Point Numbers

(2) Replace functions:
$\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}$
$\mathrm{xc}=\mathrm{Acf} * \mathrm{xc}+\mathrm{Bcf} * \mathrm{yc}$;
$\% x_{c} \in \mathcal{E}_{S}, \quad S=\left[\left(\begin{array}{ll}A_{c f} & B_{c f}\end{array}\right) Q_{\mu}^{-1}\left(\begin{array}{ll}A_{c f} & B_{c f}\end{array}\right)^{\mathrm{T}}\right]^{-1}$
...

- Replace + and $\times$ by their FP counterparts;
- Increase $\mathcal{E}_{S}$ to include arithmetic error.


## Example System, 32-bit Floating-Point Numbers

$e_{1}, e_{2}$ is the arithmetic error on $x_{c_{1}}, x_{c_{2}}$.
$\mathcal{E}_{T} \supset \mathcal{E}_{S}$ is an ellipse s.t.:

$$
\forall x_{c} \in \mathcal{E}_{S}, \forall x_{c}^{\prime} \in \mathbb{R}^{2}
$$

$$
\begin{equation*}
\left|x_{c_{1}}^{\prime}-x_{c_{1}}\right| \leq e_{1} \wedge\left|x_{c_{2}}^{\prime}-x_{c_{2}}\right| \leq e_{2} \Longrightarrow x_{c}^{\prime} \in \mathcal{E}_{T} \tag{*}
\end{equation*}
$$


$\mathcal{E}_{T}$ can be the smallest magnification of $\mathcal{E}_{S}$ s.t. $(*)$ holds.

## Example System, 32-bit Floating-Point Numbers



## Example System, 32-bit Floating-Point Numbers

```
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}\)
    \(\mathrm{xc}=\mathrm{Acf} * \mathrm{xc}+\mathrm{Bcf} * \mathrm{yc}\);
    \(\% x_{c} \in \mathcal{E}_{T}\)
    send (u, 1);
    \(\% x_{c} \in \mathcal{E}_{T}\)
    receive(y, 2); receive(yd, 3);
    \(\% x_{c} \in \mathcal{E}_{T}\)
    \(\% x_{c} \in \mathcal{E}_{P}\)
end
```

In the rest of the code:

- Replace $\mathcal{E}_{S}$ by $\mathcal{E}_{T}$;



## Example System, 32-bit Floating-Point Numbers

```
    \(\%\binom{x_{c}}{y_{c}} \in \mathcal{E}_{Q_{\mu}}\)
    \(\mathrm{xc}=\mathrm{Acf} * \mathrm{xc}+\mathrm{Bcf} * \mathrm{yc}\);
    \(\% x_{c} \in \mathcal{E}_{T}\)
    send (u, 1);
    \(\% x_{c} \in \mathcal{E}_{T}\)
    receive (y, 2); receive(yd, 3);
    \({ }_{1} \%_{x_{c}} \in \overline{\mathcal{E}}_{T}^{-1}\)
    \(1 \% x_{c} \in \mathcal{E}_{P}:\)
end
```

In the rest of the code:

- Replace $\mathcal{E}_{S}$ by $\mathcal{E}_{T}$;
- Check if $\mathcal{E}_{T} \subset \mathcal{E}_{P}$.

It works! $\Rightarrow$ Stable in 32 bits.
If not, can't conclude.


## Automation: The LyaFloat Tool

In Python, using SymPy.
from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)
P = Rational("1e-3") * Matrix(rationals (
["0.6742 0.0428", "0.0428 2.4651"]))
EP = Ellipsoid(P)
xc1, xc2, yc = symbols("xc1 xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]))

```
ES = Ellipsoid(R)
print("ES included in EP :", ES <= EP)
i = Instruction({xc: Ac * xc + Bc * yc},
    pre=[zc in EQmu], post=[xc in ES])
ET = i.post()[xc]
print("ET =", ET)
print("ET included in EP :", ET <= EP)
```


## Closed Loop

Closed-loop system:

- Pseudocode for controller and for environment;
- send \& receive;
- Only controller code is changed.

Does not work with 32 bits.
OK with 128 bits.

## Extensions of LyaFloat

Suitable method if bounded error.
(1) Arithmetic paradigms:

- OK with floating point: rounding error is bounded for,,$+- *$ if far enough from extremal values;
- Same for fixed point;
- Not sure what happens with two integers;


## Extensions of LyaFloat

Suitable method if bounded error.
(1) Arithmetic paradigms:

- OK with floating point: rounding error is bounded for +, -, * if far enough from extremal values;
- Same for fixed point;
- Not sure what happens with two integers;

2 Other functions (non-linear systems):

- Differentiable, periodic functions (cos) (can be computed with an abacus/polynomial interpolation);
- Differentiable functions restricted to a finite range (assuming values in the range).


## Related Work

Compute bounds from source code:

- Astrée;
- PhD P. Roux.

From pseudocode to C :

- Feron ICSM'10.

Floating-point arithmetic:

- PhD P. Roux.

Proof translation, code-level invariants.
Closed loop.

## Conclusion

Theoretical framework to translate proof invariants on code with real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on floating-point arithmetic.

Future work:

- Support for other arithmetic paradigms, more functions, more invariant propagators;
- Coq rather than Python
$\Longrightarrow$ formalization (or proof?) of propagators;
- ...or generate Coq scripts?


# Translation of Lyapunov Stability Proofs to Machine Arithmetic 

Vivien Maisonneuve



Eighth meeting of the French community of compilation
Nice, July 2014

