# Translation of Lyapunov Stability Proofs to Machine Arithmetic

Vivien Maisonneuve



Eighth meeting of the French community of compilation

Nice, July 2014

# Embedded Systems

An embedded system is a computer system with a dedicated function, within a larger mechanical or electrical system.

Constraints:

- Power consumption;
- Performance (RT);
- Safety;
- Cost.

Uses a low-power processor or a microcontroller.

Commonly found in consumer, cooking, industrial, automotive, medical, commercial and military applications.

#### Example

# Quadricopter, DRONE Project, MINES ParisTech & ÉCP $\implies$ Parrot AR.Drone.





#### ATMEGA128: 16 MHz, 4 KB RAM, 128 KB ROM



# Control-Command System



# Levels of Description

#### Formalization:

- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behave properly.

MATLAB, Simulink

**Realization**: very low-level C program

- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

Gradual transformations

# Levels of Description

#### Formalization:

- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behave properly.

MATLAB, Simulink

**Realization**: very low-level C program

- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

Gradual transformations

How to ensure that the executed program is correct?

# Levels of Description



How to ensure that the executed program is correct?

# Stability Proof

Show that the system parameters are bounded during its execution. Essential for system safety.

- Open loop stability:  $u_c$  bounded  $\implies x_c$  bounded (hence  $y_c$  bounded)
- Closed loop stability:  $y_d$  bounded  $\implies x_c, x_p$  bounded (hence  $y_c, y_p$  bounded)

Stability Invariant

Lyapunov theory provides a framework to compute inductive invariants.

Linear invariants not well suited.

Quadratic invariants (ellipsoids) are a good fit for linear systems.



Static analysis to show that the invariant holds from source code.

Stability Invariant

Lyapunov theory provides a framework to compute inductive invariants.

Linear invariants not well suited.

Quadratic invariants (ellipsoids) are a good fit for linear systems.



Static analysis to show that the invariant holds from source code.

#### Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.

#### Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.



$$(-1)^{s} \times e + 2^{-24} \times m$$

Rationals using pairs of integers.

#### Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.

- 1 Constant values are altered;
- **2** Rounding errors during computations.
- $\Longrightarrow$  Stability proof does not apply, invariant does not fit.

#### How to adapt the stability proof?

#### [Feron ICSM'10]:

mass-spring system.



```
Ac = [0.4990, -0.0500;
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280:
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  yc = max(min(y - yd, 1), -1);
  \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
  xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
end
```

#### [Feron ICSM'10]:

mass-spring system.



Open-loop stability:  $x_c$  bounded.

```
Ac = [0.4990, -0.0500;
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  yc = max(min(y - yd, 1), -1);
  \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
  xc = Ac*xc + Bc*yc;
  send(u, 1);
  receive(y, 2); receive(yd, 3);
end
```

#### Example System: Stability Ellipse

Lyapunov theory 
$$\implies x_c = \begin{pmatrix} x_{c_1} \\ x_{c_2} \end{pmatrix}$$
 belongs to the ellipse:  
 $\mathcal{E}_P = \{ x \in \mathbb{R}^2 \mid x^T \cdot P \cdot x \leq 1 \}$   $P = 10^{-3} \begin{pmatrix} 0.6742 & 0.0428 \\ 0.0428 & 2.4651 \end{pmatrix}$ 

 $x_c \in \mathcal{E}_P \Longleftrightarrow 0.6742 x_{c_1}^2 + 0.0856 x_{c_1} x_{c_2} + 2.4651 x_{c_2}^2 \le 1000$ 



```
Ac = [0.4990, -0.0500;
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % x_c \in \mathcal{E}_P
  yc = max(min(y - yd, 1), -1);
  u = Cc*xc + Dc*yc;
  xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
  % x_c \in \mathcal{E}_{\mathcal{P}} \subset \mathcal{E}_{\mathcal{P}}
```



end

#### Example System: Invariants

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   % x_c \in \mathcal{E}_P
   yc = max(min(y - yd, 1), -1);
   x_{c} \in \mathcal{E}_{P}, \quad v_{c}^{2} < 1
   \mathcal{K} \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1-\mu \end{pmatrix}, \quad \mu = 0.9991
   \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
   xc = Ac*xc + Bc*yc;
   % x_c \in \mathcal{E}_R, \quad R = \left[ (A_c \ B_c) Q_{\mu}^{-1} (A_c \ B_c)^{\mathrm{T}} \right]^{-1}
    send(\mathbf{u}, 1);
   % x_c \in \mathcal{E}_R
    receive(y, 2); receive(yd, 3);
   % x_c \in \mathcal{E}_R
   % x_c \in \mathcal{E}_P
end
```

#### Example System: Invariants

$$\begin{array}{ll} \% \ \, x_c \in \mathcal{E}_P, \quad y_c^2 \leq 1 \\ \% \ \, \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1-\mu \end{pmatrix}, \quad \mu = 0.9991 \end{array}$$



$$\begin{array}{l} % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}} \\ \text{xc} = \text{Ac} * \text{xc} + \text{Bc} * \text{yc}; \\ \% \quad x_c \in \mathcal{E}_R, \quad R = \left[ (A_c \ B_c) Q_{\mu}^{-1} (A_c \ B_c)^{\text{T}} \right]^{-1} \end{array}$$

```
Ac = [0.4990, -0.0500;
        0.0100. 1.0000]:
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280:
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  \% x_c \in \mathcal{E}_P
  yc = max(min(y - yd, 1), -1);
  \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
  xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
  % x_c \in \mathcal{E}_P
```

Using limited-precision arithmetic:

```
Ac = [0.4990, -0.0500]
         0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
 xc = zeros(2, 1);
 receive(y, 2); receive(yd, 3);
 while (1)
   \% x_c \in \mathcal{E}_P
   yc = max(min(y - yd, 1), -1);
   \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   xc = Ac*xc + Bc*yc;
   send(\mathbf{u}, 1);
   receive(y, 2); receive(yd, 3);
   % x_c \in \mathcal{E}_P
 end
```

Using limited-precision arithmetic:

 Constant values are altered

```
Ac = [0.4990, -0.0500]
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
 xc = zeros(2, 1);
 receive(y, 2); receive(yd, 3);
 while (1)
   % XeEP
   yc = max(min(y - yd, 1), -1);
   \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   xc = Ac*xc + Bc*yc;
   send(\mathbf{u}, 1);
   receive(y, 2); receive(yd, 3);
   % XEEP
 end
```

Using limited-precision arithmetic:

1 Constant values are altered  $\implies \mathcal{E}_P$  no longer valid;

14 / 26

```
Ac = [0.4990, -0.0500;]
      0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280:
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % XeEP
  yc = max(min(y - yd, 1), -1);
 u = Cc*xc + Dc*yc;
 xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
  % XEEP
```

Using limited-precision arithmetic:

- 1 Constant values are altered  $\implies \mathcal{E}_P$  no longer valid;
- 2 Rounding errors during computations.

```
Ac = [0.4990, -0.0500]
      0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280:
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % XEEP
  yc = max(min(y - yd, 1), -1);
 u = Cc*xc + Dc*yc;
 xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
  % XEEP
```

Using limited-precision arithmetic:

- 1 Constant values are altered  $\implies \mathcal{E}_P$  no longer valid;
- Rounding errors during computations.

#### Adapt invariants.

#### **Theoretical Framework**

Transpose code + invariants in two steps:

Real  
% 
$$d$$
  
 $i$   
%  $d' = \theta(d, i)$ 

#### **Theoretical Framework**

Transpose code + invariants in two steps:



**Code**: constants converted into machine numbers

**Invariants** recomputed using the same propagation theorem  $\boldsymbol{\theta}$ 

#### **Theoretical Framework**

Transpose code + invariants in two steps:



**Code**: constants converted into machine numbers

**Invariants** recomputed using the same propagation theorem  $\theta$ 

**Code**: real functions +, \*... replaced by their machine counterparts **Invariants** enlarged to include rounding error Preserve invariant shape for propagation

```
Ac = [0.4990, -0.0500;
0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
```

Convert constants:

- Bcf = [1; 0];
- Ccf = [564.480000000001818989403545856475830078125, 0]
- Dcf = -1280

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   \% x_c \in \mathcal{E}_P
    yc = max(min(y - yd, 1), -1);
    x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} < 1
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
    \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
    xc = Ac*xc + Bc*yc;
   % x_c \in \mathcal{E}_R, \quad R = \left[ (A_c \ B_c) Q_{\mu}^{-1} (A_c \ B_c)^{\mathsf{T}} \right]^{-1}
    send(\mathbf{u}, 1);
    % x_c \in \mathcal{E}_R
    receive(y, 2); receive(yd, 3);
    % x_c \in \mathcal{E}_R
    % x_c \in \mathcal{E}_P
end
```

In the rest of the code:

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   \% x_c \in \mathcal{E}_P
    yc = max(min(y - yd, 1), -1);
    x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} < 1
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
    \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
    xc = Acf*xc + Bcf*yc;
   % x_c \in \mathcal{E}_R, \quad R = \left[ (A_c \ B_c) Q_{ii}^{-1} (A_c \ B_c)^{\mathsf{T}} \right]^{-1}
    send(\mathbf{u}, 1);
    % x_c \in \mathcal{E}_R
    receive(y, 2); receive(yd, 3);
    % x_c \in \mathcal{E}_R
    % x_c \in \mathcal{E}_P
end
```

In the rest of the code:

 A<sub>c</sub>, B<sub>c</sub> replaced by A<sub>cf</sub>, B<sub>cf</sub>;

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   \% x_c \in \mathcal{E}_P
    yc = max(min(y - yd, 1), -1);
    x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} < 1
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
    \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
    xc = Acf*xc + Bcf*yc;
   % x_c \in \mathcal{E}_S, \quad S = \left[ (A_{cf} \ B_{cf}) Q_{\mu}^{-1} (A_{cf} \ B_{cf})^{\mathsf{T}} \right]^{-1}
    send(\mathbf{u}, 1);
    x_c \in \mathcal{E}_S
    receive(y, 2); receive(yd, 3);
    % x_c \in \mathcal{E}_S
    % x_c \in \mathcal{E}_P
end
```

In the rest of the code:

- A<sub>c</sub>, B<sub>c</sub> replaced by A<sub>cf</sub>, B<sub>cf</sub>;
- *R* depends on *A<sub>c</sub>*, *B<sub>c</sub>*, replaced by *S*;

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   \% x_c \in \mathcal{E}_P
    yc = max(min(y - yd, 1), -1);
    x_c \in \mathcal{E}_P, \quad y_c^2 \leq 1
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
    \mathbf{u} = \mathrm{Cc} \ast \mathrm{xc} + \mathrm{Dc} \ast \mathrm{yc};
   % \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
    xc = Acf*xc + Bcf*yc;
   % x_c \in \mathcal{E}_S, \quad S = \left[ (A_{cf} \ B_{cf}) Q_{ii}^{-1} (A_{cf} \ B_{cf})^{\mathsf{T}} \right]^{-1}
    send(\mathbf{u}, 1);
    % x_c \in \mathcal{E}_S
   receive(y, 2); receive(yd, 3);
  x_c \in \mathcal{E}_S
   x_c \in \mathcal{E}_P
end
```

In the rest of the code:

- A<sub>c</sub>, B<sub>c</sub> replaced by A<sub>cf</sub>, B<sub>cf</sub>;
- *R* depends on *A<sub>c</sub>*, *B<sub>c</sub>*, replaced by *S*;
- Check if  $\mathcal{E}_S \subset \mathcal{E}_P$ .

2 Replace functions:

 $\begin{array}{l} & \ddots \\ & \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}} \\ & \text{xc} = \text{Acf} * \text{xc} + \text{Bcf} * \text{yc}; \\ & & \chi_c \in \mathcal{E}_S, \quad S = \left[ (A_{cf} \ B_{cf}) Q_{\mu}^{-1} (A_{cf} \ B_{cf})^{\text{T}} \right]^{-1} \\ & \ddots \end{array}$ 

- Replace + and × by their FP counterparts;
- Increase  $\mathcal{E}_{S}$  to include arithmetic error.

 $e_1, e_2$  is the arithmetic error on  $x_{c_1}, x_{c_2}$ .

 $\mathcal{E}_T \supset \mathcal{E}_S$  is an ellipse s.t.:

$$\begin{aligned} \forall x_c \in \mathcal{E}_5, \ \forall x'_c \in \mathbb{R}^2, \\ |x'_{c_1} - x_{c_1}| \leq e_1 \land |x'_{c_2} - x_{c_2}| \leq e_2 \Longrightarrow x'_c \in \mathcal{E}_{\mathcal{T}} \end{aligned} (*) \end{aligned}$$



 $\mathcal{E}_T$  can be the smallest magnification of  $\mathcal{E}_S$  s.t. (\*) holds.

```
 \begin{array}{l} & \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}} \\ & \text{xc} = \text{Acf}*\text{xc} + \text{Bcf}*\text{yc}; \\ & & \chi_c \in \mathcal{E}_{\mathcal{S}}, \quad \mathcal{S} = \left[ (A_{cf} \ B_{cf}) Q_{\mu}^{-1} (A_{cf} \ B_{cf})^{\text{T}} \right]^{-1} \\ & \text{send}(\textbf{u}, 1); \\ & & & \chi_c \in \mathcal{E}_{\mathcal{S}} \\ & & \text{receive}(\textbf{y}, 2); \text{ receive}(\textbf{yd}, 3); \\ & & & \chi_c \in \mathcal{E}_{\mathcal{S}} \\ & & & \chi_c \in \mathcal{E}_{\mathcal{P}} \\ & \text{end} \end{array}
```

In the rest of the code:



```
 \begin{array}{l} \% \ \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}} \\ \text{xc} = \text{Acf}*\text{xc} + \text{Bcf}*\text{yc}; \\ \% \ x_c \in \mathcal{E}_T \\ \text{send(u, 1);} \\ \% \ x_c \in \mathcal{E}_T \\ \text{receive(y, 2); receive(yd, 3);} \\ \% \ x_c \in \mathcal{E}_T \\ \% \ x_c \in \mathcal{E}_P \\ \text{end} \end{array}
```

In the rest of the code:

• Replace  $\mathcal{E}_{S}$  by  $\mathcal{E}_{T}$ ;



```
 \begin{array}{l} & \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}} \\ & \text{xc} = \text{Acf}*\text{xc} + \text{Bcf}*\text{yc}; \\ & \begin{pmatrix} x_c \in \mathcal{E}_T \\ \text{send}(\mathbf{u}, 1); \\ & \begin{matrix} x_c \in \mathcal{E}_T \\ \text{receive}(\mathbf{y}, 2); \text{ receive}(\text{yd}, 3); \\ & \begin{matrix} & \begin{matrix} & x_c \in \mathcal{E}_T \\ & \end{matrix} \\ & \begin{matrix} & x_c \in \mathcal{E}_T \\ & \end{matrix} \\ & \begin{matrix} & x_c \in \mathcal{E}_T \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \end{matrix} \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\ & \begin{matrix} & e \\ & \end{matrix} \\
```

In the rest of the code:

- Replace  $\mathcal{E}_{S}$  by  $\mathcal{E}_{T}$ ;
- Check if  $\mathcal{E}_T \subset \mathcal{E}_P$ .

It works!  $\Rightarrow$  Stable in 32 bits. If not, can't conclude.



## Automation: The LyaFloat Tool

```
In Python, using SymPy.
from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)
P = Rational("1e-3") * Matrix(rationals(
       ["0.6742 \ 0.0428", "0.0428 \ 2.4651"]))
EP = Ellipsoid(P)
. . .
xc1, xc2, yc = symbols("xc1 xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]))
. . .
ES = Ellipsoid(R)
print("ES included in EP :", ES <= EP)</pre>
i = Instruction({xc: Ac * xc + Bc * yc},
       pre=[zc in EQmu], post=[xc in ES])
ET = i.post()[xc]
print("ET =", ET)
print("ET included in EP :", ET <= EP)</pre>
```

# Closed Loop

Closed-loop system:

- Pseudocode for controller and for environment;
- send & receive;
- Only controller code is changed.

Does not work with 32 bits. OK with 128 bits.

#### Extensions of LyaFloat

Suitable method if bounded error.

#### 1 Arithmetic paradigms:

- OK with floating point: rounding error is bounded for +, -, \* if far enough from extremal values;
- Same for fixed point;
- Not sure what happens with two integers;

#### Extensions of LyaFloat

Suitable method if bounded error.

#### 1 Arithmetic paradigms:

- OK with floating point: rounding error is bounded for +, -, \* if far enough from extremal values;
- Same for fixed point;
- Not sure what happens with two integers;
- **2** Other functions (non-linear systems):
  - Differentiable, periodic functions (cos) (can be computed with an abacus/polynomial interpolation);
  - Differentiable functions restricted to a finite range (assuming values in the range).

# Related Work

Compute bounds from source code:

- Astrée;
- PhD P. Roux.

From pseudocode to C:

Feron ICSM'10.

Floating-point arithmetic:

PhD P. Roux.

Proof translation, code-level invariants. Closed loop.

## Conclusion

Theoretical framework to translate proof invariants on code with real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on floating-point arithmetic.

Future work:

- Support for other arithmetic paradigms, more functions, more invariant propagators;
- Coq rather than Python
  - $\implies$  formalization (or proof?) of propagators;
- …or generate Coq scripts?

# Translation of Lyapunov Stability Proofs to Machine Arithmetic

Vivien Maisonneuve



Eighth meeting of the French community of compilation

Nice, July 2014