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Embedded Systems

An embedded system is a computer system with a dedicated
function, within a larger mechanical or electrical system.

Constraints:

• Power consumption;
• Performance (RT);
• Safety;
• Cost.

Uses a low-power processor or a microcontroller.

Commonly found in consumer, cooking, industrial, automotive,
medical, commercial and military applications.
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Example
Quadricopter, DRONE Project, MINES ParisTech & ÉCP
=⇒ Parrot AR.Drone.

ATMEGA128: 16 MHz, 4 KB RAM, 128 KB ROM
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Control-Command System

Plant

Controller

while (1) {
receive(y, yd);
u = f(y, yd);
send(u);

}

Command
uy

yd
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Levels of Description

Formalization:
• System conception;
• Constraint specification;
• Physical model of the

environment;
• Mathematical proof that

the system behave
properly.

MATLAB, Simulink

Realization: very low-level C
program

• Thousands of LOC;
• Computations

decomposed into
elementary operations;

• Management of sensors
and actuators.

GCC, Clang

Gradual transformations

How to ensure that the executed program is correct?
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Stability Proof

Show that the system parameters are bounded during its execution.

Essential for system safety.

Plant (state xp)

Controller (state xc) ydyc

up yp

uc

• Open loop stability: uc bounded =⇒ xc bounded
(hence yc bounded)

• Closed loop stability: yd bounded =⇒ xc , xp bounded
(hence yc , yp bounded)
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Stability Invariant
Lyapunov theory provides a framework to compute inductive
invariants.

Linear invariants not well suited.
Quadratic invariants (ellipsoids) are a good fit for linear systems.

xc1

xc2

Static analysis to show that the invariant holds from source code.
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Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.
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Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

• Floating point (IEEE 754):

31 23 0

(−1)s × 2e−127 × m

• Fixed point:
(−1)s × e + 2−24 × m

• Rationals using pairs of integers.
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Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by
binary, limited-precision values.

1 Constant values are altered;
2 Rounding errors during computations.

=⇒ Stability proof does not apply, invariant does not fit.

How to adapt the stability proof?
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Example System

[Feron ICSM’10]:
mass-spring system.

y yd

u

Open-loop stability:
xc bounded.

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bc*yc;
send(u, 1);
receive(y, 2); receive(yd, 3);

end
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Example System: Stability Ellipse

Lyapunov theory =⇒ xc =

(
xc1

xc2

)
belongs to the ellipse:

EP = {x ∈ R2 | xT · P · x ≤ 1} P = 10−3
(

0.6742 0.0428
0.0428 2.4651

)
xc ∈ EP ⇐⇒ 0.6742x2

c1 + 0.0856xc1xc2 + 2.4651x2
c2 ≤ 1000

xc1−40 −30 −20 −10 10 20 30

xc2

−20

−10

10

20

EP
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Example System

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% xc ∈ EP
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bc*yc;
send(u, 1);
receive(y, 2); receive(yd, 3);
% xc ∈ ER ⊂ EP

end

xc1

xc2

EP ER
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Example System: Invariants
xc = zeros(2, 1);
% xc ∈ EP
receive(y, 2); receive(yd, 3);
% xc ∈ EP
while (1)
% xc ∈ EP
yc = max(min(y - yd, 1), -1);
% xc ∈ EP , y2

c ≤ 1
%

( xc
yc

)
∈ EQµ, Qµ =

(
µP 0
0 1−µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;
%

( xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

% xc ∈ ER , R =
[
(Ac Bc)Q−1

µ (Ac Bc)
T
]−1

send(u, 1);
% xc ∈ ER
receive(y, 2); receive(yd, 3);
% xc ∈ ER
% xc ∈ EP

end 12 / 26



Example System: Invariants
% xc ∈ EP , y2

c ≤ 1
%

( xc
yc

)
∈ EQµ, Qµ =

(
µP 0
0 1−µ

)
, µ = 0.9991

EQµ

EP

xc2

yc

1

−1

xc1

%
( xc

yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

% xc ∈ ER , R =
[
(Ac Bc)Q−1

µ (Ac Bc)
T
]−1
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Example System

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
% xc ∈ EP
yc = max(min(y - yd, 1), -1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bc*yc;
send(u, 1);
receive(y, 2); receive(yd, 3);
% xc ∈ EP

end

Using limited-precision
arithmetic:

1 Constant values are
altered

=⇒ EP no longer
valid;

2 Rounding errors
during computations.

Adapt invariants.
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Theoretical Framework
Transpose code + invariants in two steps:

% d
i
% d ′ = θ(d , i)

Real

% d̃
ı̃
% d̃ ′ = θ(d̃ , ı̃)

Intermediate
% d̄
ı̄
% d̄ ′ ⊃ θ(d̄ , ı̃)⊕ ε

Machine

Code: constants converted
into machine numbers

Invariants recomputed using
the same propagation theorem
θ

Code: real functions +, *…
replaced by their machine
counterparts
Invariants enlarged to include
rounding error
Preserve invariant shape for
propagation
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Example System, 32-bit Floating-Point Numbers

Ac = [0.4990, -0.0500;
0.0100, 1.0000];

Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
...

1 Convert constants:

Acf = [0.49899999999999999911182158029987476766109466552734375,
-0.05000000000000000277555756156289135105907917022705078125;
0.01000000000000000020816681711721685132943093776702880859375,
1.0000]

Bcf = [1; 0];
Ccf = [564.48000000000001818989403545856475830078125, 0]
Dcf = -1280
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Example System, 32-bit Floating-Point Numbers
xc = zeros(2, 1);
% xc ∈ EP
receive(y, 2); receive(yd, 3);
% xc ∈ EP
while (1)
% xc ∈ EP
yc = max(min(y - yd, 1), -1);
% xc ∈ EP , y2

c ≤ 1
%

( xc
yc

)
∈ EQµ, Qµ =

(
µP 0
0 1−µ

)
u = Cc*xc + Dc*yc;
%

( xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

% xc ∈ ER , R =
[
(Ac Bc)Q−1

µ (Ac Bc)
T
]−1

send(u, 1);
% xc ∈ ER
receive(y, 2); receive(yd, 3);
% xc ∈ ER
% xc ∈ EP

end

In the rest of the
code:

• Ac ,Bc replaced
by Ac f ,Bc f ;

• R depends on
Ac ,Bc ,
replaced by S;

• Check if
ES ⊂ EP .
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Example System, 32-bit Floating-Point Numbers

2 Replace functions:

...
%

( xc
yc

)
∈ EQµ

xc = Acf*xc + Bcf*yc;

% xc ∈ ES , S =
[
(Ac f Bc f )Q−1

µ (Ac f Bc f )
T
]−1

...

• Replace + and × by their FP counterparts;
• Increase ES to include arithmetic error.
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Example System, 32-bit Floating-Point Numbers
e1, e2 is the arithmetic error on xc1 , xc2 .

ET ⊃ ES is an ellipse s.t.:

∀xc ∈ ES , ∀x ′
c ∈ R2,

|x ′
c1 − xc1 | ≤ e1 ∧ |x ′

c2 − xc2 | ≤ e2 =⇒ x ′
c ∈ ET (∗)

ESET

xc1

xc2

e1

e2

ET can be the smallest magnification of ES s.t. (∗) holds.
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Example System, 32-bit Floating-Point Numbers
...
%

( xc
yc

)
∈ EQµ

xc = Acf*xc + Bcf*yc;

% xc ∈ ES , S =
[
(Ac f Bc f )Q−1

µ (Ac f Bc f )
T
]−1

send(u, 1);
% xc ∈ ES
receive(y, 2); receive(yd, 3);
% xc ∈ ES
% xc ∈ EP

end

In the rest of the code:

• Replace ES by ET ;
• Check if ET ⊂ EP .

It works! ⇒ Stable in 32 bits.
If not, can’t conclude.

EP

ES
xc1

xc2
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Automation: The LyaFloat Tool
In Python, using SymPy.
from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)

P = Rational("1e-3") * Matrix(rationals(
["0.6742 0.0428", "0.0428 2.4651"]))

EP = Ellipsoid(P)
...
xc1, xc2, yc = symbols("xc1 xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]))
...
ES = Ellipsoid(R)
print("ES included in EP :", ES <= EP)

i = Instruction({xc: Ac * xc + Bc * yc},
pre=[zc in EQmu], post=[xc in ES])

ET = i.post()[xc]
print("ET =", ET)
print("ET included in EP :", ET <= EP)
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Closed Loop

Closed-loop system:

• Pseudocode for controller and for environment;
• send & receive;
• Only controller code is changed.

Does not work with 32 bits.
OK with 128 bits.
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Extensions of LyaFloat

Suitable method if bounded error.

1 Arithmetic paradigms:
• OK with floating point: rounding error is bounded for +, -, * if

far enough from extremal values;
• Same for fixed point;
• Not sure what happens with two integers;

2 Other functions (non-linear systems):
• Differentiable, periodic functions (cos)

(can be computed with an abacus/polynomial interpolation);
• Differentiable functions restricted to a finite range

(assuming values in the range).
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Related Work

Compute bounds from source code:

• Astrée;
• PhD P. Roux.

From pseudocode to C:

• Feron ICSM’10.

Floating-point arithmetic:

• PhD P. Roux.

Proof translation, code-level invariants.
Closed loop.
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Conclusion

Theoretical framework to translate proof invariants on code with
real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on
floating-point arithmetic.

Future work:

• Support for other arithmetic paradigms, more functions,
more invariant propagators;

• Coq rather than Python
=⇒ formalization (or proof?) of propagators;

• …or generate Coq scripts?
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