
Excalibur: An Autonomic Cloud Architecture
for Executing Parallel Applications

Alessandro Ferreira Leite

Université Paris-Sud/University of
Brasilia

alessandro.ferreira-leite@u-psud.fr

Claude Tadonki

MINES ParisTech / CRI
claude.tadonki@mines-paristech.fr

Christine Eisenbeis

INRIA Saclay / Université Paris-Sud
christine.eisenbeis@inria.fr

Tainá Raiol

Institute of Biology
University of Brasilia
tainaraiol@unb.br

Maria Emilia M. T. Walter

Department of Computer Science
University of Brasilia

mia@cic.unb.br

Alba Cristina Magalhães Alves de Melo

Department of Computer Science
University of Brasilia
albamm@cic.unb.br

Abstract
IaaS providers often allow the users to specify many re-
quirements for their applications. However, users without
advanced technical knowledge usually do not provide a good
specification of the cloud environment, leading to low per-
formance and/or high monetary cost. In this context, the
users face the challenges of how to scale cloud-unaware ap-
plications without re-engineering them. Therefore, in this
paper, we propose and evaluate a cloud architecture, namely
Excalibur, to execute applications in the cloud. In our ar-
chitecture, the users provide the applications and the archi-
tecture sets up the whole environment and adjusts it at run-
time accordingly. We executed a genomics workflow in our
architecture, which was deployed in Amazon EC2. The ex-
periments show that the proposed architecture dynamically
scales this cloud-unaware application up to 10 instances, re-
ducing the execution time by 73% and the cost by 84% when
compared to the execution in the configuration specified by
the user.

Categories and Subject Descriptors C.2.4 [Cloud comput-
ing]: Software architecture

Keywords Cloud computing architecture, parallel execu-
tion, autonomic computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CloudDP’14, April 13, 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2714-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592784.2592786

1. Introduction
Nowadays, the cloud infrastructure may be used for high
performance computing (HPC) purposes due to character-
istics such as elastic resources, pay-as-you-go model, and
full access to the underlying infrastructure [1]. These char-
acteristics can be used to decrease the cost of ownership,
to increase the capacity of dedicated infrastructure when it
runs out of resources, and to respond effectively to changes
in the demand. However, doing high-performance comput-
ing in the cloud faces some challenges such as differences in
HPC cloud infrastructures and the lack of cloud-aware ap-
plications.

The cloud infrastructure requires a new level of ro-
bustness and flexibility from the applications, as hard-
ware failures and performance variations become part of
its normal operation. In addition, cloud resources’ are opti-
mized to reduce the cost to the cloud provider often with-
out performance guarantees at low cost to the users. Fur-
thermore, cloud providers offer different instance types
(e.g. Virtual Machine (VM)) and services that have costs
and performance defined according to their purpose us-
age. In this scenario, cloud users face many challenges.
First, re-engineering the current applications to fit the cloud
model requires expertise in both domains: cloud and high-
performance computing, as well as a considerable time to
accomplish it. Second, selecting the resources that fits their
applications’ needs requires data about the application char-
acteristics and about the resources purpose usage. Therefore,
deploying and executing an application in the cloud is still a
complex task [14, 8].

Although some efforts have been made to reduce the
cloud’s complexity, most of them target software develop-
ers [12, 13] and are not straightforward for unexperienced
users [8]. Therefore, in this paper, we propose and evalu-

ate an architecture to execute applications in the cloud with
three main objectives: (a) provide a platform for high perfor-
mance computing in the cloud for users without cloud skills;
(b) dynamically scale the applications without user interven-
tion; and (c) meet the users requirements such high perfor-
mance at reduced cost.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our cloud architecture. In Section 3, ex-
perimental results are discussed. Section 4 presents related
work and discusses cloud architectures to perform high-
performance computing. Finally, Section 5 presents the con-
clusion and future work.

2. Design of the Proposed Architecture
Our architecture aims to simplify the use of the cloud and
to run applications on it without requiring re-design of the
applications.

We propose an architecture composed of micro-services.
A micro-service is a lightweight and independent service
that performs single functions and collaborates with other
services using a well-defined interface to achieve some ob-
jectives. Micro-services make our architecture flexible and
scalable since services can be changed dynamically accord-
ing to users’ objectives. In other words, if a service does not
achieve a desirable performance in a given cloud provider, it
can be deployed in another cloud provider without requiring
service restart.

In this paper, an application represents a user’s demand/-
work, being seen as a single unit by the user. An application
is composed of one or more tasks which represent the small-
est work unit to be executed by the system. A partition is a
set of independent tasks. The tasks that form an application
can be connected by precedence relations, forming a work-
flow. A workflow is defined to be a set of activities, and these
activities can be tasks, as said above, or even another work-
flows. The terms application and job are used interchange-
ably in this paper.

The proposed architecture has three layers: Physical,
Application, and User layer (Figure 1). In the Physi-

cal layer, there are services responsible for managing the
resources (e.g. Virtual Machine (VM) and/or storage). A re-
source may be registered by the cloud providers or by the
users through the Service Registry. By default, the re-
sources provided by the public clouds are registered with the
following data: resource type (e.g. physical or virtual
machine, storage), resource URL, costs, and resource
purpose (e.g. if the resource is optimized for CPU, memory
or I/O). The Resource Management service is responsible
to validate these data and keep them updated. For instance,
a resource registered at time ti may not be available at time
tj , tj > ti, either because it failed or because its max-
imum allowed usage was reached. With the Monitoring

and Deployment service, we deploy the users’ jobs and
monitor them. Monitoring is an important activity for many
reasons. First, it collects data about the resources’ usage.

Second, it can be used to detect failures — sometimes the
providers terminate the services when they are using/stress-
ing the CPU, RAM memory, or both. And finally, to support
the auto scaling mechanism.

We provide a uniform view of the the cloud providers’
APIs implementing a Communication API. This is neces-
sary because each provider may offer different interfaces to
access the resources.

On top of the Physical layer, the Application layer
provides micro-services to schedule jobs (Provisioning), to
control the data flows (Data Event Workflow), to pro-
vide data streaming service (Data Streaming Process-

ing), and to control the jobs execution. The architecture uses
the MapReduce [3] strategy to distribute and execute the
jobs. This does not mean that the users’ applications must
be composed of MapReduce jobs, but only that they are dis-
tributed following this strategy.

The Coordination service manages the resources, which
can be distributed across different providers, and provides a
uniform view of the system such as the available resources
and the system’s workload.

The Provisioning service uses high-level specifica-
tions to create a workflow. This workflow contains tasks
which will set up the cloud environment and an execution
plan which will be used to execute the application. In fact,
the Provisioning service communicates with the Coordi-

nation service to obtain data about the resources and to
allocate them for a job. After that, it submits the workflow
for the Workflow Management service.

An execution plan consists of the application, the data
sources, the resources to execute it, a state (initializing,
waiting data, ready, executing, and finished), and a
characteristic that can be known or unknown by the system.
A characteristic represents the application’s behavior such as
CPU, memory, or I/O-bound.

The Workflow Management service coordinates the ex-
ecution of the workflow and creates the data flows in the
Workflow Data Event service.

The Workflow Data Event service is responsible for
collecting and moving data for the execution plans. A data
flow has a source and a sink and it can supply data for
multiple execution plans. This avoids multiple accesses to
the Distributed File System (DFS) to fetch the same data.

The User layer has two micro-services: Job Submis-

sion and Job Stats Processing services. A user sub-
mits a job using the Job Submission service. A job has the
following data: the tasks which compose it, the constraints,
the data definition (input and output), and the data about the
cloud providers (name and access key).

The users can monitor or get the results of their jobs
through the Job Stats Processing.

Scaling cloud-unaware application without technical skills
requires an architecture that abstracts the whole environ-
ment, taking into account the users’ objectives. In the

Cloud Provider API

Monitoring and
deployment

Communication API

Service Registry Resource
Management

W
orkflow

D

ata event
W

orkflow

M
anagem

ent

Distributed File System
(DFS)

D
istributed

D
atabase Distributed Job Processing

(MapReduce)

Scripting
Processing Query Processing

D
ata Stream

ing
Processing

Job Stats
Processing

Provisioning Coordination

Job submission

Ap
pl
ic
at
io
n

Ph
ys
ic
al

U
se
r

Figure 1. The proposed architecture and its micro-services.

next subsections, we explain how the proposed architecture
achieves these goals.

2.1 Scaling cloud-unaware applications with budget
restrictions and resource constraints

The applications considered in this paper are workflows but
some parts of the workflow can be composed of a set of inde-
pendent tasks that can be run in parallel. These independent
tasks are the target of our scaling technique. They are split
into P partitions, assigned to different resources. One impor-
tant problem here is to determine the size and the number of
partitions. Over-partitioning can lead to a great number of
short duration tasks that may cause a considerable overhead
to the system and can result in inefficient resources usage.
To avoid this, a partition is estimated by [2]:

P =
Nq ∗R

T
(1)

where Nq is the workload size; T is the estimated CPU time
for executing Nq in the partition; and R is a parameter for the
maximum execution time for partition P . A partition can be
adjusted according to the node characteristics. For instance,
if the resource usage by a partition Pi is below a threshold,
Pi can be increased.

Partitions exist due to the concept of splittable and
static files. It is the user who defines which data are
splittable and how to split the data when the system does
not know. Splittable data are converted to JavaScript Object
Notation (JSON) records and persisted onto the distributed
database, so a partition represents a set of JSON records. On
the other hand, static data are kept in the local file system.

2.2 Minimizing data movement to reduce cost and execution
time

Data movement can increase the total execution time of the
application (makespan) and sometimes it can be higher than
the computation time due to the differences in networks’
bandwidth. In that case, we can invert the direction of the
logical flow, moving the application as close as possible to
the data location. Actually, we distribute the data using a
Distributed File System and the MapReduce strategy.

Although MapReduce is an elegant solution, it has the
overhead to create the map and the reduce tasks every time
a query must be executed. We minimize this overhead using
a data structure that keeps data in memory. This increases the
memory usage and requires data consistency policies to keep
the data updated, however it does not increase the monetary
cost. We implemented a data policy that works as follows.
For each record read by a node, it is kept in memory and
its key is sent to the Coordination service (Figure 1). The
Coordination stores the key/value pairs, where they were
read. When a node updates a record, it removes the record
from its memory and notifies the Coordination service.
Then, the Coordination notifies asynchronously all the
other nodes that have the key to remove it from memory.
2.3 Minimizing job makespan through workload adjustment

In an environment with incomplete information and unpre-
dictable usage pattern as in the cloud, load imbalance can
impact the total execution time and the monetary cost. For
instance, assigning a CPU-bound task to a memory opti-
mized node is not a good choice. To tackle this problem,
we propose a workload adjustment technique that works as
follows. For execution plans in the ready state and with an
unknown application’s characteristics, the scheduler selects
similar execution plans and submits them for each available
resource (i.e. CPU, memory or I/O optimized) and waits. As
soon as the first execution finishes, the scheduler checks if
there are similar execution plans in the ready state and sub-
mits them.

When there are no more ready execution plans, the
scheduler assigns one in the executing state. Note that,
in this case, the cost can increase, since we have more than
one node executing the same task. In fact, we minimize this,
finishing the slow node according to the difference between
the elapsed time and the time to charge the node usage.
2.4 Making the cloud transparent for the users

As our architecture aims to make the cloud transparent for
the users, it automates the setup process. However for some
users, this is not sufficient since some jobs still require pro-
gramming skills. For instance, consider the following sce-
narios: (i) a biologist who wants to search DNA units that
have some properties in a genomics database, and to com-
pare these DNA units with another sequence that he/she has
built; (ii) a social media analyst who wants to filter tweets
using some keywords.

Normally, these works require a program to read, parse,
and filter the data. However, in our solution the users only
have to know the data structure and to use a domain specific
language (DSL) to perform their work. Listings 1 and 2 show
how those works are defined, where b, P1, P2, T and w are
users’ parameters.

e x e c u t e T wi th (s e l e c t r e a d s from genomic−
d a t a b a s e where P1 = X and P2 = Y) −seq = b �

Listing 1. Specification of a genomics analysis application.

s e l e c t t w e e t from t w e e t s where t e x t c o n t a i n s (w) �
Listing 2. Specification of a Twitter analysis application.

In this case, a data structure (e.g. a file) is seen as a ta-

ble whose fields can be filtered. Although we have simi-
lar approaches in the literature such as BioPig [12] and Se-
qPig [13], they still require programming skills to register
the drivers and to load/store the data. In other words, to use
them, the users have to know the system’s internals.

In order to illustrate our architecture, consider the bioin-
formatics scenario described above. In this case, the biolo-
gist submits a XML or a YAML file with the application, the
requirements, and the data definition (the genomics database
and the built sequence) using a console application (a client
of the Job Submission service) at the User layer. The Job
Submission sends the job description to the Provision-

ing service at the Application layer and waits for the job’s
ID. When the Provisioning service receives the applica-
tion, it executes the following steps. First it creates a work-
flow with five activities: (i) select the cheapest Virtual Ma-
chine to setup the environment; (ii) get non splittable files
(e.g. a reference genome) to store them in the local file sys-
tem; (iii) get the splittable files (the genomics database) and
persist them into the DFS; (iv) create a Virtual Machine Im-
age (VMI) of the configured environment; and (v) finish the
VM used to configure the environment. Second, it selects the
resources returned by the Coordination service that match
the users’ requirements or the applications’ characteristics.
Third, it creates an execution plan for the application; selects
a resource to execute it; and starts the execution. Finally, it
returns the job’s ID.

In this scenario, a partition has a set of genomics se-
quences read from the DFS by the Workflow Data Event

assigned to an execution plan. During the application’s exe-
cution, the Provisioning service monitors the applications
through the Monitoring service and if the partition’s exe-
cution time reaches the expected time it creates more VMs
to redistribute the workload. After all tasks have finished,
the user receives the output through the Job submission

service.

3. Experimental Results
We deployed an instance of our architecture on Amazon
EC2. Our goal was to evaluate the architecture when in-
stanced by a user without cloud skills.

We executed a genomics workflow that aims to iden-
tify non-coding RNA (ncRNA) in the fungi Schizosac-
charomyces pombe (S. pombe). This workflow, called
Infernal-Segemehl, consists of four phases (Figure 2): (i) first
the tool Infernal[11] maps the S. pombe sequences onto a
nucleic acid sequence database (e.g. Rfam [4]); (ii) then, the
sequences with no hit or with a hit with a low score are pro-
cessed by the segemehl tool[6] (iii) SAMTools[10] is used
to sort the alignments and convert them to the SAM/BAM

Instance type CPU RAM Cost ($/hour)
PC Intel Core 2 Quad CPU 2.40GHz 4 GB Not applicable
hs1.8xlarge Intel Xeon 2.0 GHz 16 cores 171 GB 4.60
m1.xlarge Intel Xeon 2.0 GHz 4 cores 15 GB 0.48
c1.xlarge Intel Xeon 2.0 GHz 8 cores 7 GB 0.58
t1.micro Intel Xeon 2.0 GHz 1 core 613 MB 0.02

Table 1. Resources used during the experiments.

format. (iv) finally, the RNAFold tool[5] is used to calculate
the minimum free energy of the RNA molecules obtained in
step (iii).

We used the Rfam version 11.1 (with 2278 ncRNA fam-
ilies) and S. pombe sequences extracted from the EMBL-
EBI (1 million reads). Rfam is a database of non-coding
RNA families with a seed alignment for each family and a
covariance model profile built on this seed to identify addi-
tional members of a family [4].

Although, in its higher level, this workflow executes only
four tools, it is data oriented. In other words, each step
processes a huge amount of data and, in all tools, each
pairwise sequence comparison is independent. So, the data
can be split and processed by parallel tasks.

Infernal Segemehl RNAfoldSAMtools

Figure 2. The Infernal-Segemehl workflow.
The Amazon EC2 micro instance (t1.micro) was used to

setup the environment (e.g. install the applications, copy the
static files to the local file system) and to create a Virtual
Machine Image (VMI). We chose it because it is cheaper
and also eligible for the free quota.

In addition to the cloud’s executions, we also executed
the workflow in a local PC (Table 1) to have an idea of the
cloud overhead.
3.1 Case study 1: execution without auto scaling

This experiment aims to simulate the users’ preferences,
where an instance is selected either upon their knowledge
about the applications’ requirements or the amount of com-
putational resources offered by an instance. We executed the
workflow in the first four instances listed in Table 1. The
t1.micro instance was used exclusively to setup the environ-
ment and it was not used to run the application.

Figure 3 shows the costs and execution time for the four
instances. The time was measured from the moment the ap-
plication was submitted until the time all the results are
produced (wallclock time). Therefore, it includes the cloud
overhead (data movement to/from the cloud, VM instantia-
tion, among others). The instance hs1.8xlarge, which was
selected based on the application requirements (≥ 88GB of
RAM), outperformed all other instances. Although it was
possible for the user to execute his/her application without
any technical cloud skills, the amount paid (USD 78.00) was
high. This happened because the user specified that the ap-
plication would need more than 88GB of RAM and in fact,
the application used only 3GB of RAM.

Considering this scenario, the cloud is not an attractive
alternative for the users due to its execution times; those
were 22% and 31% higher than the local execution (PC
Table 1). Even in the best configuration (hs1.8xlarge), the
execution time was only 60% lower with a high monetary
cost. These differences are owing to the multitenant model
employed by the clouds.

12

78

27

0

20

40

60

80

c1.xlarge hs1.8xlarge m1.xlarge
Instance type

C
os

t (
U

S
D

)

(a) Cost

61462

31295

65888

50113

0

20000

40000

60000

c1.xlarge hs1.8xlarge m1.xlarge PC
Instance type

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

(b) Execution time

Figure 3. Cost and execution time of the Infernal-Segemehl
workflow (Figure 2) in the cloud allocating the resources
based on users’ preferences.

3.2 Case study 2: execution with auto scaling

This experiment aims to evaluate if the architecture can scale
a cloud-unaware application.

Based upon the previous experiment (Figure 3), the sys-
tem discarded the I/O optimized instance (hs1.8xlarge)
due to its high cost(Table 1) and also because the applica-
tion did not really require the amount of memory defined by
the user. In a normal scenario, this instance is selected only
if the monitoring service confirms that the application is I/O
intensive.

To scale, the system creates P partitions (P1, P2, · · · , Pn)
using the Equation 1 (Section 2.1) with R equals to 1 hour
and T equals to 9 hours. These values represent respectively
the expected execution time for one partition Pi and for
the whole workflow. They were defined because Amazon
charges the resource by the hour and because, in the previ-
ous experiment, the best execution time took approximately
9 hours to finish (Figure 3). This means that this experiment
aims to at least decrease the cost. In this case, were created
9 partitions.

As the beginning, the system had not sufficient data to
decide if the workflow was memory or CPU-bound, so it
submitted two similar partitions — for two instance types
(m1.xlarge and c1.xlarge) — to realize which was the
most appropriate for the partition.

Figure 4 shows the execution time for each partition in
the selected instance types. As soon as execution in the par-
tition assigned to the c1.xlarge instance finished, the sys-
tem created one VM for each partition in the ready state and
executed them. Although there were only 7 partitions in the

ready state and 1 in execution (execution state) the architec-
ture duplicates the partition in execution, since its execution
time in the m1.xlarge instance was unknown. After one
hour, more three instances were created to redistribute the
tasks as shown in Figure 5.

Due to the cloud infrastructure, which provided in nearly
real time the requested resources, and the auto scaling mech-
anism, which selected the resources based on the partitions’
characteristics, we decreased both the cost (5 times) and the
makespan (10, 830 seconds) using 10 c1.xlarge instances
(80 vCPUs) and one m1.xlarge (4 vCPUs).

Our strategy differs from the scaling services1 offered by
the cloud providers, since the users do not have to select an
instance type nor to split the work manually.

12

2
0

20

40

60

80

c1.xlarge m1x.large
Instance type

C
os

t (
U

S
D

)

(a) Cost to execute the workflow
using 10 c1.xlarge instances and 1
m1.xlarge instance.

5408

8160

0

2000

4000

6000

8000

c1.xlarge m1.xlarge
Instance type

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

(b) Execution time for one partition
when executed in the c1.xlarge and
m1.xlarge instances. One partition
was defined to finish in 1 hour with
the deadline of 9 hours for the work-
flow.

Figure 4. Cost to execute the workflow (Figure 2) with auto
scaling enabled.

time (seconds)

#i
ns

ta
nc

es

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

Figure 5. Scaling the Infernal-Segemehl workflow.

1 Amazon CloudWatch (aws.amazon.com/cloudwatch/).

4. Related Work
In the last years, many works have described the challenges
and opportunities of running high-performance computing
in the cloud[1, 8]. Many of the benefits identified by these
works, such as easy access to the resources, elasticity, stabil-
ity and resource provisioning in nearly real time, as well as
the technical skills required to administrate the cloud, con-
firms the requirements of reducing the complexity for the
users, and are consistent with our work in scaling the work-
flow Infernal-Segemehl using the Amazon EC2.

Recently, many works have focused on developed new
architecture to execute users’ applications in the cloud con-
sidering both cost and performance. For instance, the Cloud
Virtual Service (CloVR)[2] is a desktop application for auto-
mated sequences analyses using cloud computing resources.
With CloVR, the users execute a VM on the their computer,
configure the applications, insert the data in a special direc-
tory, and CloVR deploys an instance of this VM on the cloud
to scale and to execute the applications. CloVR scales the
application by splitting the workload in P partitions using
Equation 1, and the Cunningham BLAST runtime to esti-
mate the CPU time for each BLAST query.

In [9], biological applications are run on the Microsoft
Windows Azure showing the required skills and challenges
to accomplish the work. Iordache and colleagues[7] devel-
oped Resilin, an architecture to scale MapReduce jobs in the
cloud. The solution has different services to provision the re-
sources, to handle jobs flow execution, to process the users
requests, and to scale according to the load of the system.
Doing bioinformatics data analysis with Hadoop requires
knowledge about the Hadoop internal and considerable ef-
fort to implement the data flow. In [12], a tool for bioin-
formatics data analysis called BioPig is presented. In this
case, the users select and register a driver — bioformatics
algorithms — provided by the tool and write their analysis’
jobs using the Apache Pig (pig.apache.org) data flow lan-
guage. SeqPig [13] is another tool that has the same objec-
tive of BioPig. The differences between them are the drivers
provided by each tool. These tools reduce the needs to know
Hadoop internal to realize bioinformatics data analysis.

The closest works to ours are [2], [12], and [13]. Our
work differs from these approaches in the following ways.
First, the users do not need to configure a VM in their com-
puters to execute the applications in the cloud. Second, our
architecture tries to match the workload to the appropriate
instance type. Third, the data flow is defined using an ab-
stract language freeing the users to write any code. The lan-
guage is the same as used by BioPig and SeqPig but with the
difference that the users write the data flow only considering
the data structure. For instance, to filter the sequences using
BioPig or SeqPig the users have to register the loaders, the
drivers, and write a script to execute the analysis, which is
more appropriate for software developers.

5. Conclusion and Future Work
In this paper, we proposed and evaluated a cloud architecture
based on micro-services to execute application in the cloud.

With a user-oriented perspective, we could execute a ge-
nomics workflow without requiring programming skills or
cloud knowledge from the users. We executed two experi-
ments using Amazon EC2 to evaluate the architecture when
instantiated with and without auto scaling. In the first case,
the user was responsible to define an instance type to execute
the workflow without auto scaling. In the second case, an in-
stance type was selected based on the applications’ charac-
teristics and the work was split to reduce the execution time.
Using 11 VMs we decreased both the cost and the execu-
tion time when compared to an execution without the auto
scaling.

As future work, we intend to instantiate the architecture
running other applications in a hybrid cloud. Also, we will
consider a dynamic scenario, where both the number of tasks
are unknown and the resources usage are restricted. Finally,
we intend to incorporate QoS and budget requirements.

Acknowledgments
The authors would like to thank CAPES/Brazil and CNPq/Brazil
though the STIC-AmSud project BioCloud, and INRIA/France for
their financial support.

References
[1] M. AbdelBaky et al. “Enabling High-Performance Computing as a

Service”. In: Computer 45.10 (2012), pp. 72–80.
[2] S. Angiuoli et al. “CloVR: A virtual machine for automated and

portable sequence analysis from the desktop using cloud computing”.
In: BMC Bioinformatics 12.1 (2011), pp. 1–15.

[3] J. Dean et al. “MapReduce: simplified data processing on large clus-
ters”. In: 6th OSDI. Vol. 6. USENIX, 2004.

[4] S. Griffiths-Jones et al. “Rfam: annotating non-coding RNAs in com-
plete genomes.” In: Nucleic Acids Research 33 (1 2005), pp. D121–
D124.

[5] I. Hofacker et al. “Fast folding and comparison of RNA secondary
structures”. In: Chemical Monthly 125.2 (1994), pp. 167–188.

[6] S. Hoffmann et al. “Fast Mapping of Short Sequences with Mis-
matches, Insertions and Deletions Using Index Structures”. In: PLoS
computational biology 5 (9 2009), e1000502.

[7] A. Iordache et al. “Resilin: Elastic MapReduce over Multiple Clouds”.
In: 13th IEEE/ACM CCGrid 0 (2013), pp. 261–268.

[8] G. Juve et al. “Comparing FutureGrid, Amazon EC2, and Open
Science Grid for Scientific Workflows”. In: Computing in Sci 15.4
(2013), pp. 20–29.

[9] J. Karlsson et al. “Enabling Large-Scale Bioinformatics Data Analy-
sis with Cloud Computing”. In: 10th IEEE ISPA. 2012.

[10] H. Li et al. “The Sequence Alignment/Map format and SAMtools”.
In: Bioinformatics 25.16 (Aug. 2009), pp. 2078–2079.

[11] E. P. Nawrocki et al. “Infernal 1.0: inference of RNA alignments”.
In: Bioinformatics 25.10 (2009), pp. 1335–1337.

[12] H. Nordberg et al. “BioPig: a Hadoop-based analytic toolkit for large-
scale sequence data”. In: Bioinformatics 29.23 (2013), pp. 3014–
3019.

[13] A. Schumacher et al. “SeqPig: simple and scalable scripting for large
sequencing data sets in Hadoop”. In: Bioinformatics 30.1 (2014),
pp. 119–120.

[14] Y. Zhao et al. “Opportunities and Challenges in Running Scientific
Workflows on the Cloud”. In: CyberC. Oct. 2011, pp. 455–462.

