
ALICe: A Benchmark to Improve
Affine Loop Invariant Computation

Vivien Maisonneuve

Seventh meeting of the French community of compilation

Dammarie-les-Lys, December 2013



Introduction

Program analysis ⇒ computation of invariants (e.g. model checking).

Need of abstract domains to represent complex program behaviors.

Here: affine invariants = systems of linear (in)equations.

x

y

2 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0;
while (x <= 100) {

b = rand();
if (b) x += 2;
else x += 1, y += 1;

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0; // x = y = 0
while (x <= 100) {

b = rand();
if (b) x += 2;
else x += 1, y += 1;

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0; // x = y = 0
while (x <= 100) { // x = y = 0

b = rand();
if (b) x += 2;
else x += 1, y += 1;

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0; // x = y = 0
while (x <= 100) { // x = y = 0

b = rand();
if (b) x += 2; // x = 2, y = 0
else x += 1, y += 1; // x = 1, y = 1

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0; // x = y = 0
while (x <= 100) { // x = y = 0

b = rand();
if (b) x += 2; // x = 2, y = 0
else x += 1, y += 1; // x = 1, y = 1
// 1 ≤ x ≤ 2, x + y = 2

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0; // x = y = 0
while (x <= 100) { // x = y = 0

b = rand();
if (b) x += 2; // x = 2, y = 0
else x += 1, y += 1; // x = 1, y = 1
// 1 ≤ x ≤ 2, x + y = 2

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



Linear Relation Analysis
Predicate propagation: forward / backward.

Branches: convex union of invariants.

Loops? Widening ⇒ // 0 ≤ y ≤ x

x = 0; y = 0; // x = y = 0
while (x <= 100) { // x = y = 0

b = rand();
if (b) x += 2; // x = 2, y = 0
else x += 1, y += 1; // x = 1, y = 1
// 1 ≤ x ≤ 2, x + y = 2

}

Sources of approximation:
• Branches ⇒ convex hull
• Loops ⇒ lots of research, programs

3 / 23



ALICe

Benchmark to compare several techniques & programs to compute affine
loop invariants.
http://alice.cri.mines-paristech.fr/

Motivations:
1 Compare tools on a common set of previously published examples.
2 Study effects of input model restructurations.
3 Improve invariant computation in PIPS.

4 / 23

http://alice.cri.mines-paristech.fr/


Contents
1 The ALICe Benchmark

Test Cases
Supported Tools
Test Chain
Results

2 Model Restructurations
State Splitting Heuristic
Using a Unique State
Comparative Results

3 Improving Results in PIPS
Transformer Lists
Iterative Analysis
Multiple Precision Arithmetic
Results

5 / 23



Models
Transition systems with a finite number of vertices (“control states”),
of integer variables.

• Initial condition I on control states & variables.
• Transitions t1, . . . , tn with guards and actions.
• Error condition E on control states & variables.

kI : x ≥ 0 ? E : x < 0

t1 : x ≤ 0 ? x++

t2 : x ≥ 1 ? x--

Goal: E is unreachable.

6 / 23



Test Cases

102 previously published test cases: from L. Gonnord, S. Gulwani,
N. Halbwachs, B. Jeannet et al.

Small test cases: 1-10 control states, 2-15 transitions.
Mostly: loop invariants, loop bounds, protocols.

number of control states
0 5 10

5
10
15
20
25

number of transitions
0 5 10 15 20 25 30

5

10

15

20

7 / 23



Tools
Supported tools:

• Aspic

: polyhedral invariant generator. Developed by L. Gonnord.
Forward LRA + accelerations.

• isl

: the Integer Set Library. Developed by S. Verdoolaege. A library
for manipulating sets and relations of integer tuples bounded by affine
constraints:

S(s) =
{

x ∈ Zd ∣∣ ∃z ∈ Ze : Ax + Bs + Dz ≥ c
}

R(s) =
{

x1 → x2 ∈ Zd1 × Zd2
∣∣∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c

}
more expressive than polyhedra (∼ Presburger).

Models as relations.
Sophisticated computation of transitive closure.

• PIPS

8 / 23



Tools
Supported tools:

• Aspic: polyhedral invariant generator. Developed by L. Gonnord.
Forward LRA + accelerations.

• isl

: the Integer Set Library. Developed by S. Verdoolaege. A library
for manipulating sets and relations of integer tuples bounded by affine
constraints:

S(s) =
{

x ∈ Zd ∣∣ ∃z ∈ Ze : Ax + Bs + Dz ≥ c
}

R(s) =
{

x1 → x2 ∈ Zd1 × Zd2
∣∣∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c

}
more expressive than polyhedra (∼ Presburger).

Models as relations.
Sophisticated computation of transitive closure.

• PIPS

8 / 23



Tools
Supported tools:

• Aspic: polyhedral invariant generator. Developed by L. Gonnord.
Forward LRA + accelerations.

• isl: the Integer Set Library. Developed by S. Verdoolaege. A library
for manipulating sets and relations of integer tuples bounded by affine
constraints:

S(s) =
{

x ∈ Zd ∣∣ ∃z ∈ Ze : Ax + Bs + Dz ≥ c
}

R(s) =
{

x1 → x2 ∈ Zd1 × Zd2
∣∣∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c

}
more expressive than polyhedra (∼ Presburger).

Models as relations.
Sophisticated computation of transitive closure.

• PIPS

8 / 23



PIPS
Interprocedural source-to-source compiler framework for C and Fortran.
Initially developed at MINES ParisTech.

Code analysis: 2-step approach
1 Program is abstracted: each program command instruction

(elementary or compound) is associated to an affine transformer that
represents the transfer function.
Bottom-up procedure.

2 Then, invariants

// P = {x | 0 ≤ x ≤ 42}

while (rand())

// T ∗ = {(x , x ′) | x ′ ≥ x}

x += 2; // T = {(x , x ′) | x ′ = x + 2}

// P ′ = {x | 0 ≤ x}

Notation: x before, x ′ after.

9 / 23



PIPS
Interprocedural source-to-source compiler framework for C and Fortran.
Initially developed at MINES ParisTech.

Code analysis: 2-step approach
1 Program is abstracted: each program command instruction

(elementary or compound) is associated to an affine transformer that
represents the transfer function.
Bottom-up procedure.

2 Then, invariants

// P = {x | 0 ≤ x ≤ 42}

while (rand()) // T ∗ = {(x , x ′) | x ′ ≥ x}
x += 2; // T = {(x , x ′) | x ′ = x + 2}

// P ′ = {x | 0 ≤ x}

Notation: x before, x ′ after.

9 / 23



PIPS
Interprocedural source-to-source compiler framework for C and Fortran.
Initially developed at MINES ParisTech.

Code analysis: 2-step approach
1 Program is abstracted: each program command instruction

(elementary or compound) is associated to an affine transformer that
represents the transfer function.
Bottom-up procedure.

2 Then, invariants

// P = {x | 0 ≤ x ≤ 42}
while (rand()) // T ∗ = {(x , x ′) | x ′ ≥ x}

x += 2; // T = {(x , x ′) | x ′ = x + 2}

// P ′ = {x | 0 ≤ x}

Notation: x before, x ′ after.

9 / 23



PIPS
Interprocedural source-to-source compiler framework for C and Fortran.
Initially developed at MINES ParisTech.

Code analysis: 2-step approach
1 Program is abstracted: each program command instruction

(elementary or compound) is associated to an affine transformer that
represents the transfer function.
Bottom-up procedure.

2 Then, invariants are propagated along transformers.

// P = {x | 0 ≤ x ≤ 42}
while (rand()) // T ∗ = {(x , x ′) | x ′ ≥ x}

x += 2; // T = {(x , x ′) | x ′ = x + 2}
// P ′ = {x | 0 ≤ x}

Notation: x before, x ′ after.

9 / 23



Input Format
Test cases are written in fsm format (Aspic format, introduced by FAST).

kI : x ≥ 0 ?

E : x < 0

t1 : x ≤ 0 ? x++

t2 : x ≥ 1 ? x--

model M {
var x;
states k;
transition t1 {

from := k;
to := k;
guard := x <= 0;
action := x' = x + 1;

}
transition t2 {

...
}

}
strategy S {

Region init := {x >= 0};
Region bad := {x < 0};

}

Easy, existing base of models, c2fsm.
10 / 23



Test Chain

in.fsm in.isl

in.c

Aspic

isl

PIPS

out.asp

out.isl

out.c

out.isl

out.isl isl

isl

isl

To challenge a tool T on a test case:
• convert test case into T ’s input language.
• run T , get the resulting invariant in T ’s output language;
• convert invariant in isl format;
• check with isl that the invariant does not reach the error region.

⇒ Several wrappers and format conversion tools involved.

Mostly written in OCaml, wrappers in Python.

11 / 23



Comparative Results

Out of 102 test cases:

Aspic isl PIPS
Successes 75 63 43
Time (s.) 10.9 35.5 46.2

(Quad-core AMD Opteron Processor 2380 at 2.4 GHz, 16 GB RAM)

Remarks:
• Best results with Aspic (native format, ad-hoc tool).
• isl very good with loops, not at ease with multiple states.

Very fast on small cases, slower on bigger ones.
• Average results with PIPS (default options).

Slower, poor results with parallel loops.

12 / 23



Contents
1 The ALICe Benchmark

Test Cases
Supported Tools
Test Chain
Results

2 Model Restructurations
State Splitting Heuristic
Using a Unique State
Comparative Results

3 Improving Results in PIPS
Transformer Lists
Iterative Analysis
Multiple Precision Arithmetic
Results

13 / 23



Model Restructurations
A strategy to improve results: restructure the input model into an
equivalent one, easier to analyze.

Formally, a model transformation is a function: M1 7−→ M2 s.t.

M2 correct (unreachable error region) =⇒ M1 correct.

Implemented in ALICe: source-to-source fsm transformation before
analysis.

in.fsmin0.fsm in.isl

in.c

Aspic

isl

PIPS

· · ·

· · ·

· · ·

14 / 23



State Splitting Heuristic
Designed to improve results in PIPS: get rid of nodes with several self
loops that PIPS has difficulty to analyze [NSAD’11].
Nodes split according to the guards of the loops.

k1 k2
t1 : x ≥ 0 ?

t2 : x ≤ 0 ? x++

t3 : x ≥ 1 ? x++

k1

k2 // x ≤ 0

k′
2 // x ≥ 1

t1 : x = 0 ?

t′1 : x ≥ 1 ?

t2 : x++ t3 : x = 1 ? x--

t′3 : x ≥ 2 ? x--
Proved in Coq.

15 / 23



State Splitting Heuristic
Designed to improve results in PIPS: get rid of nodes with several self
loops that PIPS has difficulty to analyze [NSAD’11].
Nodes split according to the guards of the loops.

k1 k2
t1 : x ≥ 0 ?

t2 : x ≤ 0 ? x++

t3 : x ≥ 1 ? x++

k1

k2 // x = 0

k′
2 // x ≥ 1

t1 : x = 0 ?

t′1 : x ≥ 1 ?

t2 : x++ t3 : x = 1 ? x--

t′3 : x ≥ 2 ? x--
Proved in Coq.

15 / 23



Using an Unique State
Transformation to recode the model s.t. it contains only one node `:

• all transitions turned into loops on `;
• extra variables bi = 1 if in state ki of the original model, 0 otherwise.

k1 k2
t1 : x ≥ 0 ?

t2 : x ≤ 0 ? x++

t3 : x ≥ 1 ? x--

`

t1 : b1 = 1, b2 = 0, x ≥ 0 ?
b1 = 0, b2 = 1

t2 : b1 = 0, b2 = 1,
x ≤ 0 ? x++

t3 : b1 = 0, b2 = 1, x ≥ 1 ? x--

Purposes:
• produce more stressful test cases;
• test isl behavior;
• reduce bias factors related to encoding choices;
• can be used prior the state splitting heuristic, increasing its effects.

16 / 23



Results
Out of 102 test cases:

Aspic isl PIPS
Direct

Successes 75 63 43
Time (s.) 10.9 35.5 46.2

Split
Successes 79 72 50
Time (s.) 12.8 43.0 61.7

Merged
Successes 59 70 40
Time (s.) 16.7 26.2 50.0

Merged + Split
Successes 70 83 63
Time (s.) 11.3 40.8 59.5

Remarks:
• Splitting helps all tools.
• Merging helps isl: very

good with loops, not at
ease with multiple states
in direct encoding.

• Best results obtained
through merging +
splitting, except for Aspic:
unaccelerable transitions.

• Slowdown in most cases:
more complicated
structure.

17 / 23



Improving Results in PIPS
Several options in PIPS to improve analysis results.

1 Delay Convex Hulls at step 1, using transformer lists
Consider a loop with 2 control paths defined by transformers T1, T2,
and precondition P .
By default, loop body is abstracted by a unique transformer so
postcondition P ′ is: P ′ = (T1 t T2)

∗(P), inaccurate.
With TL,

P ′ =
[

IdtT1 t T2 t (T1 ◦ T2) t (T2 ◦ T1) t T1
+ t T2

+t

T1
+ ◦ T2 ◦ (T1 t T2)

∗ t T2
+ ◦ T1 ◦ (T1 t T2)

∗
]
(P)

Convex hull is delayed, each elementary transition Ti is applied, more
information is preserved.

2 Perform Iterative Analysis
3 Use Multiple Precision Arithmetic

18 / 23



Improving Results in PIPS
Several options in PIPS to improve analysis results.

1 Delay Convex Hulls
2 Perform Iterative Analysis

Use preconditions to refine transformers on a second pass:
• Compute loop transformer T (x̄ , x̄ ′).

Compute loop invariant P(x̄), using T .
• Compute loop transformer T ′(x̄ , x̄ ′) = T (x̄ , x̄ ′) ∧ P(x̄) ∧ P(x̄ ′).

Compute loop invariant P ′(x̄), using T ′.
3 Use Multiple Precision Arithmetic

18 / 23



Improving Results in PIPS
Several options in PIPS to improve analysis results.

1 Delay Convex Hulls
2 Perform Iterative Analysis
3 Use Multiple Precision Arithmetic

If intermediate computations raise polyhedrons with huge coefficients:
arithmetic error, constraint loss.
⇒ GMP.

Options can be combined.

18 / 23



Results for PIPS Options
Out of 102 test cases:

Options None TL IA TL + IA TL + IA + MP
Direct

Successes 43 69 45 72 73
Time (s.) 46.2 51.4 69.3 74.8 113.2

Split
Successes 50 72 56 75 77
Time (s.) 61.7 68.9 93.5 102.5 156.3

Merged
Successes 40 66 44 67 68
Time (s.) 50.0 55.8 75.3 82.5 126.6

Merged + Split
Successes 63 79 65 80 82
Time (s.) 59.5 66.6 90.2 98.5 146.3

Combine options and/or restructurations.
19 / 23



Comparative Results, Revisited
Out of 102 test cases:

Aspic isl PIPS default PIPS + options
Direct

Successes 75 63 43 73
Time (s.) 10.9 35.5 46.2 113.2

Split
Successes 79 72 50 77
Time (s.) 12.8 43.0 61.7 156.3

Merged
Successes 59 70 40 68
Time (s.) 16.7 26.2 50.0 126.6

Merged + Split
Successes 70 83 63 82
Time (s.) 11.3 40.8 59.5 146.3

20 / 23



Comparative Results
Aspic

isl PIPS

2

1 1

2

1

12
59

/ 24

Direct

Aspic

isl PIPS

3

2 1

1

1

7
68

/ 19

Split

Aspic

isl PIPS

1

2 1

2

11

1
55

/ 29

Merge

Aspic

isl PIPS

1

3 2

2

14

2
64

/ 14

Merge + Split 21 / 23



Conclusion

What has been done
• Collection of test cases.
• Working with 3 tools: Aspic, isl, PIPS, handling various formats.
• Restructurations.

Future work
• Study failures: by tool, by type. Find patterns?
• FASTer backed.
• Improve restructurations.
• Avoid cheating: minimal invariant?

22 / 23



ALICe: A Benchmark to Improve
Affine Loop Invariant Computation

Vivien Maisonneuve

Seventh meeting of the French community of compilation

Dammarie-les-Lys, December 2013


	The ALICe Benchmark
	Test Cases
	Supported Tools
	Test Chain
	Results

	Model Restructurations
	State Splitting Heuristic
	Using a Unique State
	Comparative Results

	Improving Results in PIPS
	Transformer Lists
	Iterative Analysis
	Multiple Precision Arithmetic
	Results


