ALICe: A Benchmark to Improve Affine Loop Invariant Computation

Vivien Maisonneuve

Seventh meeting of the French community of compilation
Dammarie-les-Lys, December 2013

Introduction

Program analysis \Rightarrow computation of invariants (e.g. model checking). Need of abstract domains to represent complex program behaviors. Here: affine invariants $=$ systems of linear (in)equations.

Linear Relation Analysis

Predicate propagation: forward / backward.

```
x = 0; y = 0;
while (x <= 100) {
    b = rand();
    if (b) x += 2;
    else x += 1, y += 1;
```

\}

Linear Relation Analysis

Predicate propagation: forward / backward.

$$
\begin{aligned}
& \mathrm{x}=0 ; \mathrm{y}=0 ; \quad / / x=y=0 \\
& \text { while }(\mathrm{x}<=100)\{ \\
& \quad \mathrm{b}=\operatorname{rand}() ; \\
& \text { if (b) } \mathrm{x}+=2 ; \\
& \quad \text { else } \mathrm{x}+=1, \mathrm{y}+=1 ;
\end{aligned}
$$

\}

Linear Relation Analysis

Predicate propagation: forward / backward.

$$
\begin{aligned}
& \mathrm{x}=0 ; \mathrm{y}=0 ; \quad / / x=y=0 \\
& \text { while }(\mathrm{x}<=100)\{/ / x=y=0 \\
& \quad \mathrm{b}=\operatorname{rand}() ; \\
& \quad \text { if }(\mathrm{b}) \mathrm{x}+=2 ; \\
& \quad \text { else } \mathrm{x}+=1, \mathrm{y}+=1 ;
\end{aligned}
$$

\}

Linear Relation Analysis

Predicate propagation: forward / backward.

$$
\begin{aligned}
& \mathrm{x}=0 ; \mathrm{y}=0 ; \quad / / x=y=0 \\
& \text { while }(\mathrm{x}<=100)\{/ / x=y=0 \\
& \quad \mathrm{b}=\operatorname{rand}() ; \\
& \quad \text { if }(\mathrm{b}) \mathrm{x}+=2 ; \quad / / x=2, y=0 \\
& \quad \text { else } \mathrm{x}+=1, \mathrm{y}+=1 ; \quad / / x=1, y=1
\end{aligned}
$$

\}

Linear Relation Analysis

Predicate propagation: forward / backward.
Branches: convex union of invariants.

$$
\begin{aligned}
& \mathrm{x}=0 ; \mathrm{y}=0 ; \quad / / x=y=0 \\
& \text { while }(\mathrm{x}<=100)\{/ / x=y=0 \\
& \quad \mathrm{b}=\operatorname{rand}() ; \\
& \quad \text { if }(\mathrm{b}) \mathrm{x}+=2 ; \quad / / x=2, y=0 \\
& \quad \text { else } \mathrm{x}+=1, \mathrm{y}+=1 ; \quad / / x=1, y=1 \\
& \quad / / 1 \leq x \leq 2, x+y=2 \\
& \}
\end{aligned}
$$

Linear Relation Analysis

Predicate propagation: forward / backward.
Branches: convex union of invariants.
Loops? Widening $\Rightarrow / / 0 \leq y \leq x$

$$
\begin{aligned}
& \mathrm{x}=0 ; \mathrm{y}=0 ; / / x=y=0 \\
& \text { while }(\mathrm{x}<=100)\{\quad / / x=y=0 \\
& \mathrm{b}=\operatorname{rand}() ; \\
& \text { if (b) } \mathrm{x}+=2 ; \quad / / x=2, y=0 \\
& \text { else } \mathrm{x}+=1, \mathrm{y}+=1 ; \quad / / x=1, y=1 \\
& \quad / / 1 \leq x \leq 2, x+y=2 \\
& \}
\end{aligned}
$$

Linear Relation Analysis

Predicate propagation: forward / backward.
Branches: convex union of invariants.
Loops? Widening $\Rightarrow / / 0 \leq y \leq x$

$$
\begin{aligned}
& \mathrm{x}=0 ; \mathrm{y}=0 ; / / x=y=0 \\
& \text { while }(\mathrm{x}<=100)\{\quad / / x=y=0 \\
& \mathrm{b}=\operatorname{rand}() ; \\
& \text { if (b) } \mathrm{x}+=2 ; \quad / / x=2, y=0 \\
& \text { else } \mathrm{x}+=1, \mathrm{y}+=1 ; \quad / / x=1, y=1 \\
& \quad / / 1 \leq x \leq 2, x+y=2 \\
& \}
\end{aligned}
$$

Sources of approximation:

- Branches \Rightarrow convex hull
- Loops \Rightarrow lots of research, programs

ALICe

Benchmark to compare several techniques \& programs to compute affine loop invariants.
http://alice.cri.mines-paristech.fr/
Motivations:
(1) Compare tools on a common set of previously published examples.
(2) Study effects of input model restructurations.
(3) Improve invariant computation in PIPS.

Contents

(1) The ALICe Benchmark

Test Cases
Supported Tools
Test Chain
Results
(2) Model Restructurations

State Splitting Heuristic
Using a Unique State
Comparative Results
(3) Improving Results in PIPS

Transformer Lists
Iterative Analysis
Multiple Precision Arithmetic
Results

Models

Transition systems with a finite number of vertices ("control states"), of integer variables.

- Initial condition / on control states \& variables.
- Transitions t_{1}, \ldots, t_{n} with guards and actions.
- Error condition E on control states \& variables.

Goal: E is unreachable.

Test Cases

102 previously published test cases: from L. Gonnord, S. Gulwani, N. Halbwachs, B. Jeannet et al.

Small test cases: 1-10 control states, 2-15 transitions. Mostly: loop invariants, loop bounds, protocols.

Tools

Supported tools:

- Aspic
- isl
- PIPS

Tools

Supported tools:

- Aspic: polyhedral invariant generator. Developed by L. Gonnord. Forward LRA + accelerations.
- isl
- PIPS

Tools

Supported tools:

- Aspic: polyhedral invariant generator. Developed by L. Gonnord. Forward LRA + accelerations.
- isl: the Integer Set Library. Developed by S. Verdoolaege. A library for manipulating sets and relations of integer tuples bounded by affine constraints:

$$
\begin{aligned}
& S(s)=\left\{x \in \mathbb{Z}^{d} \mid \exists z \in \mathbb{Z}^{e}: A x+B s+D z \geq c\right\} \\
& R(s)=\left\{x_{1} \rightarrow x_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists z \in \mathbb{Z}^{e}: A_{1} x_{1}+A_{2} x_{2}+B s+D z \geq c\right\}
\end{aligned}
$$

more expressive than polyhedra (\sim Presburger).
Models as relations.
Sophisticated computation of transitive closure.

- PIPS

PIPS

Interprocedural source-to-source compiler framework for C and Fortran. Initially developed at MINES ParisTech.

Code analysis: 2-step approach
(1) Program is abstracted: each program command instruction (elementary or compound) is associated to an affine transformer that represents the transfer function.
Bottom-up procedure.
while (rand())

$$
\mathrm{x}+=2 ; \quad / / \quad T=\left\{\left(x, x^{\prime}\right) \mid x^{\prime}=x+2\right\}
$$

Notation: x before, x^{\prime} after.

PIPS

Interprocedural source-to-source compiler framework for C and Fortran. Initially developed at MINES ParisTech.

Code analysis: 2-step approach
(1) Program is abstracted: each program command instruction (elementary or compound) is associated to an affine transformer that represents the transfer function.
Bottom-up procedure.

$$
\begin{array}{cll}
\text { while }(\operatorname{rand}()) & / / & T^{*}=\left\{\left(x, x^{\prime}\right) \mid x^{\prime} \geq x\right\} \\
\mathbf{x}+=2 ; & / / \quad T=\left\{\left(x, x^{\prime}\right) \mid x^{\prime}=x+2\right\}
\end{array}
$$

Notation: x before, x^{\prime} after.

PIPS

Interprocedural source-to-source compiler framework for C and Fortran. Initially developed at MINES ParisTech.

Code analysis: 2-step approach
(1) Program is abstracted: each program command instruction (elementary or compound) is associated to an affine transformer that represents the transfer function.
Bottom-up procedure.
(2) Then, invariants

$$
\begin{aligned}
& \text { // } P=\{x \mid 0 \leq x \leq 42\} \\
& \text { while (rand()) } / / \quad T^{*}=\left\{\left(x, x^{\prime}\right) \mid x^{\prime} \geq x\right\} \\
& \quad \mathrm{x}+=2 ; \quad / / \quad T=\left\{\left(x, x^{\prime}\right) \mid x^{\prime}=x+2\right\}
\end{aligned}
$$

Notation: x before, x^{\prime} after.

PIPS

Interprocedural source-to-source compiler framework for C and Fortran. Initially developed at MINES ParisTech.

Code analysis: 2-step approach
(1) Program is abstracted: each program command instruction (elementary or compound) is associated to an affine transformer that represents the transfer function.
Bottom-up procedure.
(2) Then, invariants are propagated along transformers.

$$
\begin{aligned}
& / / \quad P=\{x \mid 0 \leq x \leq 42\} \\
& \text { while }(\operatorname{rand}()) \quad / / \quad T^{*}=\left\{\left(x, x^{\prime}\right) \mid x^{\prime} \geq x\right\} \\
& \quad \mathbf{x}+=2 ; \quad / / \quad T=\left\{\left(x, x^{\prime}\right) \mid x^{\prime}=x+2\right\} \\
& / / \quad P^{\prime}=\{x \mid 0 \leq x\}
\end{aligned}
$$

Notation: x before, x^{\prime} after.

Input Format

Test cases are written in fsm format (Aspic format, introduced by FAST).

Easy, existing base of models, c2fsm.

Test Chain

To challenge a tool T on a test case:

- convert test case into T 's input language.
- run T, get the resulting invariant in T 's output language;
- convert invariant in isl format;
- check with isl that the invariant does not reach the error region.
\Rightarrow Several wrappers and format conversion tools involved.
Mostly written in OCaml, wrappers in Python.

Comparative Results

Out of 102 test cases:

	Aspic	isl	PIPS
Successes	75	63	43
Time (s.)	10.9	35.5	46.2

(Quad-core AMD Opteron Processor 2380 at $2.4 \mathrm{GHz}, 16 \mathrm{~GB}$ RAM) Remarks:

- Best results with Aspic (native format, ad-hoc tool).
- isl very good with loops, not at ease with multiple states.

Very fast on small cases, slower on bigger ones.

- Average results with PIPS (default options). Slower, poor results with parallel loops.

Contents

(1) The ALICe Benchmark

Test Cases
Supported Tools
Test Chain
Results
(2) Model Restructurations

State Splitting Heuristic Using a Unique State
Comparative Results
(3) Improving Results in PIPS

Transformer Lists
Iterative Analysis
Multiple Precision Arithmetic
Results

Model Restructurations

A strategy to improve results: restructure the input model into an equivalent one, easier to analyze.

Formally, a model transformation is a function: $M_{1} \longmapsto M_{2}$ s.t.
M_{2} correct (unreachable error region) $\Longrightarrow M_{1}$ correct.
Implemented in ALICe: source-to-source fsm transformation before analysis.

State Splitting Heuristic

Designed to improve results in PIPS: get rid of nodes with several self loops that PIPS has difficulty to analyze [NSAD'11].
Nodes split according to the guards of the loops.

State Splitting Heuristic

Designed to improve results in PIPS: get rid of nodes with several self loops that PIPS has difficulty to analyze [NSAD'11].
Nodes split according to the guards of the loops.

Using an Unique State

Transformation to recode the model s.t. it contains only one node ℓ :

- all transitions turned into loops on ℓ;
- extra variables $b_{i}=1$ if in state k_{i} of the original model, 0 otherwise.

Purposes:

- produce more stressful test cases;
- test isl behavior;
- reduce bias factors related to encoding choices;
- can be used prior the state splitting heuristic, increasing its effects.

Results

Out of 102 test cases:

Aspic			
isl	PIPS		
Direct			
Successes	75	63	43
Time (s.)	10.9	35.5	46.2
Split			
Successes	79	72	50
Time (s.)	12.8	43.0	61.7
Merged			
Successes	59	70	40
Time (s.)	16.7	26.2	50.0
Merged + Split			
Successes	70	83	63
Time (s.)	11.3	40.8	59.5

Remarks:

- Splitting helps all tools.
- Merging helps isl: very good with loops, not at ease with multiple states in direct encoding.
- Best results obtained through merging + splitting, except for Aspic: unaccelerable transitions.
- Slowdown in most cases: more complicated structure.

Improving Results in PIPS

Several options in PIPS to improve analysis results.
(1) Delay Convex Hulls at step 1, using transformer lists

Consider a loop with 2 control paths defined by transformers T_{1}, T_{2}, and precondition P.
By default, loop body is abstracted by a unique transformer so postcondition P^{\prime} is: $P^{\prime}=\left(T_{1} \sqcup T_{2}\right)^{*}(P)$, inaccurate.
With TL,

$$
\begin{aligned}
P^{\prime}=\left[\mathrm{Id} \sqcup T_{1} \sqcup\right. & T_{2} \sqcup\left(T_{1} \circ T_{2}\right) \sqcup\left(T_{2} \circ T_{1}\right) \sqcup T_{1}+\sqcup T_{2}+\sqcup \\
& \left.T_{1}^{+} \circ T_{2} \circ\left(T_{1} \sqcup T_{2}\right)^{*} \sqcup T_{2}^{+} \circ T_{1} \circ\left(T_{1} \sqcup T_{2}\right)^{*}\right](P)
\end{aligned}
$$

Convex hull is delayed, each elementary transition T_{i} is applied, more information is preserved.
(2) Perform Iterative Analysis
(3) Use Multiple Precision Arithmetic

Improving Results in PIPS

Several options in PIPS to improve analysis results.
(1) Delay Convex Hulls

2 Perform Iterative Analysis
Use preconditions to refine transformers on a second pass:

- Compute loop transformer $T\left(\bar{x}, \bar{x}^{\prime}\right)$. Compute loop invariant $P(\bar{x})$, using T.
- Compute loop transformer $T^{\prime}\left(\bar{x}, \bar{x}^{\prime}\right)=T\left(\bar{x}, \bar{x}^{\prime}\right) \wedge P(\bar{x}) \wedge P\left(\bar{x}^{\prime}\right)$. Compute loop invariant $P^{\prime}(\bar{x})$, using T^{\prime}.
(3) Use Multiple Precision Arithmetic

Improving Results in PIPS

Several options in PIPS to improve analysis results.
(1) Delay Convex Hulls
(2) Perform Iterative Analysis
(3) Use Multiple Precision Arithmetic

If intermediate computations raise polyhedrons with huge coefficients: arithmetic error, constraint loss. \Rightarrow GMP.
Options can be combined.

Results for PIPS Options

Out of 102 test cases:

Options	None	TL	IA	TL + IA	TL + IA + MP
Direct					
Successes	43	69	45	72	73
Time (s.)	46.2	51.4	69.3	74.8	113.2
Split					
Successes	50	72	56	75	77
Time (s.)	61.7	68.9	93.5	102.5	156.3
Merged					
Successes	40	66	44	67	
Time (s.)	50.0	55.8	75.3	82.5	126.6
Merged + Split					
Successes	63	79	65	80	82
Time (s.)	59.5	66.6	90.2	98.5	146.3

Combine options and/or restructurations.

Comparative Results, Revisited

Out of 102 test cases:

	Aspic	isl	PIPS default	PIPS + options
	Direct			
Successes	75	63	43	73
Time (s.)	10.9	35.5	46.2	113.2
Split				
Successes	79	72	50	77
Time (s.)	12.8	43.0	61.7	156.3
Merged				
Successes	59	70	40	68
Time (s.)	16.7	26.2	50.0	126.6
Merged + Split				
Successes	70	83	63	82
Time (s.)	11.3	40.8	59.5	146.3

Comparative Results

Conclusion

What has been done

- Collection of test cases.
- Working with 3 tools: Aspic, isI, PIPS, handling various formats.
- Restructurations.

Future work

- Study failures: by tool, by type. Find patterns?
- FASTer backed.
- Improve restructurations.
- Avoid cheating: minimal invariant?

ALICe: A Benchmark to Improve Affine Loop Invariant Computation

Vivien Maisonneuve

Seventh meeting of the French community of compilation
Dammarie-les-Lys, December 2013

