
BDSC-Based Automatic Task Parallelization:
Experiments

Dounia KHALDI

CRI, Mathématiques et systèmes
MINES ParisTech

Septièmes rencontres de la communauté française de compilation,
Dammarie-les-Lys, France

December 04, 2013

1/19



Context and Motivation

Anyone can build a fast CPU. The trick is to build a fast system.
Attributed to Seymour Cray
Parallelism handling:

Parallel software developed by converting sequential programs by hand
Automatic task parallelism extraction: Scheduling problem
Resource constraints: memory requirements, processor features...
Scientific, signal and image processing benchmarks

Automatic Resource-Constrained Static Task Parallelization
BDSC: a memory-constrained, number of processor-bounded
extension of DSC
Experimentation on shared and distributed memory systems

2/19



Contents

1 BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

2 Experimental Evaluations with PIPS

3 Conclusion and Future Work

3/19



Parallelization Process
blue indicates contributions; an ellipse, a process; and a rectangle, results

C Source Code

Parsing

Sequential IR

PIPS Analyses

Program DAG
(sequences)

Execution Time,
Communication Cost and

Memory Size

Program
Input Data

Polynomial Estimation

Numerical Profile

BDSC

Scheduled Task Graph

4/19



Contents

1 BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC
List-Scheduling Heuristics
Dominant Sequence Clustering (DSC)
BDSC: A Resource-Constrained Extension of DSC

2 Experimental Evaluations with PIPS

3 Conclusion and Future Work

5/19



List-Scheduling Heuristics
Priorities are computed for all unscheduled vertices using:

Top level (tlevel(τ)): length of the longest path from entry to τ
Bottom level (blevel(τ)): length of the longest path from τ to exit

entry 0

A 1 D 2

B 3
C 2

exit 0

0

0

2
1 1

0

0

task tlevel blevel
D 0 7
C 3 2
A 0 5
B 4 3

Vertex τ with the highest priority is selected for scheduling
τ is added to the cluster (logical process) with the earliest start-time

6/19



A List-Scheduling Heuristic:
Dominant Sequence Clustering (DSC)

DSC (Dominant Sequence Clustering) [Yang and Gerasoulis 1994]
Task list-scheduling heuristic for an unbounded number of clusters
priority(τ) = tlevel(τ) + blevel(τ)
zeroing(τp, τ) puts τ in the cluster of a predecessor τp ⇒
reduces tlevel(τ) by setting to zero the cost of the edge (τp, τ)

A 1 D 2

B 3 C 22

1
1 step task tlevel blevel prio scheduled tlevel

κ0 κ1 κ2
1 D 0 7 7 0*
2 C 3 2 5 2 3*
3 A 0 5 5 0*
4 B 4 3 7 2* 4

Complexity: O(n2log(n))

7/19



A List-Scheduling Heuristic:
Dominant Sequence Clustering (DSC)

DSC algorithm weaknesses for our purpose:
Unbounded number of clusters
Number of clusters is not predefined → blind clustering
Memory size is not predefined → blind clustering
Creates long idle slots in already existing clusters

Proposal
BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

8/19



Bounded DSC: Resource Constraint Warranty

1 Memory Constraint Warranty (MCW):
Do not exceed a memory threshold M
Overapproximation of the amount of memory used in tasks
data_size(cluster_data (κ) ∪ task_data (τ)) ≤ M

2 Bounded number of clusters P:
Number of cluster allocations do not exceed Threshold P
Maintain the constraint MCW
argmink∈clusters cluster_time(κ)

3 Efficient cluster allocation by exploiting idle slots
4 Complexity: O(n3)

9/19



Related Work: Static Task Parallelization Tools

Resource Dependence Execution Communica- Memory
blevel tlevel constraints control data time tion time model

estimation estimation

BDSC
√ √ √ √ √ √

Shared,
Parallelization distributed

Sarkar’s
√ √ √ √

Shared,
work distributed

[Sarkar, 1989]

OSCAR
√ √ √ √

Shared
[Kasahara et al., 1992]

Pedigree
√ √ √ √ √

Shared
[Newburn and Shen, 1996]

SPIR
√ √ √ √ √ √

Shared
[Choi et al., 2009]

10/19



Contents

1 BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

2 Experimental Evaluations with PIPS
Experimental Setting
BDSC vs. DSC
Comparative Study with Faust Parallelizing Compiler

3 Conclusion and Future Work

11/19



Experimental Setting

1 Benchmarks
Thales ABF (Adaptive Beam Forming), with 1,065 lines
SPEC benchmark equake, with 1,432 lines
Harris corner detector, with 105 lines
NAS Parallel Benchmark IS (Integer Sort), with 1,076 lines

2 Machines
Shared Memory: host Linux (Ubuntu)
2-socket AMD quadcore Opteron, 2.4 GHz
M = 16GB of RAM
gcc 4.6.3 -O3
OpenMP 3.0
Cluster ∼ Thread
Distributed Memory: host Linux (RedHat)
6 dual-core processors Intel R© Xeon R©, 2.5 GHz
M = 32GB of RAM per processor
gcc 4.4.6 -O3
Open MPI 1.6.2
Cluster ∼ Process

12/19



ABF and equake
Speedups with OpenMP and MPI

1 (0.35 s) 2 4 6 8
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5 ABF-DSC
ABF-BDSC

Number of cores 1 (230 s) 2 4 6 8
0

1

2

3

4

5

6 equake-DSC
equake-BDSC

Number of cores

S
pe

ed
up

1 (0.25 s) 2 4 6
0

0.5

1

1.5

2

2.5

3 ABF-DSC

ABF-BDSC

Number of processors

 S
pe

ed
up

1 (160 s) 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5 equake-DSC

equake-BDSC

Number of processors

S
pe

ed
up

13/19



Harris
Speedups with OpenMP and MPI: Impact of Tiling (P=3)

1024x1024 2048x1024 2048x2048 
0

0.5

1

1.5

2

2.5
Harris-OpenMP

Harris-tiled-OpenMP

Image sizeS
p

e
e

d
u

p
 3

 th
re

a
d

s 
vs

. s
e

q
u

e
n

tia
l

sequential = 183 ms sequential = 345 ms sequential = 684 ms

1024x1024 2048x1024 2048x2048
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Harris-MPI
Harris-tiled-MPI

Image size

S
p

e
e

d
u

p
 3

 p
ro

ce
ss

e
s 

vs
. s

e
q

u
e

n
tia

l

sequential = 97 ms Sequential = 244 ms sequential = 442 ms

14/19



NAS Parallel Benchmark IS
Speedups with OpenMP and MPI: Different Class Sizes

OMP (2 tasks) OMP-tiled-2 OMP-tiled-4 OMP-tiled-6 OMP-tiled-8
0

0.5

1

1.5

2

2.5

3

3.5
Class A (sequential = 1.68 s)

Class B (sequential = 4.55 s)

Class C (sequnetial = 28 s)

Benchmark version

S
pe

ed
up

 O
pe

nM
P

 v
s.

 s
eq

ue
nt

ia
l

MPI (2 tasks) MPI-tiled-2 MPI-tiled-4 MPI-tiled-6
0

0.5

1

1.5

2

2.5

3
Class A (sequential = 0.26 s)

Class B (sequential = 1.69 s)

Class C (sequential = 13.57 s)

Benchmark version

S
pe

ed
up

 M
P

I 
vs

. 
se

qu
en

tia
l

15/19



Faust Parallel Scheduling vs. BDSC

Faust (Functional AUdio STream) [Orlarey et al., 2009]
DSL for real-time audio signal processing and synthesis
Generation of C or C++ with or without OpenMP directives
omp task (BDSC) vs. omp section (Faust Parallelizing Compiler)
Scheduling: BDSC vs. Faust topological ordering
Speedups for two programs: Karplus32 and Freeverb

Karplus32(1024) Karplus32(2048)
0

0.5

1

1.5

2 Faust
BDSC

count

S
pe

ed
up

 2
 t

hr
ea

ds
 v

s.
 s

eq
ue

nt
ia

l

Sequential = 1.2 ms Sequential = 1.8 ms

Freeverb(1024) Freeverb(2048)
0

0.5

1

1.5

2

2.5

3 Faust
BDSC

count

S
pe

ed
up

 8
 t

hr
ea

ds
 v

s.
 s

eq
ue

nt
ia

l

Sequential = 40 ms sequential = 80 ms

16/19



Contents

1 BDSC: A Memory-Constrained, Number of Processor-Bounded
Extension of DSC

2 Experimental Evaluations with PIPS

3 Conclusion and Future Work

17/19



Conclusion

1 BDSC-based hierarchical scheduling algorithm
Memory constraint, bounded number of clusters,
efficient cluster allocation
BDSC-based task parallelization algorithm
Communication, data and time cost models

2 Experiments:
BDSC-based automatic parallelization in PIPS
Code generation in OpenMP and MPI
Good speedups for coarse-grained parallelism

18/19



Future Work

1 BDSC Scheduling
Handling of heterogeneous devices
More precise cost models

2 Parallel Code Generation
More experimentation needed
Solving communication generation problems (MPI)
Hybrid task + data parallelism

19/19



BDSC-Based Automatic Task Parallelization:
Experiments

Dounia KHALDI

CRI, Mathématiques et systèmes
MINES ParisTech

Septièmes rencontres de la communauté française de compilation,
Dammarie-les-Lys, France

December 04, 2013



References I

Choi, Y., Lin, Y., Chong, N., Mahlke, S., and Mudge, T. (2009).
Stream Compilation for Real-Time Embedded Multicore Systems.
In Proceedings of the 7th annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’09,
pages 210–220, Washington, DC, USA.

Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., and Narita, S. (1992).
A Multi-Grain Parallelizing Compilation Scheme for OSCAR (Optimally Scheduled Advanced Multiprocessor).
In Proceedings of the Fourth International Workshop on Languages and Compilers for Parallel Computing, pages
283–297, London, UK. Springer-Verlag.

Nandivada, V. K., Shirako, J., Zhao, J., and Sarkar, V. (2013).
A Transformation Framework for Optimizing Task-Parallel Programs.
ACM Trans. Program. Lang. Syst., 35(1):3:1–3:48.

Newburn, C. J. and Shen, J. P. (1996).
Automatic Partitioning of Signal Processing Programs for Symmetric Multiprocessors.
In IEEE PACT, pages 269–280. IEEE Computer Society.

Sarkar, V. (1989).
Partitioning and Scheduling Parallel Programs for Multiprocessors.
MIT Press, Cambridge, MA, USA.


	BDSC: A Memory-Constrained, Number of Processor-Bounded Extension of DSC
	List-Scheduling Heuristics
	Dominant Sequence Clustering (DSC)
	BDSC: A Resource-Constrained Extension of DSC

	Experimental Evaluations with PIPS
	Experimental Setting
	BDSC vs. DSC
	Comparative Study with Faust Parallelizing Compiler

	Conclusion and Future Work 

