

 1

Adding Kinect Support to MINDs
Technical Report – MINES ParisTech A/505/CRI

Laurent DAVERIO
CRI, Maths & Systems, MINES ParisTech, France

October 24, 2012

I Introduction
The “MINDs” music therapy application [1] was developed at CRI/MINES ParisTech by
Benoît Pin, Samuel Benveniste and Pierre Jouvelot. Its aims at helping Alzheimer’s Disease
patients exercise their memory by “performing” popular songs of their youth using modern
technology tools such as wireless Nintendo Wiimote [2] game controllers.
By the end of 2010, Microsoft released the Kinect [3] sensor, a new type of sensing input de-
vice for the Xbox 360 game console. The Kinect has often been called revolutionary, as user
interaction only relies on gestures and spoken commands, without the need to hold or touch a
physical games controller.

Figure 1: The Microsoft Kinect

The Kinect essentially consists in a RGB camera coupled with an infrared depth sensor [4],
using a technology developed by Israeli company PrimeSense [5]. Supporting software al-
lows for tracking the position and gestures of several users sitting or standing in front of the
device. Advanced tracking libraries by Microsoft even attempt to recognize the age, gender
and expression (smile, frown, etc.) of the users.
After initially marketing the Kinect as a closed, Xbox-only device (which prompted hackers
to successfully try and reverse-engineer the Kinect’s communication protocol), Microsoft
soon realised what benefits could be gained from having a dynamic developers base, and
diametrically reversed their stance. Today, the Kinect can be used on all leading operating
systems through the availability of two software development kits (“SDKs”):

• Microsoft’ Kinect SDK [6], a proprietary SDK for Windows-based applications only.
• PrimeSense’s OpenNI (“Open Natural Interaction”), an open source, multiplatform

SDK (Windows, Linux, OS X, Android).
Given that supporting software tools and libraries were freely available, attempting the inte-
gration of a Kinect sensor into the MINDs application made perfect sense.

 2

In this paper we will outline:
• the steps we followed to get a working prototype
• what software stack we used,
• what results were obtained, and what experience was gained in the process.

II Available Kinect software support

II.1 Overview

Freely available Kinect support software operates at various levels, which are outlined in the
table below:

High-level support

Gesture recognition

Detect a certain number of gestures
 (e.g. a hand wave) and react accordingly.

NITE
http://www.openni.org

 (Costless, proprietary OpenNI plugin)

Skeleton recognition

Detect the presence of persons in front of
the sensor, and generate “skeletons” repre-
senting the corresponding body parts and
joints (hands, head, arms, elbows, shoulders,

legs, knees, etc.)

OpenNI
http://www.openni.org

(Free software – LGPL license)

RGB (webcam) + depth bitmaps

Access the raw data returned by the Kinect.
No form of image analysis, share recogni-

tion, etc. is performed.

Freenect
http://openkinect.org
(Apache/GPL license)

USB communication

Allow user programs to access and control
the USB port to which the Kinect is

plugged.

LibUSB
http://www.libusb.org

(Free software – LGPL license)

Low-level support

Figure 2: software overview

 3

For the sake of efficiency, we must try and tap software at the highest-available level. In the
process of looking for a solution, two approaches were experimented:

• a lower-level approach based on Freenect libraries, and
• a higher-level approach based on OpenNI + NITE.

Note Due to its proprietary, “Windows-only” nature, the Microsoft Kinect SDK has been left
out in favour of more open alternatives like OpenNI.

II.2 Freenect

The Freenect libraries allows the developer to access the raw RGB (webcam) + depth bitmap
information. Figure 3 below illustrates this:

• On the left-hand side, depth information is coded with colour gradients (warmer
colours represent shorter distances). Depth is encoded in 2048 steps, ranging from 1
m to 3.5 m approximately.

• On the right hand side, the VGA (640x480) video stream is similar to what can be ob-
tained using a regular webcam.

Figure 3: A visualization of Freenect data output [7]

This low-level information can then be manipulated by whatever means you choose. For
instance, it’s possible to exploit the depth information only, and discard the RGB stream. But
discarding part of the returned information is likely to lead to less accurate scene detection.

 4

A very common solution is to use the OpenCV [8] (“Open Computer Vision”) libraries, which
offer functions related to real-time computer vision: face recognition, gesture recognition,
motion tracking, etc.

II.3 OpenNI / NITE

OpenNI is a set of open source (LGPL) “Natural Interaction” libraries written in Java and
C++. They are maintained by PrimeSense, the company behind the Kinect hardware tech-
nology, and also support other PrimeSense-designed devices such as the Asus Xtion [9] sen-
sor family.

Figure 4: Asus Xtion sensor

OpenNI is able to track one or several human figures in a 3D scene, and produce a higher-
level output, such as real-time hand/finger tracking, or skeleton generation (Figure 5 below).

Figure 5: OpenNI higher-level output [10]

In addition to OpenNI, PrimeSense also maintains NITE, a proprietary OpenNI plug-in aimed
at gesture recognition. A few gestures are implemented out of the box:

• “Click”: the user holds her open hand facing the camera, fingers pointing upwards.
She then quickly “pushes” her palm towards the camera, and back again.

• “Wave”: the user waves her open hand facing the camera.
• “RaiseHand”: the user raiser her hand.

 5

III Integrating Kinect support into MINDs
A thorough web search into related projects was conducted. This led us to elaborating a set
of guidelines, and experimenting two approaches, one based on Freenect, and one on
OpenNI.

III.1 Guidelines

1. Proposed Kinect support must integrate into MINDs taking into account the specificities of
that project:

• MINDs is free software (released under the GPLv3 license).
• MINDs is multi-platform (supports Windows, Linux and OS X).
• MINDs is written using the Python language.

→ the adopted solution must also be free, multi-platform, and written in Python.

2. In the current release of MINDs, Wiimote controllers are used as multi-button mice.

→ logically, in the first stage of our experimentation, we should try to emulate a mouse
(pointer movements + button clicks) using the Kinect sensor.

III.2 Using Freenect

The first approach we tried is based on a Python “recipe” we found on the Internet [11]. It is
based on the following tools:

• The Freenect library and its Python bindings (for handling Kinect’s raw data)
• The OpenCV library and its Python bindings (for real-time image analysis)
• The Python NumPy module (for array manipulation)

It was tried only on a Linux platform. Popular Linux distributions, such as Ubuntu Linux,
natively offer all tools and libraries required to run the script, thus simplifying all installation
issues.

a. Principle

This recipe implements a simplified version of a Matlab function, regionprops() [12], which
measures properties of image regions. The result is rather crude, and works only to a certain
point.
The algorithm is as follows:

• 3D data points are first thresholded by distance, keeping only the nearest ones, so as
to distinguish them from the scene background. The remaining points are then sub-
divided into groups for which we compute contours and convex hulls.
Ideally, there should only be one such group, representing the hand of the user we
want to track. The hand position will be determined as the centroid of this group.

• In addition, a mouse click will be simulated when the user closes her fist. Contours
of the group will then “look like a small circle”.

 6

b. Issues

Once implemented, this method allowed some control over the mouse pointer and click, but
numerous issues made it very uncomfortable to use, prompting us to look for a more sophis-
ticated solution:

• The distance threshold parameter is very difficult to adjust. Small values (1 m) allow
to detect the hands, but only when the used is very close to the Kinect. This is unus-
able in a larger room, for instance if several users are to sit in front of the sensor.

• The algorithm tends to detect a lot of “false positives”, such the other hand of the
user, a forearm, etc. This makes movement tracking and click simulation very erratic.

III.3 Using OpenNI

This method was successfully experimented both under Linux and Windows. As is detailed
in the “Issues” section below, the increased complexity of the underlying software stack
posed no particular problem under Linux, but required much more trial-and-error experi-
mentations to get it to compile under Windows.
We resorted to the following tools:

• The OpenNI natural interaction libraries
• The NITE gesture tracking plug-in to OpenNI
• The PyOpenNI [13] Python bindings to OpenNI

The PyOpenNI Python binding is designed and maintained by Xavier Mendez, a young de-
veloper from Barcelona, Spain. It is written in C++, which makes its installation more com-
plicated as compared to a “pure Python” module, and platform-dependent. But Xavier was
very helpful, and his advice, both through the official OpenNI mailing list, and by e-mail,
proved essential to the success of our experiment.

a. Principles

The use of OpenNI / PyOpenNI makes the solution very simple to develop. Basically,
OpenNI can provide us with:

• A “Gesture Generator”: this object will be able to detect NITE-defined gestures such
as “Click”, “Wave” or “RaiseHand”, and execute callback functions as a result.

• A “Hands Generator”: this object will be able to track a designated hand, returning a
3D (x,y,z) position in real-time. For the purposes of mouse pointer simulation, only
the (x,y) coordinates will be retained.

b. Issues

As we mentioned above, the main issues we encountered were related to compiling and in-
stalling the PyOpenNI module under Windows. The whole step-by-step process was doc-
umented in detail, and is currently being added to the official PyOpenNI documentation
wiki.
A similar installation under OS X should be possible but might require some work, too.
Luckily, the experience acquired during our initial unsuccessful attempts under Windows
should prove very useful in order to reach the solution faster.
It should be noted, however, that once PyOpenNI has been successfully compiled on a given
platform, the resulting shared libraries can be distributed without having to go though the
hassle of a recompilation.

 7

IV Results and perspectives
The two approaches exposed in the previous section (“Freenect” and “OpenNI”) were ex-
plored and integrated into a new, experimental version of MINDs (although the “OpenNI”
approach looks much more promising, and will most likely be the one retained in future
work). This new version is only a work in progress, a first step towards a more complete
solution: at this stage, we were not trying to provide a fully packaged, ready-to-use solution,
but rather a proof-of-concept prototype.
In this regard, the experiment is a total success, as the prototypes successfully run under Li-
nux and Windows.
The next step will be to demonstrate and test the prototypes with real users.
Future paths of experimentation might include refining gesture tracking, possibly imple-
menting custom additional gestures, and implement multiple hand tracking to allow for
multi-user interaction.

Acknowledgement

We would like to thank Xavier Mendez, who designed the PyOpenNI module, and whose
support was invaluable in making our solution work on the Windows platform.

References

 [1] MINDs — http://minwii.org

 [2] Wiimote — https://en.wikipedia.org/wiki/Wii_Remote

 [3] Kinect — https://en.wikipedia.org/wiki/Kinect

 [4] The Kinect also offers a microphone array, for spatial sound recognition, a ver-
tical-tilt motor, and a multi-coloured led which can be controlled by software.

 [5] PrimeSense – http://www.primesense.com

 [6] Kinect for Windows — https://www.microsoft.com/en-us/kinectforwindows

 [7] Source of the picture: http://rymixxx.wordpress.com/2011/01/29/linux-
freenect-demos

 [8] OpenCv — https://en.wikipedia.org/wiki/OpenCV

 [9] Asus Xtion —
http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO_LIVE

 8

 [10] Source of the pictures: OpenNI official documentation.

 [11] OpenKinect Mouse Control Using Python —
http://code.activestate.com/recipes/578104

 [12] The Matlab regionprops() function —
http://www.mathworks.fr/fr/help/images/ref/regionprops.html

 [13] PyOpenNI — https://github.com/jmendeth/PyOpenNI

MINDs+Kinect Documentation
Release 2.1a

Laurent DAVERIO

October 24, 2012

Contents

1 Project Overview 1
1.1 Low-level support . 1
1.2 High-level support . 1
1.3 Integration with MINDs . 2

2 Ubuntu Linux PyOpenNI setup instructions 3
2.1 Setup Python virtual environment . 3
2.2 Make Kinect devices available to OpenNI . 3
2.3 Install and test OpenNI . 4
2.4 Install PyOpenNI, the Python bindings for OpenNI . 5
2.5 Install MINDs . 6

3 Windows PyOpenNI setup instructions (32-bit) 7
3.1 Setup Python working environment . 7
3.2 Install and test OpenNI . 7
3.3 Build and Install PyOpenNI, the Python bindings for OpenNI 8
3.4 Install MINDs . 13

4 MINDs installation 15
4.1 Install MINDs under Linux . 15
4.2 Install MINDs under Windows (32-bit) . 16

5 Low-level Kinect support under Ubuntu Linux 19
5.1 Install and test the libfreenect library . 19
5.2 Install and test libfreenect Python wrappers . 20

i

ii

CHAPTER 1

Project Overview

The aim of this experimentation is to identify existing free software stacks available to add Kinect support to
MINDs and other Python projects.

More specifically, the first expected outcome is a solution to emulate a mouse through real-time hand tracking.

A quick overview of available solutions returns tools operating at various levels:

1. Low-level: USB driver for the Kinect device. Raw video and 3D data capture.

2. High-level: scene detection, hand tracking, gesture tracking.

At a second stage, the relevant tools should be integrated into MINDs, and tested “in the field”.

1.1 Low-level support

The starting point is the OpenKinect (http://openkinect.org) website, which provides links and pointers to the
available software, as well as build instructions.

• libusb: a suite of user-mode routines for controlling data transfer to and from USB devices on Unix-like
systems without the need for kernel-mode drivers.

URL: http://libusb.org/

• libfreenect : Drivers and libraries for the Kinect device on Windows, Linux, and OS X.

URL: https://github.com/OpenKinect/libfreenect

libfreenect offers Python bindings, a prerequisite for our needs.

• OpenCV (Open Computer Vision) is a library of programming functions for real-time image analysis and
display. We will use it to implement a crude hand-tracking system.

URL: http://code.opencv.org/projects/OpenCV/wiki/WikiStart

OpenCV offers Python bindings, too.

1.2 High-level support

• Microsoft’s Kinect for Windows SDK is a proprietary, Windows-only SDK. As we are looking to build a
multiplatform solution, this solution must be left aside..

• OpenNI (Open Natural Interaction) is an open-source framework providing a high-level Java/C++ API for
writing applications utilizing Natural Interaction. It is developed by PrimeSense, the Israeli company
having designed the Kinect’s hardware.

1

http://minwii.org
http://openkinect.org
http://libusb.org/
https://github.com/OpenKinect/libfreenect
http://code.opencv.org/projects/OpenCV/wiki/WikiStart
https://www.microsoft.com/en-us/kinectforwindows/

MINDs+Kinect Documentation, Release 2.1a

URL: http://openni.org

A gesture recognition library, NITE, is built on top of OpenNI. Although it is a proprietary pluin, it’s free
of use.

Python bindings for OpenNI/NITE are provided by a third-party module, PyOpenNI. It is developed and
maintained by Xavier Mendez, an young developer from Barcelona, Spain.

1.3 Integration with MINDs

The existing version of MINDs uses a specific Python module to emulate a mouse. It offers a binary choice at
launch (WiiMote / no Wiimote). When Wiimote support is not selected, the application falls back to mouse-only
operation.

The first steps for integration would then be :

• To replace the binary choice (WiiMote / no Wiimote) with a more flexible “controller type” selection.

• To locate the Wiimote middleware component in MINDs, and develop a Kinect middleware module using
the same interface.

At a later time, a more extensive refactoring could/should be done, eventually leading to a MINDs v3 release.

2 Chapter 1. Project Overview

http://openni.org
https://github.com/jmendeth/PyOpenNI

CHAPTER 2

Ubuntu Linux PyOpenNI setup
instructions

This explains how to install the dependencies required to get MINDs working on Ubuntu Linux 12.04.1 “Pan-
golin” (32/64-bit).

→ It is loosely based on this page [openkinect.org].

2.1 Setup Python virtual environment

Dev environment
sudo apt-get install mc git subversion python-dev python-virtualenv fabric

Get dev files from git (Note: temporary repository URL)
git clone ssh://vialfre/Users/daverio/projects/git/kinect.git

Setup virtualenv and Python dependencies (PyGame, etc.)
cd kinect
. bin/activate
pip install -r requirements.txt

2.2 Make Kinect devices available to OpenNI

A pair of conflicting kernel modules must be unloaded, because they capture the Kinect device first, thus making
it unavailable to OpenNI: gspca_kinect and gspca_main. This output from dmesg shows the typical log
trace of gspca:

Extract of "dmesg" output:
[1477.856021] usb 2-6: new high-speed USB device number 2 using ehci_hcd
[1477.988629] hub 2-6:1.0: USB hub found
[1477.988708] hub 2-6:1.0: 3 ports detected
[1478.804089] usb 2-6.2: new full-speed USB device number 3 using ehci_hcd
[1480.340090] usb 2-6.1: new high-speed USB device number 4 using ehci_hcd
[1481.876089] usb 2-6.3: new high-speed USB device number 5 using ehci_hcd
[1482.055668] Linux video capture interface: v2.00
[1482.069476] gspca_main: v2.14.0 registered
[1482.072636] gspca_main: kinect-2.14.0 probing 045e:02ae
[1482.072691] usbcore: registered new interface driver kinect

Here is how to unload them:

3

http://openkinect.org/wiki/Getting_Started#Ubuntu.2FDebian

MINDs+Kinect Documentation, Release 2.1a

sudo modprobe -r gspca_kinect
sudo modprobe -r gspca_main

The best is to blacklist them permanently:

Symlink blacklist into modprobe.d/
sudo ln -s blacklist_gspca.conf /etc/modprobe.d

sudo depmod -a
sudo reboot

2.3 Install and test OpenNI

2.3.1 Install OpenNI binaries

→ This section is inspired from this page [igorbarbosa.com].

Make sure the Kinect is unplugged before starting the installation.

1. Download the packages for OpenNI and NITE from http://www.openni.org/Downloads/OpenNIModules.aspx.

Note: For Ubuntu 12.04, you need the unstable packages:

• OpenNI UNstable build for Ubuntu 12.04 - v1.5.4

• PrimeSense NITE UNstable build for Ubuntu 12.04 - v1.5.2.21

2. In addition, get the avin2 hardware driver for Kinect. It is an improved version of the official PrimeSense
Sensor driver.

You can now install the binaries:

Install dependencies
sudo apt-get install g++ default-jdk freeglut3-dev

cd kinect/sources/openni

OpenNI
Untar openni-bin-dev-linux-x64-v1.5.4.0.tar.bz2
cd OpenNI-Bin-Dev-Linux-x64-v1.5.4.0/
sudo ./install.sh

Avin2 Sensor Driver
Unzip avin2-SensorKinect-v0.93-5.1.2.1-0-g15f1975.zip
cd avin2-SensorKinect-15f1975/Platform/Linux/CreateRedist
./RedistMaker
cd ../Redist/Sensor-Bin-Linux-x64-v5.1.2.1/
sudo ./install.sh

Untar nite-bin-linux-x64-v1.5.2.21.tar.bz2
cd NITE-Bin-Dev-Linux-x64-v1.5.2.21/
sudo ./install.sh

Note: Uninstalling the modules above can be done through the following command:

sudo ./install.sh -u

4 Chapter 2. Ubuntu Linux PyOpenNI setup instructions

http://igorbarbosa.com/articles/how-to-install-kin-in-linux-mint-12-ubuntu/
http://www.openni.org/Downloads/OpenNIModules.aspx
https://github.com/avin2/SensorKinect/zipball/unstable

MINDs+Kinect Documentation, Release 2.1a

2.3.2 Alternative: Install OpenNI from source code

This section is inspired from this page [keyboardmods.com]. It is here for information only: as of today, OpenNI
doesn’t build as is, the Makefile seems to be faulty regarding the install part.

Install dependencies (C++, JDK, OpenGL headers, etc.)
sudo apt-get install g++ default-jdk freeglut3-dev doxygen

Checkout OpenNI sources
cd build
git clone https://github.com/OpenNI/OpenNI.git

Build and install OpenNI
cd OpenNI/Platform/Linux/Build
make && sudo make install

Note: (14) Open Sample-User.xml and replace the existing License line with the line below:

<!-- This is case-sensitive! -->
< License vendor="PrimeSense" key="0KOIk2JeIBYClPWVnMoRKn5cdY4="/>

15. Repeat step 14 for Sample-Scene.xml and Sample-Tracking.xml.

2.3.3 Test OpenNI

Remember to plug the Kinect first. Look for samples inside the Samples/Bin/X64-Release/ subdirectories
of the OpenNI and NITE packages, e.g.:

Go to the OpenNI samples directory
cd kinect/sources/openni
cd OpenNI-Bin-Dev-Linux-x64-v1.5.4.0/Samples/Bin/x64-Release

Run sample application
./SampleNiUserTracker

2.4 Install PyOpenNI, the Python bindings for OpenNI

In addition to OpenNI, PyOpenNI has a dependency on Boost and its Python bindings.

Install CMake, Boost + Boost Python bindings (1.46)
sudo apt-get install cmake libboost-python-dev

Build PyOpenNI
git clone https://github.com/jmendeth/PyOpenNI
mkdir PyOpenNI-build
cd PyOpenNI-build
cmake ../PyOpenNI
make

Install library inside the virtual environment
cp lib/openni.so ../../lib/python2.7/site-packages/

2.4.1 Test PyOpenNI

Try to run the hand-tracker.py script. It should follow the user’s hand after a “Click” gesture:

2.4. Install PyOpenNI, the Python bindings for OpenNI 5

http://www.keyboardmods.com/2010/12/howto-kinect-openninite-skeleton.html

MINDs+Kinect Documentation, Release 2.1a

cd kinect
python hand-tracker.py

2.5 Install MINDs

See Install MINDs under Linux.

6 Chapter 2. Ubuntu Linux PyOpenNI setup instructions

CHAPTER 3

Windows PyOpenNI setup
instructions (32-bit)

This explains how to install the dependencies required to get MINDs working on Windows in 32-bit mode (the
preferred mode for Windows XP). It was tested on Windows Seven Pro SP1.

Note: For instructions on how to build the 64-bit version, please refer to the “win64-setup” page.

As many operations involved in the build process are lengthy ones (setting up Windows, installing system updates,
installing Visual Studio Pro, building/installing the Boost library), the whole process typically takes a couple of
days to complete.

3.1 Setup Python working environment

1. Install Cygwin – from http://www.cygwin.com

Cygwin provides useful tools such as a SSH server, Subversion, etc.

• openssh * http://tsengf.blogspot.fr/2011/06/installing-sshd-in-cygwin-on-windows-7.html * Open in-
bound port 22 in firewall

• rsync vim mc unzip subversion

2. Open a Cygwin Bash terminal.

Get dev files from git (Note: temporary repository URL)
git clone ssh://vialfre/Users/daverio/projects/git/kinect.git

3.2 Install and test OpenNI

Make sure the Kinect is unplugged before starting the installation.

1. Download the packages for OpenNI and NITE from http://www.openni.org/Downloads/OpenNIModules.aspx.

Note: In order to remain in line with the “Ubuntu Linux PyOpenNI setup instructions” page, we choose
the unstable packages:

• OpenNI UNstable build for Windows x86 (32-bit) - v1.5.4.0 Development Edition

• PrimeSense NITE UNstable build for Windows x82 (32-bit) - v1.5.2.21 Development Edition

7

http://www.cygwin.com
http://tsengf.blogspot.fr/2011/06/installing-sshd-in-cygwin-on-windows-7.html
http://www.openni.org/Downloads/OpenNIModules.aspx

MINDs+Kinect Documentation, Release 2.1a

2. In addition, get the avin2 hardware driver for Kinect:

• SensorKinect093-Bin-Win32-v5.1.2.1.msi

It is an improved version of the official PrimeSense Sensor driver, which doesn’t work.

Note: For the comple collection of drivers, see the avin2/SensorKinect download page on Github.

3. Install OpenNI, SensorKinect and Nite, in that order.

3.2.1 Test OpenNI

Remember to plug the Kinect first. Sample applications can be run from Windows’ Start Menu, e.g.:

• PrimeSense → NITE → Samples → Sample-PointViewer

3.3 Build and Install PyOpenNI, the Python bindings for OpenNI

3.3.1 Requirements for the dev platform

We need to install the following packages:

1. Python 2.7.3 (32-bit) – from http://www.python.org

→ We accept the default location, C:\Python27.

2. Git for Windows – from Google Code.

→ Here, we also accept the default options, i.e. enable git-shell for all users.

3. Visual Studio 2010 Pro (install DVD plus online updates)

→ Make sure the “VC++ compiler” option is checked. Other languages (Visual Basic, C#, F#, etc.) can be
left out.

4. [Optional] MinGW (“Minimal GNU for Windows”) – from http://www.mingw.org/wiki/Getting_Started

MinGC provides a gcc compiler, which could probably be used as an alternative to Visual C++.

→ Download “mingw-get-inst-20120426” from https://sourceforge.net/projects/mingw/files/Installer/mingw-
get-inst/

→ Accept default location for install (C:\MinGW). Only check the “C++ compiler” option. “MSYS Sys-
tem” is not needed, so we’ll leave it out.

Add C:\MinGW\bin to the PATH environment variables for all users.

5. CMake – from http://www.cmake.org

→ Accept the default location. Add to PATH for all users.

6. Pkg-config and its dependencies, available from http://ftp.gnome.org/pub/gnome/binaries/win32/ (both
32-bit and 64-bit versions can be used):

It must be placed in a PATH directory, e.g. C:\MinGW\bin.

• pkg-config 0.26-1

→ Copy bin/pgk-config.exe into the bin directory of MinGW.

• glib 2.28.8-1

→ Copy bin/libglib-2.0-0.dll directory into the bin directory of MinGW.

• gettext 0.18.1.1-2

→ Copy bin/intl.dll into the bin directory of MinGW.

8 Chapter 3. Windows PyOpenNI setup instructions (32-bit)

https://github.com/downloads/avin2/SensorKinect/SensorKinect093-Bin-Win32-v5.1.2.1.msi
https://github.com/avin2/SensorKinect/download
http://www.python.org
http://code.google.com/p/msysgit/downloads/list?can=3
http://www.mingw.org/wiki/Getting_Started
https://sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/
https://sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/
http://www.cmake.org
http://ftp.gnome.org/pub/gnome/binaries/win32/
http://ftp.acc.umu.se/pub/gnome/binaries/win32/dependencies/pkg-config_0.26-1_win32.zip
http://ftp.acc.umu.se/pub/gnome/binaries/win32/glib/2.28/glib_2.28.8-1_win32.zip
http://ftp.gnome.org/pub/gnome/binaries/win32/dependencies/gettext-tools-dev_0.18.1.1-2_win32.zip

MINDs+Kinect Documentation, Release 2.1a

7. The Boost-Python C++ library – from http://www.boost.org/

We need to compile boost-python from source. The process is inspired from this page.

→ Download boost_1_51_0.zip. Unzip it and rename the directory as C:\boost.

Inside the C:\boost directory, create file user-config.jam as follows:

1 import toolset : using ;
2 using python : 2.7 : "C:/Python27" : "C:/Python27/include" : "C:/Python27/libs" ;

Open a Cmd command prompt window.

cd C:\boost

:: Build bjam
bootstrap.bat mingw

:: Build boost-python for Visual Studio
bjam toolset=msvc link=shared --with-python --user-config=user-config.jam

:: Alternative: build boost-python for MinGW
bjam toolset=gcc link=shared --with-python --user-config=user-config.jam

3.3.2 Get the source code for PyOpenNI

1. Open a git-shell window and get a clone of the the PyOpenNI repository:

Clone repository
git clone https://github.com/jmendeth/PyOpenNI.git

Close the git-shell window.

2. Patch PyOpenNI

At the time of writing, compilation of PyOpenNNI under visual Studio produces a series of C2664 and
C2373 errors. For the time being, we will patch the source code.

Note:

• For the C2664s, add explicit type casts as suggested by the error messages.

• For the C2373s, add the XN_CALLBACK_TYPE keyword in the relevant header files.

The author of PyOpenNI was notified of the modifications.

1 diff --git a/src/GestureGeneratorWrapper.cpp b/src/GestureGeneratorWrapper.cpp
2 index 8395fd2..d0f872f 100644
3 --- a/src/GestureGeneratorWrapper.cpp
4 +++ b/src/GestureGeneratorWrapper.cpp
5 @@ -64,7 +64,7 @@ XnCallbackHandle* GestureGenerator_RegisterGestureCallbacks_wrapped(xn::GestureG
6 cookie[0] = gesture_recognized;
7 cookie[1] = gesture_progress;
8

9 - check(self.RegisterGestureCallbacks(&GestureRecognized_callback, &GestureProgress_callback, cookie, *handle));
10 + check(self.RegisterGestureCallbacks((xn::GestureGenerator::GestureRecognized)&GestureRecognized_callback, (xn::GestureGenerator::GestureProgress)&GestureProgress_callback, cookie, *handle));
11 return handle;
12 }
13

14 diff --git a/src/GestureGeneratorWrapper.h b/src/GestureGeneratorWrapper.h
15 index 50d96ab..55a5048 100644
16 --- a/src/GestureGeneratorWrapper.h
17 +++ b/src/GestureGeneratorWrapper.h
18 @@ -44,7 +44,7 @@ BP::list GestureGenerator_GetAvailableGestures(xn::GestureGenerator& self);

3.3. Build and Install PyOpenNI, the Python bindings for OpenNI 9

http://www.boost.org/
http://ctrl-dev.com/2012/02/compiling-boost-python-with-mingw/
http://sourceforge.net/projects/boost/files/boost/1.51.0/boost_1_51_0.zip/download
http://msdn.microsoft.com/en-us/library/s5b150wd%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/k6z2ykx4%28v=vs.71%29.aspx

MINDs+Kinect Documentation, Release 2.1a

19

20

21 //Internal callback implementations
22 -void GestureRecognized_callback(xn::GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pIDPosition, const XnPoint3D *pEndPosition, void *pCookie);
23 -void GestureProgress_callback(xn::GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pPosition, XnFloat fProgress, void *pCookie);
24 +void XN_CALLBACK_TYPE GestureRecognized_callback(xn::GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pIDPosition, const XnPoint3D *pEndPosition, void *pCookie);
25 +void XN_CALLBACK_TYPE GestureProgress_callback(xn::GestureGenerator &generator, const XnChar *strGesture, const XnPoint3D *pPosition, XnFloat fProgress, void *pCookie);
26

27 #endif /* GESTURE_GENERATOR_WRAPPER_H */
28 diff --git a/src/HandsGeneratorWrapper.cpp b/src/HandsGeneratorWrapper.cpp
29 index 3cb88e3..1ff5815 100644
30 --- a/src/HandsGeneratorWrapper.cpp
31 +++ b/src/HandsGeneratorWrapper.cpp
32 @@ -42,7 +42,7 @@ XnCallbackHandle HandsGenerator_RegisterHandCallbacks_wrapped(xn::HandsGenerator
33 cookie[1] = update;
34 cookie[2] = destroy;
35

36 - check(self.RegisterHandCallbacks(&Create_callback, &Update_callback, &Destroy_callback, cookie, handle));
37 + check(self.RegisterHandCallbacks((xn::HandsGenerator::HandCreate)&Create_callback, (xn::HandsGenerator::HandUpdate)&Update_callback, &Destroy_callback, cookie, handle));
38

39 return handle;
40 }
41 @@ -71,4 +71,4 @@ void XN_CALLBACK_TYPE Destroy_callback(xn::HandsGenerator& src, XnUserID user, X
42

43 //Call the function
44 func(src, user, fTime);
45 -}
46 \ No newline at end of file
47 +}
48 diff --git a/src/HandsGeneratorWrapper.h b/src/HandsGeneratorWrapper.h
49 index d53b109..fbe5825 100644
50 --- a/src/HandsGeneratorWrapper.h
51 +++ b/src/HandsGeneratorWrapper.h
52 @@ -33,8 +33,8 @@ XnCallbackHandle HandsGenerator_RegisterHandCallbacks_wrapped(xn::HandsGenerator
53 void HandsGenerator_StartTracking_wrapped(xn::HandsGenerator& self, BP::list point);
54

55 /** Internal callback implementations **/
56 -void Create_callback(xn::HandsGenerator& src, XnUserID user, const XnPoint3D *pPosition, XnFloat fTime, void* cookie);
57 -void Update_callback(xn::HandsGenerator& src, XnUserID user, const XnPoint3D *pPosition, XnFloat fTime, void* cookie);
58 -void Destroy_callback(xn::HandsGenerator& src, XnUserID user, XnFloat fTime, void* cookie);
59 +void XN_CALLBACK_TYPE Create_callback(xn::HandsGenerator& src, XnUserID user, const XnPoint3D *pPosition, XnFloat fTime, void* cookie);
60 +void XN_CALLBACK_TYPE Update_callback(xn::HandsGenerator& src, XnUserID user, const XnPoint3D *pPosition, XnFloat fTime, void* cookie);
61 +void XN_CALLBACK_TYPE Destroy_callback(xn::HandsGenerator& src, XnUserID user, XnFloat fTime, void* cookie);
62

63 #endif /* HANDS_GENERATOR_WRAPPER_H */
64 diff --git a/src/PoseDetectionCapabilityWrapper.cpp b/src/PoseDetectionCapabilityWrapper.cpp
65 index 8a82c7e..e2703f9 100644
66 --- a/src/PoseDetectionCapabilityWrapper.cpp
67 +++ b/src/PoseDetectionCapabilityWrapper.cpp
68 @@ -40,7 +40,7 @@ XnCallbackHandle PoseDetectionCapability_RegisterPoseDetectedCallback(xn::PoseDe
69 BP::object* cookie = new BP::object;
70 *cookie = callback;
71

72 - check(self.RegisterToPoseDetected(&PoseDetectionCapability_PoseDetection_cb, cookie, handle));
73 + check(self.RegisterToPoseDetected((xn::PoseDetectionCapability::PoseDetection)&PoseDetectionCapability_PoseDetection_cb, cookie, handle));
74

75 return handle;
76 }
77 @@ -54,7 +54,7 @@ XnCallbackHandle PoseDetectionCapability_RegisterOutOfPoseCallback(xn::PoseDetec
78 BP::object* cookie = new BP::object;
79 *cookie = callback;
80

81 - check(self.RegisterToOutOfPose(&PoseDetectionCapability_PoseDetection_cb, cookie, handle));

10 Chapter 3. Windows PyOpenNI setup instructions (32-bit)

MINDs+Kinect Documentation, Release 2.1a

82 + check(self.RegisterToOutOfPose((xn::PoseDetectionCapability::PoseDetection)&PoseDetectionCapability_PoseDetection_cb, cookie, handle));
83

84 return handle;
85 }
86 diff --git a/src/PoseDetectionCapabilityWrapper.h b/src/PoseDetectionCapabilityWrapper.h
87 index 8ead590..68ce95c 100644
88 --- a/src/PoseDetectionCapabilityWrapper.h
89 +++ b/src/PoseDetectionCapabilityWrapper.h
90 @@ -38,6 +38,6 @@ void PoseDetectionCapability_UnregisterOutOfPoseCallback(xn::PoseDetectionCapabi
91

92

93 /** Internal callback implementations **/
94 -void PoseDetectionCapability_PoseDetection_cb(xn::PoseDetectionCapability& src, const XnChar* pose, XnUserID user, void* cookie);
95 +void XN_CALLBACK_TYPE PoseDetectionCapability_PoseDetection_cb(xn::PoseDetectionCapability& src, const XnChar* pose, XnUserID user, void* cookie);
96

97 #endif /* POSE_DETECTION_CAPABILITY_WRAPPER_H */
98 diff --git a/src/SkeletonCapabilityWrapper.cpp b/src/SkeletonCapabilityWrapper.cpp
99 index ce2a22a..881839f 100644

100 --- a/src/SkeletonCapabilityWrapper.cpp
101 +++ b/src/SkeletonCapabilityWrapper.cpp
102 @@ -81,7 +81,7 @@ XnCallbackHandle SkeletonCapability_RegisterCalibrationStart(xn::SkeletonCapabil
103 BP::object* cookie = new BP::object;
104 *cookie = callback;
105

106 - check(self.RegisterToCalibrationStart(&SkeletonCapability_CalibrationStart_cb, cookie, handle));
107 + check(self.RegisterToCalibrationStart((xn::SkeletonCapability::CalibrationStart)&SkeletonCapability_CalibrationStart_cb, cookie, handle));
108

109 return handle;
110 }
111 @@ -95,7 +95,7 @@ XnCallbackHandle SkeletonCapability_RegisterCalibrationComplete(xn::SkeletonCapa
112 BP::object* cookie = new BP::object;
113 *cookie = callback;
114

115 - check(self.RegisterToCalibrationComplete(&SkeletonCapability_CalibrationStatus_cb, cookie, handle));
116 + check(self.RegisterToCalibrationComplete((xn::SkeletonCapability::CalibrationComplete)&SkeletonCapability_CalibrationStatus_cb, cookie, handle));
117

118 return handle;
119 }
120 @@ -109,7 +109,7 @@ XnCallbackHandle SkeletonCapability_RegisterCalibrationInProgress(xn::SkeletonCa
121 BP::object* cookie = new BP::object;
122 *cookie = callback;
123

124 - check(self.RegisterToCalibrationInProgress(&SkeletonCapability_CalibrationStatus_cb, cookie, handle));
125 + check(self.RegisterToCalibrationInProgress((xn::SkeletonCapability::CalibrationInProgress)&SkeletonCapability_CalibrationStatus_cb, cookie, handle));
126

127 return handle;
128 }
129 diff --git a/src/UserGeneratorWrapper.cpp b/src/UserGeneratorWrapper.cpp
130 index 8943b70..892e3e9 100644
131 --- a/src/UserGeneratorWrapper.cpp
132 +++ b/src/UserGeneratorWrapper.cpp
133 @@ -106,7 +106,7 @@ XnCallbackHandle UserGenerator_RegisterUserCallbacks_wrapped(xn::UserGenerator&
134 cookie[0] = newUser;
135 cookie[1] = lostUser;
136

137 - check(self.RegisterUserCallbacks(&NewUser_callback, &LostUser_callback, cookie, handle));
138 + check(self.RegisterUserCallbacks((xn::UserGenerator::UserHandler)&NewUser_callback, (xn::UserGenerator::UserHandler)&LostUser_callback, cookie, handle));
139

140 return handle;
141 }
142 diff --git a/src/UserGeneratorWrapper.h b/src/UserGeneratorWrapper.h
143 index 82d7430..83c77f0 100644
144 --- a/src/UserGeneratorWrapper.h

3.3. Build and Install PyOpenNI, the Python bindings for OpenNI 11

MINDs+Kinect Documentation, Release 2.1a

145 +++ b/src/UserGeneratorWrapper.h
146 @@ -41,7 +41,7 @@ XnCallbackHandle UserGenerator_RegisterUserCallbacks_wrapped(xn::UserGenerator&
147 void UserGenerator_UnregisterUserCallbacks_wrapped(xn::UserGenerator& self, XnCallbackHandle handle);
148

149 /** Internal callback implementations **/
150 -void NewUser_callback(xn::UserGenerator& src, XnUserID user, void* cookie);
151 -void LostUser_callback(xn::UserGenerator& src, XnUserID user, void* cookie);
152 +void XN_CALLBACK_TYPE NewUser_callback(xn::UserGenerator& src, XnUserID user, void* cookie);
153 +void XN_CALLBACK_TYPE LostUser_callback(xn::UserGenerator& src, XnUserID user, void* cookie);
154

155 #endif /* USER_GENERATOR_WRAPPER_H */
156 diff --git a/src/wrapper.cpp b/src/wrapper.cpp
157 index bbb7410..cec60b4 100644
158 --- a/src/wrapper.cpp
159 +++ b/src/wrapper.cpp
160 @@ -233,4 +233,4 @@ BOOST_PYTHON_MODULE(openni) {
161 scope().attr("CAPABILITY_LOW_LIGHT_COMPENSATION") = XN_CAPABILITY_LOW_LIGHT_COMPENSATION;
162 scope().attr("CAPABILITY_ANTI_FLICKER") = XN_CAPABILITY_ANTI_FLICKER;
163 scope().attr("CAPABILITY_HAND_TOUCHING_FOV_EDGE") = XN_CAPABILITY_HAND_TOUCHING_FOV_EDGE;
164 - scope().attr("CAPABILITY_ANTI_FILCKER") = XN_CAPABILITY_ANTI_FILCKER;
165 + //scope().attr("CAPABILITY_ANTI_FILCKER") = XN_CAPABILITY_ANTI_FILCKER;

(pending...)

3. Open a Cmd command prompt window.

:: Prepare a build directory
md PyOpenNI-build
cd PyOpenNI-build

3.3.3 Build PyOpenNi using Visual Studio

1. Open a Cmd command prompt window.

:: Run CMake. Ignore messages about compiler flags
cmake -G "Visual Studio 10" ..\PyOpenNI

2. From the Explorer, double-click on PyOpenNI.sln. Visual Studio will then be launched.

3. In the “Solution Configuration” dropbox, select Release

4. Generate the solution by pressing the F7 key

3.3.4 Alternative : build PyOpenNI using MinGW

1. Open a Cmd command prompt window.

:: Run CMake. Ignore messages about compiler flags
cmake -G "MinGW Makefiles" ..\PyOpenNI

:: Build PyOpenNI using MinGW
mingw32-make

→ For the time being, compilation fails because OpenNI headers require a Microsoft compiler on the win32
platform.

3.3.5 Install PyOpenNI

Locate the generated openni.dll file, and copy it into Python’s site-packages subdirectory with the pyd
extension:

12 Chapter 3. Windows PyOpenNI setup instructions (32-bit)

MINDs+Kinect Documentation, Release 2.1a

:: copy Boost-python
cp C:\boost\stage\lib\boost_python-vc100-mt-1_51.dll C:\Python27\Lib\site-packages

:: copy and rename openni.dll
cp bin\Release\openni.dll C:\Python27\Lib\site-packages\openny.pyd

3.3.6 Test PyOpenNI

1. Open Python shell (IDLE) and type:

import openni

No error message should be displayed.

2. In the Explorer, locate kinect\hand-tracker.py and double-click on it.

→ The programme should follow the user’s hand after a “Click” gesture.

3.4 Install MINDs

See Install MINDs under Windows (32-bit).

3.4. Install MINDs 13

MINDs+Kinect Documentation, Release 2.1a

14 Chapter 3. Windows PyOpenNI setup instructions (32-bit)

CHAPTER 4

MINDs installation

4.1 Install MINDs under Linux

1. Prerequisites:

• For OpenNI-related libraries, see Ubuntu Linux PyOpenNI setup instructions.

• Ubuntu Linux provides PyGame in its system repositories.

sudo apt-get install python-pygame

Symlink PyGame into the virtual environment
ln -s /usr/lib/python2.7/dist-packages/pygame* lib/python2.7/site-packages

Note: Ubuntu Linux uses nonstandard locations for its Python modules. For more details, see Install
and test libfreenect Python wrappers.

• Ubuntu Linux also provides Fluidsynth in its system repositories.

Install Fluidsynth
sudo apt-get install fluidsynth

2. Checkout MINDs from SVN

Activate virtual environment
cd kinect
. bin/activate

Checkout from SVN (here, the "ld-kinect" branch)
svn co https://svn.cri.ensmp.fr/svn/minwii/branches/ld-kinect/src minds

Checkout full trunk in another directory. This will give access to the songs
svn co https://svn.cri.ensmp.fr/svn/minwii/trunk sources/minds

Develop
cd minds
python setup.py develop

Shortcut link to the songs directory
ln -s ../sources/minds/chansons

3. Run MINDs

15

MINDs+Kinect Documentation, Release 2.1a

Run MINDs with the OpenNI Kinect support
runminds -t kinect2

4.2 Install MINDs under Windows (32-bit)

Note: This sections describes the manual installation of MINDs. A binary installer is available from the MINDs
website.

1. Prerequisites:

• For OpenNI-related libraries, see Windows PyOpenNI setup instructions (32-bit).

• Python Setuptools – from http://pypi.python.org/pypi/setuptools

Download and install setuptools-0.6c11.win32-py2.7.exe

• PyGame – install it from http://www.pygame.org/download.shtml

Download and install pygame-1.9.1.win32-py2.7.msi

Note: If default option “Python from Registry” fails, select the “Python from another location” option
instead.

• FluidSynth – from the Qsynth website

(Qsynth includes a patched version of FluidSynth which can be used under Windows.)

Download and install qsynth-0.3.6-setup.exe.

In the install directory, locate the three DLLs:

– libfluidsynth.dll

– libgthread-2.0-0.dll

– libsndfile-1.dll

and copy them to a PATH directory, e.g. C:\MinGW\bin or C:\Windows\System32.

(This is mandated by the ctypes.utils.find_library function used by the pyFluidSynth module).

2. Checkout MINDs from SVN

Open a Cygwin Bash terminal.

cd kinect

Checkout from SVN (here, the "ld-kinect" branch)
svn co https://svn.cri.ensmp.fr/svn/minwii/branches/ld-kinect/src minds

Checkout full trunk in another directory. This will give access to the songs
svn co https://svn.cri.ensmp.fr/svn/minwii/trunk sources/minds

Close the terminal.

From the Explorer, copy the sources\minds\chansons directory into the minds directory. This will
make the songs easier to choose.

3. Install the MINDs python modules (minwii, ...)

Open a Cmd command prompt window.

:: MINDs source code
cd kinect\minds

:: Install MINDs and its dependencies (‘‘PyFluidSynth‘‘, etc.)
C:\Python27\Python setup.py develop

16 Chapter 4. MINDs installation

http://pypi.python.org/pypi/setuptools
http://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11.win32-py2.7.exe#md5=57e1e64f6b7c7f1d2eddfc9746bbaf20
http://www.pygame.org/download.shtml
http://pygame.org/ftp/pygame-1.9.1.win32-py2.7.msi
http://qsynth.sourceforge.net/qsynth-index.html
http://sourceforge.net/projects/qsynth/files/qsynth%20%28stable%29/0.3.6/qsynth-0.3.6-setup.exe/download
http://docs.python.org/library/ctypes.html#finding-shared-libraries

MINDs+Kinect Documentation, Release 2.1a

4. Run MINDs

Run MINDs with the OpenNI Kinect support
runminds -t kinect

4.2. Install MINDs under Windows (32-bit) 17

MINDs+Kinect Documentation, Release 2.1a

18 Chapter 4. MINDs installation

CHAPTER 5

Low-level Kinect support under
Ubuntu Linux

Note: This is an optional part, not required to run MINDs. For standard setup, please refer to Ubuntu Linux
PyOpenNI setup instructions.

An lower-level alternative to the use of OpenNI/NITE is provided by the LibFreenect libraries. They have specific
dependencies such as LibUsb and OpenCv.

5.1 Install and test the libfreenect library

Starting with version 11.10 (“Ocelot”) or Ubuntu Linux, LibFreenect is part of the official repositories, so instal-
lation shouldn’t pose any particular problem.

sudo apt-get install freenect

At this stage, you should be able to run the Freenect demos. But prior to this, a few conflicting kernel modules
must be unloaded, because the capture the Kinect device, thus making it unavailable to libfreenect. See Make
Kinect devices available to OpenNI for more details.

Unload gspca_* modules
sudo modprobe -r gspca_kinect
sudo modprobe -r gspca_main

Run demo
freenect-glview

5.1.1 Troubleshooting

Should the software demos fail to connect with the Kinect, the following should also be checked:

1. Check that the Kinect’s devices are seen by the PC by typing lsusb. The Kinect should appear as three
distinct Microsoft devices, e.g.:

Extract of "lsusb" output:
Bus 002 Device 003: ID 045e:02b0 Microsoft Corp. Xbox NUI Motor
Bus 002 Device 004: ID 045e:02ad Microsoft Corp. Xbox NUI Audio
Bus 002 Device 005: ID 045e:02ae Microsoft Corp. Xbox NUI Camera

2. The user must belong to the plugdev group. If it’s not the case, please run the following command:

19

MINDs+Kinect Documentation, Release 2.1a

Add $USER to the ’plugdev’ group
sudo adduser $USER plugdev

then log out and in again, and disconnect + reconnect the Kinect.

5.2 Install and test libfreenect Python wrappers

Note: The virtual environment should already have been set up. If this is not the case, please refer to Setup
Python virtual environment.

The next step is to install the Python bindings for Freenect and OpenCV. They cannot be installed into the
virtual environment using pip install, so the easiest is to install them at system level, and then manually
symlink them into the virtual environment.

sudo apt-get install python-freenect python-opencv

Freenect
ln -s /usr/lib/pyshared/python2.7/freenect.so lib/python2.7/site-packages

OpenCV (cv, cv2)
ln -s /usr/share/pyshared/cv.py lib/python2.7/site-packages
ln -s /usr/lib/pyshared/python2.7/cv2.so lib/python2.7/site-packages

Xlib (no longer used)
#ln -s /usr/share/pyshared/Xlib lib/python2.7/site-packages

Note: Ubuntu Linux uses nonstandard locations for its Python modules, instead of the more standard
/usr/lib/python2.7/site-packages, namely:

• /usr/lib/pyshared/python2.7

• /usr/lib/python2.7/dist-packages

• /usr/share/pyshared

• ...

The dpkg -L command returns the location used for a given module:

Output of "dpkg -L python-opencv":
/.
/usr
/usr/share
[...]
/usr/share/pyshared
/usr/share/pyshared/cv.py
[...]
/usr/lib/pyshared/python2.7
/usr/lib/pyshared/python2.7/cv2.so

At this stage, the hand_tracking.py script can be tested. This rather crude script works well in certain
conditions, typically at short distances from the Kinect device.

cd kinect
. bin/activate

./hand_tracking.py

(Source: http://code.activestate.com/recipes/578104-openkinect-mouse-control-using-python/)

20 Chapter 5. Low-level Kinect support under Ubuntu Linux

http://code.activestate.com/recipes/578104-openkinect-mouse-control-using-python/

	Annexe technique.pdf
	Project Overview
	Low-level support
	High-level support
	Integration with MINDs

	Ubuntu Linux PyOpenNI setup instructions
	Setup Python virtual environment
	Make Kinect devices available to OpenNI
	Install and test OpenNI
	Install PyOpenNI, the Python bindings for OpenNI
	Install MINDs

	Windows PyOpenNI setup instructions (32-bit)
	Setup Python working environment
	Install and test OpenNI
	Build and Install PyOpenNI, the Python bindings for OpenNI
	Install MINDs

	MINDs installation
	Install MINDs under Linux
	Install MINDs under Windows (32-bit)

	Low-level Kinect support under Ubuntu Linux
	Install and test the libfreenect library
	Install and test libfreenect Python wrappers

