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Abstract

We present an API-based compilation strategy to optimize image applications,
developed using a high level image processing library, onto three different image pro-
cessing hardware accelerators. The library API provides the semantics of the image
computations. The three image accelerator targets are quite distinct: the first one uses
a vector architecture; the second one presents a SIMD architecture; the last one runs
both on GPGPU and multi-cores through OpenCL. We adapted standard compilation
techniques to perform these compilation and code generation tasks automatically. Our
strategy is implemented in PIPS, a source-to-source compiler which greatly reduces
the development cost as standard phases are reused and parameterized. Experiments
were run on hardware functional simulators, covering 1276 cases, from elementary
tests to full applications, with very good results. Our contributions include: 1) a
general low-cost compilation strategy for image processing applications, based on the
semantics provided by library calls, which improves locality by an order of magnitude;
2) specific heuristics to minimize execution time on the target accelerators; 3) numer-
ous experiments that show the effectiveness of our strategies. We demonstrate that
our API-based compilation strategy is a viable approach for both development cost
and overall performance, and discuss the conditions required to apply this approach
to other application domains.

1 Introduction

Heterogeneous hardware accelerators, based on GPU, FPGA or ASIC, are used to reduce
execution time, the energy used and/or the cost of a small set of application specific
computations, or even the cost of a whole embedded system. They can also be used to
embed the intellectual property of manufacturers or to ensure product perennity. Thanks
to Moore’s law, their potential advantage increases with respect to standard general-
purpose processors which do not gain anymore from the increase in area and transistor
number. But all these gains are often undermined by large software development cost
increases, as programmers knowledgeable in the target hardware must be employed, and
as this investment is lost when the next hardware generation appears.

We present a compilation strategy to map image processing applications developed on
top of a high-level image library onto several image processing accelerator, by generating
optimized configurations and relying on high level runtimes. The first target is a heteroge-
neous processor with a vector image processing accelerator. The second accelerator offers
a 128 SIMD processor array. The third backend targets OpenCL for GPGPU or multi-
core processors. The approach is relatively inexpensive as mostly-standard and reusable
compilation techniques are involved: only the last code generation phase is fine-tuned and
target-specific.
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Our first hardware target, the SPoC vector image processing accelerator [9], currently
runs on a FPGA chip as part of a SoC. The hardware accelerator implements directly
some basic image operators, possibly part of the developer visible API: this hardware-level
API characterizes the accelerator instruction set. Dozens of elementary image operations
such as convolutions, dilatations/erosions (max/min pixel on a stencil), ALUs, thresholds
and measures, can be combined to compute whole image expressions per accelerator call.
However these capabilities come with constraints: only two images can be fed into the
accelerator internal pipeline structure, and two images can be extracted after various
image operations are performed on the fly. The accelerator is a set of chained vector
units. It does not hold a single image but only a few lines (2 lines per unit) which are
streamed in and out of the main memory. There is no way to extract intermediate image
values from the pipeline.

Our second hardware target, the Terapix 128 processing element SIMD array, provides
elementary pixel operations, neighbor communications and limited memory per processor.
It is currently implemented on a FPGA chip as well. The memory does not allow to handle
full images, so a rectangular tiling is performed by the runtime. Tailored microcodes are
available to perform all image operations on 128-pixel wide tiles, with a varrying height.
The accelerator also allows to overlap communications and computations at the price of
additional pressure on the available memory to perform the double buffering.

The last target is OpenCL [20], which provides a portable programming environment
on top of GPGPU hardware from NVIDIA and other vendors, and allows to run on multi-
core processors as well.

The application development relies on the FREIA image processing library API [4].
The API includes low-level basic image operations, and high-level composed image op-
erations which are implemented using the lower level. The developer has no knowledge
of the potential target hardware accelerators. Multiple implementations of FREIA are
available. (1) A software implementation on top of Fulguro [8], a portable open-source
image processing library, is used for functional tests. Then accelerated versions have been
develop that take advantage of the hardware accelerator capabilities: (2) Basic operators
are ported to the accelerators (SPoC, Terapix, OpenCL) when possible, and the high-level
composed operators use a generic implementation which calls the basic operators. How-
ever, this approach does not allow to take advantage of specific optimization opportunities
offered, especially by the SPoC architecture which can perform many basic operations per
accelerator call. (3) Thus a second-level optimized version has been developed, where com-
posed operators are implemented directly on top of the accelerator. Yet again, although
the implementation provided by this specialized library version is better, optimization
opportunities are still available across functional boundaries. Although the library layer
provides functional application portability over accelerators, it does not provide the time,
energy and cost performance expected from these hardware.

In order to reach better performance, library developers may be tempted to increase
the sizes of API’s to provide more opportunities for optimized code to be used, but this is
an endless process leading to over-bloated libraries and possibly non-portable code: up to
thousands of entries are defined in VSIPL [28], the Vector Signal Image Processing Library.
In contrast to this library-restricted approach, we use the basic hardware operator library
implementation, but the composition of operations needed to derive an efficient version
of a large expression is performed by the compiler for the whole application. We see the
image API as a domain specific programming language, and we compile this language for
the low-level target architecture.

The keys to performance improvement are to lower the control overhead and to increase
data locality at the accelerator level, so that larger numbers of operations are performed
for each memory load. This is achieved by merging successive calls to the accelerator,
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Figure 1: License plate (LP): character extraction

with no or few memory transfers for the intermediate values. To detect calls to merge,
techniques have been developed such as loop fusion [29] or complex polyhedral transforma-
tions [23]. Such techniques cannot be applied usefully on a well-designed, highly modular
software library such as Fulguro: loops and memory accesses are placed in different mod-
ules and loop nests are not adjacent: size checks, type dispatch and dynamic allocations
of intermediate values are performed between image processing steps.

Instead of studying the low-level source code and trying to guess its semantics with
respect to the available hardware operators, we remain at the higher image operation level.
We inline high-level API function calls not directly implemented in the accelerator, unroll
loops, flatten the code, so as to increase the size of basic blocks containing image operators.
These basic blocs are then analyzed to build expression DAGs using the instruction set of
the accelerator. They are optimized by removing common sub-expressions and propagating
copies. Up to here, the hardware accelerator is only known by the operations it implements.
We then consider hardware constraints to map the optimized DAG onto the actual target,
may it be a vector-oriented such as SPoC or SIMD-oriented such as Terapix or OpenCL.
The mapping techniques differ depending on the target.

The whole optimization strategy is automated and implemented in PIPS [19, 3], a
source-to-source compiler, which lets the user see the C source code that is generated.
This greatly helps compiler debugging. We compile 1276 test cases, from elementary tests
to full applications, with very good results for our three targets.

In the remainder of this paper, we first introduce our running example which is a
short representative of the application domain, along other typical application examples
(Section 2). Then we describe our three target architectures and their challenges (Sec-
tion 3: SPoC, Terapix and OpenCL). We outline our compilation strategy (Section 4),
before detailing the target-independent phases (Section 5) and hardware-specific back-end
phases (Section 6). We finally present our implementation and experimental results (Sec-
tion 7) obtained with hardware simulators, and discuss the related work (Section 8) before
concluding.

2 Applications and Running Example

The FREIA project aims at mapping efficiently image processing applications developed
on top of a high-level API onto different hardware accelerators. Typical target applications
extract information from one image or from a stream of images, such as a license plate in
a picture (LP, Figure 1), whether a car passenger is out of position and could be harmed if
the airbag is triggered (OOP, Figure 2), whether there is some motion under a surveyance
camera (VS, Figure 3), what macular degeneration can be detected in a picture of a retina
(Retina, Figure 4) or the efficiency of various antibiotics against a given bacteria (Antibio,
Figure 5). These image applications use all kind of image processing operations, such
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Figure 2: Out of position (OOP): airbag ok or not

Figure 3: Video survey (VS): motion detection

Figure 4: Retina: macular degeneration analysis

Figure 5: Antibio: antibiotics test plate analysis
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#include <freia.h> // use FREIA user API

int main(void) {
int32 t min, vol; // declarations...

freia data2d *in = freia common create data(...); // AND od, og

freia dataio fin, fout; // input & output descriptors

freia common open input(&fin, 0); // AND fdout

freia common rx image(in, &fin); // get input image

freia aipo global min(in, &min); // some computations

freia aipo global vol(in, &vol);

freia cipo dilate(od, in, 8, 10); // dilate with 8 neighbors at depth 10

freia cipo gradient(og, in, 8, 10); // gradient with 8 neighbors at depth 10

printf("input min=%d vol=%d\n", min, vol); // show results

freia common tx image(od, &fout); // AND og

freia common destruct data(in); // AND od, og...

freia common close input(&fin); // AND fdout

return 0;

}

Figure 6: FREIA API running example (some initialization and cleanup removed)

as: AND-ing an image with a mask to select a subregion; MAXLOC-cating where the hottest
point is; THR-esholding an image with values to select regions of interest; mathematical
morphology [26] operators. This framework created in the 1960’s provides a well-founded
theory to image analysis, with algorithms described on top of basic image operators.
The FREIA project targets high performance, possibly hardware accelerated, very often
embedded, high-throughput image processing. For this purpose, the software developer is
ready to make some efforts in order to reach the expected high performances for critical
applications on selected hardware. Current development costs are high, as application
must be optimized from the high-level algorithmic choices down to the low-level assembler
code and memory transfers for every hardware target. The project aims at reducing these
development costs through optimizing compilation and careful runtime designs.

The high-level FREIA image API has several implementations. The first one is pure C,
based on the Fulguro [8] open-source image processing library, and is used for the functional
validation of applications. There are two implementations for the SPoC vector hardware
accelerator, which can run over a functional simulator or on top of the actual FPGA-based
hardware: one uses SPoC for elementary functions, which are directly supported by the
SPoC instruction set, one elementary operator at a time; the other is hand-optimized at
the library call level by taking full advantage of the SPoC vector hardware capability to
combine operations. Other versions of the library are optimized for the Terapix [5] SIMD
accelerator, and for OpenCL [20] targeting graphics hardware (GPGPU).

The code in Figure 6 was written as part of the FREIA project to provide a short test
case significant for both the difficulties involved and the optimization potential, with the
two hardware accelerators in mind. The test case contains all the steps of a typical image
processing code: an image is read, intermediate images are allocated and processed, and
results are displayed. As it is short enough to fit in this paper, we use it as a running
example, together with extracts from larger applications. Optimization opportunities for
a compiler at the main level of our test case are very limited: the min and vol basic func-
tion calls correspond to SPoC instructions. Since they are next to each other and use the
same input argument, they can be merged into a unique call to SPoC. The dilate and
gradient functions are not part of the accelerator instruction set. With the näıve elemen-
tary function-based library implementation, 33 calls to the accelerator are used per frame,
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Figure 7: SPoC architecture and one vector unit Typically 8 vector units are chained in
the SPoC pipeline

mostly hidden in the callees. The hand-optimized SPoC implementation of the FREIA im-
age library results in 6 accelerator calls, a ×5.5 speed-up, as calls to elementary functions
can be merged within the implementation of the FREIA composed functions. However,
there are still cross-functional optimization opportunities, for instance the dilate opera-
tion is already computed within the gradient function. Our compiler stategy will detect
this redundancy and merge all image operations into only 2 accelerator calls, achieving an
additional ×3 speed-up over the hand-optimized library.

3 Hardware Targets

This section introduces our three hardware targets. The first one, SPoC, presents a vector
architecture. The second one, Terapix, relies on a SIMD array of small processing elements.
The third one is generic, based on OpenCL, so that applications can be run on GPGPU
and multi-cores which support this environment.

SPoC Architecture

Figure 7 outlines the structure of the SPoC processor. It can be seen as a simplified
version of the 30-year old CDC Cyber 205 [18], specialized for image processing instead of
floating point computation. A MicroBlaze provides a general purpose scalar host processor
and a streaming unit, the SPoC pipeline, made of several image processing vector units,
constitutes the image processing accelerator. It also contains a DDR3 memory controller,
DMA engines, FIFOs to synchronize memory transfers and vector computations and the
host, a gigabit Ethernet interface and video converters for I/Os.

Figure 7 shows one vector unit of the SPoC pipeline, with two inputs and two outputs
of 16-bit-per-pixel images. The units are chained linearly, directly one to the next, using
their outputs and inputs: there is no vector image registers. The first inputs and last
outputs are connected to the external memory by DMA engines. A vector unit is made of
several operators, but the interconnection is not free: the data paths are quite rigid, with
some control by multiplexers Mx. One morphological operator Morph can be applied to
each input. Their results can be combined by an arithmetic and logic unit, alu. Two
outputs are selected among those three results by the four multiplexers which control
the stream of images. Then a threshold operator, Thr, can be applied to each selected
output and the reduction engine Mes computes reductions such as maximum or sum of
the passing pixels, the result of which can be extracted if needed after the accelerator call.
To sum up, each micro-instruction can perform concurrently up to 5 full image operations
and a number of reductions, equivalent to 29 pixel operations per tick. A nop no-operation
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micro-instruction is available to copy the two inputs on the two outputs. It is useful when
some vector units of the SPoC pipeline are unused.

The host processor controls the vector units by sending them one micro-instruction each
and by configuring the four DMA engines for loading and storing pixels. The host processor
can also retrieve the reduction results from the vector units. The control overhead remains
small because images are always large enough to generate very long pixel vectors. A low
resolution image, for instance 320× 240, is equivalent to a 76, 800-elements vector.

When considering FPGA implementations, the number of vector micro-instructions
that can be executed concurrently, i.e. the number of vector units, ranges from 4 to 32.
The limiting factor is the internal RAM available. Our reference target hardware includes
8 vector processing units, but the solution we suggest below is parametric with respect
to this number. In practice, this vector depth provides a reasonable cost-performance
trade-off as it fits patterns of iterated convolutions, erosions or dilatations that are often
found in typical applications, but is yet not too expensive when these patterns are not
found. With a specific set of application in mind, several vector depths can be tested
to choose the best setting. The total number of image operations that can be executed
at a given time is 5 times the number of units, not counting the reductions. So the
compiler must chain 40 image operations of the proper kind and order to obtain the peak
performance. Unlike the Cray vector register architecture, only two inputs are available.
Unlike the CDC 205, no general interconnection is present between elementary functional
unit. Chaining and register allocation are very much constrained as each vector processing
unit is pipelined: delay lines help compute 3× 3 morphological convolutions, including a
transparent and accurate management of the image boundaries that are out of the stencil.
Thus the size of the output image is equal to the input image size, contrary to repeated
stencil computations [11] which usually reduce the available image size. Micro-instruction
scheduling and compaction is easy once the order of operations is determined.

To sum up, the significant hardware constraints are: 1) the structure of the micro-
instruction set and the structure of the vector unit data paths, 2) the maximal number
of chained micro-instructions, i.e. the number of vector units, and 3) the number of
image paths, two. Furthermore, the operations must be as packed as possible to reduce
the number of micro-instructions. With 8 vector units, up to 40 full image operations
can be performed for two loads and two stores, which leads to 10 SPoC operations per
memory access, including high-level morphological convolutions which require more than
20 elementary operations each, and not counting the many reductions. So between 50 and
100 elementary operations can be executed per memory access.

Terapix Architecture and Runtime

The Terapix accelerator [5] is a rigid 128-processing elements (PE) SIMD array with a
limited local memory of 1024 pixels per PE. It is developed by THALES as a SoC for image
processing embedded systems, such as security surveillance cameras. The host/accelerator
memory bandwidth allows to send or receive 4 pixels per tick, and these transfers can
run in parallel with computations, overlapping computations and communications, at the
price of manually managing double buffers and reducing the memory available for one
computation. Each PE accesses its own memory and can send or receive values from its
neighbors. Computation kernels have been developed, initially manually, to compute each
image operator on up to two input imagelets and put the result in one output imagelet.
Moreover, when stencils are computed on imagelets, the area of valid results shrinks as
borders between imagelets result in bad values because of missing border pixels. However,
the architecture and kernels ensure that computed values for the actual border of the full
image (not inter-imagelet) are correct, based on the semantics of the image operators.
The memory constraints imply that full images cannot be dealt with directly, requiring
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the runtime to perform an overlapping tiling of the input. An additional shared 2D global
memory allows to pass parameters such as stencil coefficients needed for computations.

The runtime performs an important task which greatly helps the compilation process:
images are automatically tiled based on declared overlaps and imagelet size, and the
resulting imagelets are pipelined, so that whole image operations are performed seamlessly.
The hardware configuration must provide an explicit memory allocation schemes, including
double buffers where needed, and a full schedule of communications and computations for
both computations (one with one set of buffers, the other with the other set). The runtime
inserts synchronizations so that computations wait for the availability of their input data,
and ouput communications wait for the availability of the results.

There is a speed-up ceiling for the Terapix accelerator due to the intrinsic overlapping
of communications and computation of stencils. For a typical morphological erosion or
dilatation computation, there is one imagelet to send and one imagelet to receive, which
requires 64 cycles per imagelet row, and the computation itself needs 15 cycles per row.
These operations can be combined, but it is not interesting to do so once the computations
amortize all the communications, especially as the area of valid results shrinks as the depth
increases. This ceiling occurs when 64/15 ≈ 4 such operations are put together, so the
practical maximum speed-up that can be expected when these morphological operations
are used is about 4, due to the intrinsic communication-computation hardware balance.

OpenCL Target

OpenCL (Open Computing Language [20]) is an open standard for parallel programming
of heterogeneous platforms proposed by the Kronos group, where vendors such as AMD,
Apple, IBM, Intel and Nvidia collaborate. It is especially well suited to GPGPU (General
Purpose Graphical Processing Unit) hardware, with a data parallel multi-threaded pro-
gramming model that executes simple kernels on many data sent to an external device.
Moreover, dependencies can be declared between computations to expose task parallelism
as well. Hardware portability is reached by compiling kernels on the fly so that it is
optimized for the particular hardware at hand. The actual performance obtained with
such codes depend heavily on the compiler implementation, runtime characteristics and
hardware details of the target.

The basic OpenCL implementation of the FREIA library manages the device memory
allocation for each image and issues the necessary host-to-device or device-to-host com-
munications when data is needed. It keeps track of the freshness of each image so as to
minimize these communications. The memory allocation also checks dynamically for data
that may be overwritten by operations while still needed, and allocate additional buffers
to avoid these interactions. A key factor in getting good accelerations with OpenCL is to
improve data locality by combining operations so that the available intra-device memory
bandwith allows to fully exploit the available processors.

4 API-Based Compilation Strategy

Our overall strategy is to rely on a Domain Specific Language (DSL) for image applications,
the semantics of which is provided by well designed API calls to low-level basic operators
and high-level operators implemented on top of the former level. From these surmises,
we propose a compilation strategy which first builds image operation basic blocks that
can be mapped onto our target accelerators, optimizes the expression DAGs derived from
these basic blocks, and then generates target-specific code for the accelerator hardware
in specific back-ends. The implementation is low-cost because of the reuse of standard
phases, and the overall performance is very good (Section 7).
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Phase 1 application preprocessing – enlarge basic blocs

• 1. inlining of FREIA high-level library functions

• 2. partial evaluation

• 3. constant propagation and loop full unrolling

• 4. convergence while unrolling (only for SPoC)

• 5. dead code elimination

• 6. block flattening

Phase 2 DAG optimizations

• 1. DAG construction per sequence

• 2. operator normalization (improve CSE stage)

• 3. algebraic opt: constant image detection and propagation

• 4. common sub-expression elimination (CSE), with commutativity and reductions

• 5. dead image operation removal

• 6. forward and backward copy propagation

• 7. extraction of remaining copies

Phase 3 Target-specific back-ends for SPoC, Terapix and OpenCL

Phase 3.1 SPoC configuration: map DAG onto hardware

• 1. DAG splitting and scheduling of sub-DAGs

• 2. instruction compaction and path selection

• 3. pipeline overflow management

• 4. unused image cleanup

Phase 3.2 Terapix configuration: map DAG onto hardware

• 1. DAG splitting and scheduling

• 2. memory allocation, including double buffers

• 3. instruction generation, chooses best imagelet size dynamically

• 4. unused image cleanup

Phase 3.3 OpenCL code generation

• 1. DAG splitting along scalar dependencies

• 2. simple operator aggregation

• 3. OpenCL kernel generation

• 4. unused image cleanup

Figure 8: Outline of our compilation strategy: phases and stages
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Figure 8 outlines the different phases of our compilation strategy, which are detailed
hereafter. The first phase is a combination of standard transformations to build larger
basic blocks; The second phase, optimizes the image operation DAG by detecting common
sub-expressions and removing dead-code. As the third phase focuses on generating code
for the hardware targets, there is a specific approach for each target.

5 Target-Independent Preprocessing Phases

The first compilation phases are (mostly) target-independent. They aim at retrieving from
the source the underlying basic image operations, to aggregate them into basic blocks, and
to build and optimize image operation DAGS.

Phase 1 – Application Preprocessing

The FREIA API [4] and its Fulguro [8] implementation are designed to be general with
respect to connectivity, image sizes and pixel representation. Standard or advanced loop
transformations cannot take advantage of such source code because the loops are dis-
tributed into different functions and elementary array accesses are hidden into function
calls to preserve the abstraction over pixel structure.

freia aipo global min(in, &min); // some computations

freia aipo global vol(in, &vol);

freia aipo dilate 8c(od, in, k8c);

freia aipo dilate 8c(od, od, k8c); // repeated 8 more times

I 0 = 0; // scalar stuff...

tmp = freia common create data(...); // image allocations...

freia aipo dilate 8c(tmp, in, k8c);

freia aipo dilate 8c(tmp, tmp, k8c); // repeated 8 more times

freia aipo erode 8c(og, in, k8c);

freia aipo erode 8c(og, og, k8c); // repeated 8 more times

freia aipo sub(og, tmp, og);

Figure 9: Excerpt of the main of our running example (Figure 6) after preprocessing

To build large basic blocks of elementary image operations, control flow breaks such
as procedure call sites, local declarations, branches and loops must be removed by using
key parameters such as connectivity and image size set up by the main and propagated
to callees. Several source-to-source transformations help achieve this goal: 1) inlining
to suppress functional boundaries; 2) partial evaluation to reduce control complexity; 3)
constant propagation to allow full loop unrolling; 4) for the SPoC target only, a special
case of convergence while-loop is detected and can be unrolled; 5) dead code elimination to
remove useless control; 6) declaration flattening to suppress basic block breaks. Safety tests
are automatically eliminated as the application is assumed correct before its optimization
is started. The order of application of these transformations is chosen to make the best
usage of the available information so as to simplify the code and obtain larger basic blocks.
Figure 9 shows the resulting code after automatic application of these transformations on
the running example. It contains a sequence of elementary image operators mixed with
scalar operations and temporary image allocations and deallocations.
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Phase 2 – DAG Optimization

The basic blocks of the image application are analyzed to build the expression DAG
shown in Figure 10, which is then optimized for locality. We also rename images and
generate new temporaries in order to avoid any conflict that may generate unexpected
false dependencies when the code will be regenerated, as the overall operation order is
not kept by the optimizations which only rely on flow dependencies. The many images
introduced by this renaming phase will be reduced as much as possible later.
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The vertices of the DAG are operations to be performed, which may be image opera-
tions (convolutions and Morph dilations/erosions as rectangles, alu as trapezium, Thr
as parallelogram, Mes as diamond, copy and input/output images as circles) or interme-
diate scalar operations depicted as question marks. The arcs represent the dependencies
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node. Arcs shown as black arrows embed image dependencies while the white arrows do
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the left side of Figure 11, with the initial functional boundaries in dashed lines.
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This DAG is then optimized in a target independent manner. First, a normalization
phase is applied to replace some operators with equivalent ones, e.g. “image sub constant
pixel” is substituted by “image plus inverted constant pixel”, enabling more common
sub-expressions to be detected later. Second, algebraic simplifications are performed. In
particular, constant image expressions, i.e. expressions than lead to a fully monochro-
matic image, are detected and propagated as much as possible through expressions by
reducing operator strength. For instance, as shown outlined in Figure 12, developers often
xor an image against itsef in order to generate a constant black image: although perfectly
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functional, this technique is less efficient than the available hardware ALU operators to
generate a black image, especially with the SPoC accelerator where the xoring technique
directly saturates the two image paths available. Third, we apply standard compilation
techniques: common sub-expressions elimination, dead code suppression and copy propa-
gation [2] are performed at the image level. Operator commutativity is taken into account
to perform CSE, thanks to the image operator semantics which is available by recognizing
the calls. Simple information about parameters, image or scalar, input and/or output,
are derived automatically from C source stubs. In our running example, the optimization
detects that all operations of the dilatation are also performed within the gradient, so
they are removed in the right hand side of Figure 11, and the intermediate result is simply
extracted.

i

&

=

=

o

D8

3 ops

=

D8

15 ops

=

&
15 ops

thr

thr

=

E8=
28 ops

D8

=

D8

E8
= 56 ops

i

&

D8

E8

o

D8&
18 ops

thr

thr

E8
14 ops

D8
28 ops

Figure 13: Extract of initial and optimized DAG for License Plate

i0 =

i1

E8

D8

E8

D8

i2

E8

D8

othr<

D6E6

-|

-

-

D6
E6-|-

-

E8

D8

=

i0

E8

D8

i1

E8

D8

i2

E8

D8

othr<

D6E6-|

-

D6E6-|

-

-

Figure 14: Initial and optimized DAG from application OOP
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Figure 15: Initial and optimized DAG from application Retina

Other challenges are found in the DAG for the license plate application in Figure 13,
where repeated operations are denoted as dashed arrows. In this debug version of the
code, every two operations are image copies either inserted within the computations or
diverted to extract intermediate images. All these useless copies are removed from the
optimized DAG. Image copies are propagated forward toward their uses, with the exception
of copies on output images which are propagated backward to their producer so that they
are directly generated instead of using a temporary image. Remaining input and output
image copies are extracted from the DAG to be performed outside of the accelerator.

The DAG in Figure 14 is extracted from the OOP application. The optimized version
removed both copies and a common subexpression involving 3 operations. These redun-
dancies are not obvious to spot in the source code. The DAG from Figure 15 displays
a very large piece of dead code which comes from variants tested by the developer. The
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optimization of the DAG in Figure 10 removes both copy operations on input and within
the graph. The result of this phase is an optimized image expression DAG ready to be
mapped onto the available hardware.

6 Target-Dependent Code Generation

An accelerator specific compilation phase finally generates the hardware configuration,
i.e. the micro-instructions for evaluating the optimized DAG resulting from the previous
phase. We have three code generators; one for SPoC vector pipeline, one for the Terapix
SIMD accelerator, one for OpenCL.

Phase 3.1 – SPoC Hardware Configuration

The SPoC hardware accelerator [9] constraints discussed in Section 3 must be met: the
computations in the hardware accelerator must only involve two live images at any single
point because only two data paths are available (Figure 7). Actual computations must
be scheduled on components so that live images can still reach their use or the end of the
path. If all available vector units in the SPoC pipeline are used for a computation and
more operations remain, pipeline spilling must be managed. The optimality criterion is
to minimize the number of calls to the accelerator, taking into account its actual number
of vector units, as one call lasts about the same time whatever the operations performed
in the pipeline.

The problem of mapping an image expression DAG onto the SPoC accelerator is very
close to the pebble game problems used in register allocation, with in our case only two
registers. However, unlike register allocation problems, our spill code is to interrupt our
computation pipeline, resulting in both registers to be spilled at the same cost as one as
they occur simultaneously. So although mapping scalar expression DAG onto a register
machine [6, 1] is NP-Complete, these results do not apply directly to our case.

We conjecture nevertheless that our problem is NP-Complete, because of the close
similarity with the code generation problem for register-machines. First, the setting is
highly combinatorial if one enumerates all possible evaluation orders compatible with
the dependencies when there is a high degree of parallelism available in the DAG. Second,
evaluating the cost of a proposed solution is reasonably easy: given an order of operations,
one can detect in one pass over the vertices when an infinite pipeline should be cut because
an operation would create more than two live images; if the finite number of vector units
is considered, instruction compaction can tell when the pipeline is full.

Given the combinatorial nature of the problem, our heuristic consists in breaking
down the problem into three successive stages. Each stage satisfies one of the constraints
independently, and there is no guarantee of global optimality. First, we meet the two
live image constraint with a decomposition of the expression DAG into sub-DAGs, where
each resulting sub-DAG operations are ordered by the decomposition process so that their
evaluation in that order only requires two live images. Then, instructions are compacted
in a conceptually infinite pipeline, which is finally cut according to the number of available
vector units. We chose not to perform a global combinatorial optimization because this
simple heuristic, which satisfies each constraint one after the other, leads to excellent
experimental results on significant test cases (Section 7).

The optimized expression DAG is first split into sub-DAGS with no more than two live
images and no internal scalar-carried dependencies. As noted above, this is very similar to
evaluating an expression with only two registers. We use the simple list scheduling of basic
blocks technique described in the Dragon book [2], with a prioritized topological order that
focuses on the critical resource, namely the small number of data paths. Scalar depen-

13



dencies cannot be handled within one hardware accelerator call as images are processed
concurrently, so the needed result would not be available at the start of the dependent
computation: they must be split across distinct sub-DAGs. The greedy list scheduling
heuristic expands a subgraph as much as possible, and never backtracks. The priority
choices favor the immediate use of computed images in the pipeline: reductions that do
not update their source are performed first, then operations that use up an image and
define another one, ordered by the number of uses, then other operations. The result of
the first pass is a list of DAGs, each with an ordered list of operations that require no
more than two live images if processed in that particular order along the pipe.

Each sub-DAG is then mapped onto a pipeline with a conceptually infinite number
of vector units by compacting operations into micro-instructions. We do not allow much
freedom at this stage because the order of operations cannot be modified without putting
at risk the two live image constraint. It is kept unchanged. Micro-instruction compaction
is performed at the same time because the packing constraints are very easy to meet:
structural, control and data pipeline hazards [17] are avoided by the hardware, hence
sophisticated micro-instruction scheduling and compaction are not required. The com-
paction is achieved by scheduling operations in the first available slot. When only one
image is needed by the pipeline, it is sent on both input paths so as to help the com-
paction at the beginning of the pipe. Path selection implies the multiplexer configuration.
It must ensure that computed images reach the operators that process them, which may
shift a computation further down in the pipeline in some cases. Under these assumptions,
this compaction stage could be proven optimal, that is the number of units used is mini-
mal, by induction on the structure of the pipeline, as we choose the first available operator
at each iteration. However this optimality is weak because it requires that there is no re-
ordering of the operations, which could have improved the result if allowed. Moreover this
optimality is local, and taking this constraint in the previous stage could help improve the
overall solution.

The third stage of the code generation process is to map the open-ended pipeline
onto the available vector units. This is simply achieved by cutting the micro-instructions
sequence at the number of available vector units, and to perform another activation of the
SPoC pipeline for the remainder, until all sub-DAG operations are performed.

This heuristic phase for the SPoC accelerator reuses standard compilation techniques to
generate most of the time optimal results. It is followed by a quick cleanup of intermediate
images which are not used anymore by the function. The techniques are applied on very
long vector flows of pixels from images, whereas they were originally designed for scalars
in registers. This works well because the SPoC architecture takes care of pipeline hazards
and performs stencil computations without reducing the image size: images are equivalent
to scalar variables.
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Figure 16: Running example DAG split on SPoC

The two DAGs corresponding to the splitting for the SPoC target of the optimized
DAG of our running example is shown in Figure 16. The sequence of dilatations is delayed
by one slot to allow for the computation of the vol and min reductions at the start of the
pipeline. The first call is filled as much as possible because of the greedy heuristics. Image
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variables are reused to transfer the intermediate images between the two accelerator calls.
For the SPoC target, there is a cost performance tradeoff in choosing the number

of vector units, as longer pipelines are less efficiently used when no operations can be
scheduled and add to the overall latency of accelerator calls. The solution to this tradeoff
depends on the actual applications and on the user ability to select optimal hardware. It
is not taken into account here as we assume that the number of vector units is a given,
with 8 a typical figure. However, testing the impact of different depths is easy thanks to
the availability of our compiler.

Phase 3.2 – Terapix Hardware Configuration

The code generation for the Terapix hardware must perform two important tasks: (1)
balance computations and communications so that the hardware is efficiently used, taking
into account that the valid area computed shrinks with stencil operations, and (2) allocate
the little available memory to imagelets needed for a computation, including double buffers
used to improve the hardware usage efficiency.

The first aim is reached by splitting DAG with vertical slices (assuming that inputs
are on the left and outputs are on the right, as consistently used in the illustration of
this paper), so that intermediate images valid areas are shrinked by the same amount of
border. The number of strips is computed based on the available memory bandwidth, so
that communication and computation costs are balanced:

#cuts =


(

comp
comm

)
−#ins−#outs

2.width


where the comp/comm ratio is the number of images that can be transmitted during the

computation of the DAG. Those that need to be transmitted are the input and output im-
ages, plus the intermediate images if the DAG is cut, this later number being approximated
by the width of the DAG. The rational for the factor 2 is that if the DAG computation is
interrupted, the intermediate results must be both extracted and resent to the accelerator.
Once the number of DAG cuts is decided, the corresponding erosion factor (number of
lost pixel on each side) is computed, and the DAG is split at these depths. Although more
accurate options could be thought of, this simplistic approach gives reasonable results on
our test cases and was kept. For small DAGs, splitting does not bring any benefice.

The second aim is reached through a list-directed scheduling of operations in each
splitted DAGs, similar to the one described earlier for SPoC, but with different priorities
applied. The overall design of the priorities is to favor the consumption of data so as
to make imagelet memory slots available for later computations. The chosen schedule
induces a total number of imagelets to perform the whole computations: first, data input
and output imagelets must be allocated twice for double buffering; then some additional
imagelets may be required if some operations do not free their operands, or operations such
as dilatations that cannot be performed in place. The schedule also allows to generate
the computation code, which consists of calling operator kernels with parameters that
designate the input and output imagelet operands. Two versions are generated for each
set of double buffers, i.e. one for the flip and one for the flop. The schedule attempts to put
result imagelets directly in the relevant double buffers; if a result imagelet is not stored
in a double buffer, an additional copy operation is inserted at the end of the imagelet
computation. The generated code also includes the input and output communications
needed to feed the pipelined computations, and border erosion declarations that enable
the runtime to compute the appropriate overlapping tiling.

Once the number of imagelets for a schedule is known, the maximum imagelet height
can be computed dividing the available memory by the number of imagelets. The imagelet
width is always 128, which is the number of processing elements of the accelerator. The
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computed maximum height is not necessarily the optimal size. Indeed, it is the best
possible for the steady state, but as the number of imagelet tiles for an image is usually
quite small, typically 6 to 10, and as the operator kernels perform their computations
on whole imagelets whatever the live part in them is, significant side effects occur which
can change the optimal size significantly. Thus, once the input image size is known, the
generated code computes the best possible imagelet size based on the actual image size and
the amount of overlapping borders, so as to minimize the amount of unused computations
due to these side effects.
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Figure 17: Running example DAG split on Terapix

The splitting result of the running example for Terapix is shown in Figure 17. In
contrast to the splitting for SPoC, the sub-DAGs for Terapix are balanced and the border
erosion is the same in both accelerator calls.

Phase 3.3 – OpenCL Code Generation

The FREIA OpenCL runtime provides a computation kernel for each image operator.
For stencil operations, the amount of computation per pixel loaded is enough to use
efficiently the device internal bandwidth on typical GPGPU devices. For instance, the
Nvidia GeForce 9300 GE, launched in June 2008, can perform about 16 integer operations
per 8 bytes transfered, that is 4 operations per 2-byte pixels: the 9 integer arithmetic
operations of an erosion are about enough to cover the corresponding pixel load and store,
once the steady state is reached. However, for simple pixel arithmetic operations, memory
transfers are not amortized and processor-memory communication time dominates the
overall performance. Thus we aggregate such arithmetic operations when possible, and
generate dedicated kernels to compute them.
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Figure 18: Running example operator aggregation for OpenCL

Figure 18 shows the simple arithmetic operation aggregation performed on our running
example for OpenCL: the two reductions are computed together. No other aggregation is
performed as all others but one of the image operations are stencil computations which
do not need such transformations.

7 Implementation and experiments

Our optimization strategy is implemented in PIPS [10], a source-to-source research com-
piler, for a small development cost measured hereafter with the KLOCs (thousand lines
of code) involved. Transformations of Phase 1 are more or less standard in an advanced
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void running spoc helper 0(f data2d *o0, f data2d *o1, f data2d *i0,

int32 t *r0, int32 t *r1, int32 t * k2 /* ... up to 16 */) {
// INIT SKIPPED si op sp par red*: micro instructions, operation parameters, reductions

si.mux[0][0].op = SPOC MUX IN0; // set state of MUX stage 0 number 0

si.poc[1][0].op = SPOC POC DILATE; // set state of POC stage 1 side 0

si.poc[1][0].grid = SPOC POC 8 CONNEX;

// SKIPPED: more configurations...

f cg process 2i 2o(op, par, o0, o1, i0, i0); // call hardware accelerator, 2 ins & 2 outs

f cg read reduction results(&redres); // extract reduction results

*r0 = (int32 t)reduc.measure[0][0].minimum;

*r1 = (int32 t)reduc.measure[0][0].volume;

}

Figure 19: SPoC helper code excerpt for the running example (Figure 6)

// perform some computations

running spoc helper 0(od, og, in, &min, &vol, k8c, /* 18 * k8c */);

running spoc helper 1(od, og, od, og, k8c, k8c, k8c, k8c, k8c);

Figure 20: SPoC helper (Figure 19) stub calls

void running tpx helper 1(f data2d *o0, f data2d *o1,

f data2d *i0, f data2d *i1, int32 t *pi4) {
// SKIPPED: declarations & initializations

int imglet 1 = 0, imglet 2 = 204, ...; // ... up to 5

int imglet io 1 0 = imglet 1; // double buffers

int imglet io 1 1 = imglet 4; // ... 2 more

int vertical border = 5, imglet computed size = 194;

int imglet size = ... ; // compute best imagelet size depending on input image

mcu macro[0][0].xmin1 = imglet io 1 0; // E8(1) -> 3

mcu macro[0][0].xmin2 = imglet 3; // more settings skipped

mcu macro[0][0].iter2 = imglet size;

mcu macro[0][0].addrStart = UCODE ERODE 3 3; // microcode for operation

for(i=0; i<9; i++) p 0[i] = pi4[i]; // copy needed kernel

// SKIPPED other operations definitions, including flip-flop

mcu instr.borderN = 5; // AND also S W E imagelet erosion

mcu instr.imagelet height = imglet size;

mcu instr.nbin = 2; // I/O imagelet declarations...

tile in[0][0].x = imglet io 1 0; // more settings skipped

freia cg process(&param, o0, o1, i0, i1); // call accelerator

}

Figure 21: Terapix helper code excerpt for the running example (Figure 6)
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KERNEL void oop opencl helper 3(GLOBAL PIXEL * o0, int ofs o0, // output image

GLOBAL PIXEL * i0, int ofs i0, GLOBAL PIXEL * i1, int ofs i1, // input image

int width, int pitch, int c0, int c1, int c2) { // thread & scalar parameters

GLOBAL PIXEL *p0 = o0 + ofs o0; // ... IDEM j0/i0 & j1/i1

int gid = pitch*get global id(0);

for (int i=gid; i < (gid+width); i++) { // some computations

PIXEL in0 = j0[i], in1 = j1[i]; // read input pixels

PIXEL t228 = PIXEL INF(in1, in0);

PIXEL t230 = PIXEL THRESHOLD(t228, c0, c1, c2);

p0[i] = t230; // write output pixel

} }

Figure 22: OpenCL helper code excerpt for OOP (Figure 14)

optimizing compiler. They amount to 155 KLOCs in PIPS, including the parser, seman-
tical analyses, optimizations phases. . . Phase 2 operations are also standard, but are
used here for full image processing calls although the usual scope is on elementary scalar
processor operations. Its implementation requires about 3 KLOCs for representing the
FREIA elementary operator semantics, plus building and optimizing the DAG representa-
tion. Phase 3 is the back-end specific code generation. It uses about 1.7 KLOCs including
DAG splitting, scheduling, wiring, and SPoC configuration, 1.3 KLOCs for mapping onto
Terapix, and 0.6 KLOCs for OpenCL. Thus the implementation for phase 2 and 3 added
about 4% to the code base of the compiler. As the generated code is in C, it is simple
to generate, check and debug, thanks to the examples in the optimized library implemen-
tation. It produces acceleration functions to be called from the initial application. Each
generated configuration function (see excerpts in Figure 19 for SPoC, Figure 21 for Terapix
and Figure 22 for OpenCL) is called from the main with the appropriate arguments (e.g.
in Figure 20). Other applications may require more preprocessing phases, such as while
loop unrolling or code hoisting, to obtain longer basic blocks.

image ops speedups

Apps dags
static run.

SPoC Tpx OCL
ini opt ini

Anr999 1 33 23 33 16.5 3.1 1.6

Antibio 7 49 48 832 9.2 - 1.5

Burner 4 422 422 518 14.0 2.5 1.1

Deblocking 1 36 32 36 2.1 2.4 1.2

LP 1 135 69 135 16.9 2.6 2.0

OOP 1 22 18 4290 3.1 4.1 1.7

Retina 3 106 42 304 19.0 2.6 1.8

Toggle 1 15 15 15 2.1 - 2.1

VS (core) 1 17 16 95339 (?) 2.0 - -

Overall 2.2 93 76 370 6.5 2.8 1.6

Figure 23: Whole application speed-ups vs optimized library on the three target archi-
tectures Averages are arithmetic for static, geometric for dynamic counts

Our prototype FREIA compiler was tested on 1276 cases, comprising 1005 combinato-
rial tests (3 to 6 ops), 169 elementary tests (1 to 13 ops), 50 atomic tests (1 op for which
we generate the hardware accelerated versions) and finally 68 significant applications or
functional blocks (5 to 422 ops) tested with various parameters. Figure 24 shows speed-ups
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Figure 24: Speed-ups on SPoC with 8 vector units for the running example (Figure 6)

on actual applications, compared to the optimized FREIA library. For each application we
display: the number of dags found, the number of image operation before and after DAG
optimizations, the initial number of image operations at runtime, and finally the speed-ups
on the three target architectures. On average, DAGs found in the applications comprise
42 vertices. A few figures are missing: bugs not yet fixed in the Terapix functional simu-
lator prevented some runs to complete successfully, and there is an issue with the VS full
application. The overall compilation time, with all preprocessing and code generation, is
reasonable, especially as not much time has been spent on optimizing the implementa-
tion: most cases are processed in a few seconds, although the largest application (422 ops
Burner) requires about 2 minutes.

Figure 24 compares speed-ups obtained on parametric versions of the running example
in Figure 2 where the numbers of iterations is adjusted from 0 to 17 (the source code
selected executes 10 iterations) on SPoC hardware. In the baseline version, each call to
the accelerator performs only one operation. In the optimized library version, each call to
a FREIA operator is optimized independently. Finally the PIPS version is generated with
the techniques described in this paper to optimize the whole application. It fares better
than any other version, thanks to the extracted common sub-expression and the optimal
(in this case) hardware mapping which combines elementary operations whenever possible.
Note that the optimized version runs out of vector units for a size 8 gradient operation,
whereas the version using the SPoC optimized library goes down for 9: the first vector
unit is used up by the optimized version for the volume and minimum measurements in
the input image, hence the shift of the discontinuity between the two versions.

For the SPoC accelerator, only 30 cases on 1276 are not optimal: 28 are one call away
from optimality, and 2 are not optimal by 2 and 3 calls. Most of these non optimality
cases are linked to the greedy nature of the heuristic coupled with pipeline spilling effects.
The average speed-up we obtained on SPoC for the available applications compared with
the optimized library version is 6.46.

The optimality for the Terapix accelerator is simple to define: the computations take
the minimal time to execute on the architecture with respect to all possible transfor-
mations and code generation techniques. However, it is much less obvious to check for
the potential optimality of the results found by our compilation strategy. The average
measured execution time speed-up we obtained on Terapix for the working applications
is 2.81. Although this is less than the SPoC results, this must be compared to the intrinsic
speed-up ceiling which is around 4 on this architecture for stencil computations, which
compose an important part of image operations in our sample applications.

For OpenCL, it is not easy to discuss performance which may vary greatly depending
on the device, the runtime and the compiler. In order to devise a device and compiler-
neutral speed-up, we compute the speed-up based on the number of dynamic kernel calls of
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the library version compared to the kernel called with our compiled version. The average
speed-up we obtained on OpenCL for the available applications is 1.59. This is significant,
especially as applications use a lot of stencil computations which do not need nor allow
much optimization opportunities, and as the library version already performs quite well.

8 Related Work

The related work is rather limited because researchers looking at hardware accelerators
issues in an academic environment usually do not have the resources required to develop
a full programming tool chain. They either design a specialized language, use pragmas to
guide the optimizer, build an optimized library, which may grow with each new application
to include the application-specific API that leads to good performance, or develop appli-
cations with target-knowledgeable people and do not advertise it. We break the related
work in two parts, software development for accelerators and optimization of expression
evaluation.

Software development for accelerators

Specialized languages have been designed to address various needs of application domains
and target architectures which are not well served by general purpose languages. The
OpenCL [20] recent standard aims at providing portability across accelerators, especially
GPGPU targets, but it is quite large and rather low-level: application developers should
be able to ignore it [29]. It remains an interesting output language for a source-to-source
tool like PIPS, or for implementing an efficient runtime to be called by the generated code.
Array-OL [14] is an example domain-specific language designed for signal processing and
for accelerator programming. However, Array-OL is not general enough to enable writing
a whole application, and is still hard to compile efficiently for a given target: parts of
the application must be isolated and coded in Array-OL, and the Array-OL optimization
process be performed under human supervision using a graphical tool.

Pragma annotations on top of standard languages are used to preserve the porta-
bility of applications and allow their functional validation in a standard environment.
OpenMP [22] allows the developer to hint about the program semantics, say loop par-
allelism or critical sections, but does not yet address all the requirements of hardware
accelerators, especially when the hardware accelerator must be programmed. HMPP [7] is
another pragma set designed by CAPS Enterprise to provide higher level pragmas. It can
be used to program an accelerator such as Nvidia Tesla or AMD FireStream, including
the use of several accelerators linked to a unique host, issue which is not addressed by our
technique. However the set of directives is very specific and requires deep architectural
insight from the developer to be exploited fully.

Another way of achieving high performance on specialized hardware and still retain
portability is to use domain-specific libraries which can be implemented for various tar-
gets. VSIPL [28] in the signal processing field was developed as an open standard by an
industry, government and research consortium. It contains thousands of functions, and
various level of partial implementations are defined in the standard, starting from the 127
functions core lite profile, followed by the 513 functions core profile, but implementations
do not necessarily implement these profiles in full. As the functions are not independent
and orthogonal, the developer must choose an implementation strategy which may re-
sult in different performances with differing library implementations, and may impair the
portability when all functions are not available. Moreover, we observed in the Ter@ops
project [27] that an API has a direct impact on the application structure, which may lead
to poor performance on a new piece of hardware. A library has been designed for vector-
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based instruction set additions such as Altivec or Intel SSE extension family [24, 13]. To
optimize its functions, application-level loops had to be moved down into the library to
improve data re-use. When the application was ported on a new MPSoC, without any
vector operation support but with multiple processors, loops were moved back up across
functional boundaries [16] to re-optimize the application differently. When performance is
a concern, a fixed API cannot really remain target independent. Although our approach
relies on an API, it is used to provide the underlying application semantics, and the gen-
erated code does not have to respect the API; the compiler restructures the computations
to fit the target hardware.

Application-specific instructions can be added to an existing general-purpose instruc-
tion set. For instance, the Video Specific Instruction Set Processor [21] has special in-
structions for computational intensive parts such as inter-block prediction but also uses
co-processors for specific tasks such as entropy encoding. This is close to our case, although
these instructions are very algorithm-specific, while we have mostly generic elementary op-
erators.

Optimization of expression evaluation

We use commutativity to detect more common subexpressions, but we do not currently
attempt to use advanced algebraic properties [30], mainly because none of our test cases
would benefit from these complex combinatorial optimizations. However we would consider
using them if we had a motivating example that would be really improved by such opti-
mizations. Basic block enlargement is useful for trace scheduling [12] and may be obtained
by different code transformations, including code hoisting and code sinking [15]. For im-
age processing applications, code hoisting and sinking do not seem useful. Our technique
is close to the optimization of expression evaluation and vector instruction chaining [25],
although in our case we must preliminary meet the pipeline constraints of our target
hardware.

9 Conclusion and Future Work

We have shown how standard compilation techniques can be efficiently reused and adapted
to optimize applications based on an image processing library for two domain-specific
hardware accelerators and a generic OpenCL target. Applications can be developed in C
by any programmer competent in the image processing field, but without knowledge of the
underlying hardware accelerators, and are automatically optimized for the specific target
system without any of the traditional hurdles such as the procedure calls imposed by the
different APIs used. The source code transformations and the high-level optimization
strategy is simple. It properly combines and adapts existing techniques to perform a wide
range of loop fusions based on semantical information. This simplicity is an asset, as it
greatly reduces the development costs of the compiler and bring large speed-ups.

What are the conditions for our approach to apply to other domains? (1) Our appli-
cation domain uses one type of large data, images, and a limited set of operators executed
on whole images, with a lot of implicit locality and parallelism. (2) The library API is rea-
sonably small, about 40 basic operations and about 20 higher level combined operations:
it is both relevant to the application developers who can find high level operations and
develop functional blocks, and still easily mapped onto the hardware which implements
directly most of the elementary operations. (3) The target hardware, both accelerators
and OpenCL, are quite well fitted to perform image operations. (4) Functional simula-
tors allow to test very simply the compiler, what greatly helps compiler development. (5)
Hardware and software experts, who moved between them what is done by the hardware,
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runtime and compiler, must trust each other and really work together.
Once these conditions are fulfilled, there are several benefits to our API-based com-

pilation approach. The application-hardware gap is small enough to be compatible with
a simple compilation strategy, allowing a low-cost fast development and integration in an
existing source-to-source compiler. Key benefits include: (1) Portability: The API works
as soon as the library is implemented, and with reasonable performance with the library
optimized version, so application development does not need to wait for the availability of
the compiler. (2) Performance: once available, the compiler provides a significant speedup
with respect to the optimized library version, and with a portable source code. (3) Cost:
as this speedup is achieved by the compiler, less knowledgeable application developers
can reach accelerations which would require a hardware expert otherwise. (4) Perennity:
the code can be retargeted by providing a new code generator, so these investments in
applications do not need to be spent all over again if a new hardware is available;

As future work, we expect more applications to be ported to FREIA so as to extend
the test bed for our optimizing compiler and possibly find new profitable transformations.
We also want retarget our compiler to updates of our current accelerators or to new
accelerators. We’re planning to have a look at the impact on our strategy on domains
with multiple data types, such as signal processing applications.
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Ronan Keryell, Pierre Villalon, Béatrice Creusillet, and Serge Guelton. PIPS Is not
(just) Polyhedral Software. In International Workshop on Polyhedral Compilation
Techniques (IMPACT’11), Chamonix, France, April 2011.

[4] Michel Bilodeau, Christophe Clienti, Fabien Coelho, Serge Guelton, François Irigoin,
Ronan Keryell, and Fabrice Lemonnier. FREIA: FRamework for Embedded Image
Applications, 2008–2011. French ANR-funded project with ARMINES (CMM, CRI),
THALES (TRT) and Télécom Bretagne.
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