
Newgen User Manual
Pierre Jouvelot
Rémi Triolet

CRI, Maths & Systems,
MINES ParisTech,

35, rue Saint-Honoré,
77305 Fontainebleau CEDEX

December 1990
last modified: December 31, 2011 (r1298)

1 Presentation

The design and writing of large software generally requires the definition and implementation of
application specific data structures. Newgen is a programming tool that helps in the second part of
this process. From the high-level specification of user data types, it generates creation, access and
modification functions that implement these data types, seen as abstract data types. In particular,
functions to read and write Newgen-defined values on files are supported, thus providing
interlanguage compatibility via files or streams. For instance, data structures created by a C program
that uses Newgen-C and written on a file can be read by a CommonLISP program that uses
Newgen-Lisp.

Newgen allows the definition of basis domains. These basis domains are the core on which more
elaborate data types can be defines. For instance, Newgen provides int and float basis domains.
On these predefined domains, Newgen allows the definition constructed domains; product domains
allow the manipulation of tuples, sum domains tagged values (reminiscent of Pascal variant types),
list domains list of values and multidimensional array domains fast direct-access set of values.
Moreover, to allow an upward-compatible use of Newgen, external domains that permit the
introduction of values from preexisting domains inside Newgen-generated data structures are
supported.

From such definitions, Newgen generates, for each supported language1 , a set of functions that :

create either initialized or not data values,
access relevant parts of constructed values (e.g., elements in a list or projection on tuples),
modify certain parts of constructed values,
write and read values to and from files,
recursively deallocate data values (if required by the underlying language).

This manul describes the specification language used by Newgen (section 2), introduces a simple
example which will be used throughout this paper in examples (section 3), presents the C (section 4)
and CommonLISP (section 5) version of Newgen before concluding with the practical aspects of
Newgen (section 6).

2 The Newgen Grammar

The grammar of Newgen specifications, given in a Yacc-like syntax, is the following :

Specification : Imports Externs Definitions

Imports : Imports IMPORT NAME FROM " NAME " ;
 |

Externs : Externs EXTERNAL NAME ;

Definitions : Definitions Definition
 | Definition

Definition : Tabulated NAME = Domain ;

Tabulated : TABULATED
 |

Domain : Simple Constructed
 | { Namelist }

Simple : Persistant Basis
 | Persistant Basis *
 | Persistant Basis {}
 | Persistant Basis Dimensions

Persistant : PERSISTANT
 |

Basis : NAME
 | NAME : NAME

Constructed : x Simple Constructed
 | + Simple Constructed
 | Simple -> Simple

Namelist : NAME , Namelist
 | NAME

Dimensions : [INT] Dimensions
 | [INT]

where terminals should be obvious. Commented lines are signalled by a beginning -. Note that CPP
(the Unix C preprocessor) commands can be used everywhere in this file (e.g., to give array
dimensions in symbolic form); they will be automatically inserted into Newgen-generated files.

An imported domain is any domain defined (in another file) with Newgen. Newgen allows
multiple-files specifications; any Newgen domain referenced but not defined inside a specification
file as to be declared as an imported domain. The quoted name is the file in which the imported
domain is defined. Currently, nested imports are not supported.

An external domain is used to introduce any data structure defined outside of Newgen. This
facility allows the incremental use of Newgen inside projects that already have defined data
structures or the integration of more sophisticated data structures (e.g., hash-coded data).

Newgen domains are either tabulated or not. A tabulated domain has its elements that are
automatically associated to a unique identifier. This identifier will be used to write in and read from
files tabulated values, those providing for ways of naming values accross different program runs.

A basis domain is a labeled name a:b (as a short cut, a is equivalent to a:a) where b is a
built-in domain known by Newgen. Supported basis domain are unit, bool, char, int, float
and string. The type unit has only one value. When used inside more complex domains, a basis
value is always inlined so that no space is lost by using Newgen with predefined types. For instance,
lists of integers are not list of pointers to integers but are somewhat isomorphic to the kind of

structure definition a C programmer would have thought of.

A simple domain is either a basis one, a list * of basis, a set {} of basis or a multidimensional
array [] of basis. When a simple domain is tagged as persistant, it won’t be freed when recursively
reached by a deallocation expression.

Constructed domains can either be a product x or a sum + of simple domains; the notation
{a,b} is equivalent to a:unit+b:unit. A sum domain is the equivalent of Pascal variant types and is
used to represent in a single type values from different types. A product domain is the equivalent of
Pascal record types and is used to represent in a single type a collection of values. The arrow type ->
is only available in C mode and allows functions to be defined.

Domain definitions are mutually recursive inside one specification file.

For instance, here are three different definitions of list_of_names where each name is
implemented by the (predefined) string data type: the first one use the Newgen list constructor, the
second explicits the recursive definition of list and the third uses an array to store names:

- Built-in list
-
list_of_names_1 = names:string *

- Explicit definition
-
list_of_names_2 = nil:unit + not_empty_list_of_names
not_empty_list_of_names = name:string x reste:list_of_names_2

- Array implementation
-
#define MAX_NAMES 100
list_of_names_3 = names:string[MAX_NAMES]

Values created with Newgen primitives are first-class. They can be passed to functions (the
passing mechanism is a call-by-sharing reminiscent of Lisp), stored in data structures and assigned to
data variables.

3 An example

We will use the following example specification throughout the whole paper. It defines a set of
domains to be used in the implementation of a car reservation system used in our lab. For
pedagogical purposes, this specification will be split across two files. The first file is
reservation.newgen:

- File: reservation.newgen
-
- The CRI car reservation system specification
-
- French cars are small !
#define NB_OF_PASSENGERS 3

import location from "location.newgen"

external login

indisponibility = reservation*

reservation = driver:person x date x destination:location x
 nbpassager:int x
 passager:person[NB_OF_PASSAGERS] x
 to_confirm:bool

person = name:string x login

tabulated date = day:int x month:int x year:int x period
period = { morning , afternoon , day }

while the second is location.newgen:

- File: location.newgen
-
- Since the Ecole des Mines is decentralized, locations
- can vary !
-
location = known + other:string
known = { paris, sophia, rocquencourt }

.

In this example, dates will be tabulated. A login is an external data type that is supposedly
manipulated by previoulsy defined functions. An indisponibility defines the already occupied
slots for the (unique, our lab is not that rich) car. Each of these reservations defines a bunch of
useful information among which the date and a boolean specifying whether a confirmation is
requested or not. The other domains should by now be obvious.

4 Newgen-C

This section describes the C implementation of Newgen. Except otherwise specified, tabulated and
untabulated domains are treated in the same way.

4.1 Creation Functions

Basis domains have been typedef-ed. Integer, float, character and string (i.e. char *) literals can be
used, as well as TRUE and FALSE for booleans and UU for unit values.

From the definition of a domain a, the function to be used to create a value of that type is

make_a(<list-of-arguments>)

There are as many arguments as there are subdomains in the definition of the domain a. Example:
person p = make_person("Foo", login_foo); creates a person p with name "Foo" and login
login_foo supposedly defined outside. Undefined values can also be used; for each domain a, an
undefined value a_undefined is provided. Also the functions a_undefined_p, which tests whether
its argument is undefined, and copy_a, which recursively copies its argument (up to tabulated
domains and persistant simple domains), are provided.

The list of arguments is empty for an arrow type f = a -> b . A new arrow object can be created
by extendign a previous one via the extend_f function.

Lists are made of cons cells. To create a cons cell, use the macro CONS that returns a value of
type cons *. You can use NIL to denote the end of a list. You have to provide the type of the element
you cons. Example: To create a one-element list containing person p use cons *l = CONS(PERSON,
p, NIL);.

An external value cannot be created within Newgen.

4.2 Access functions

For a domain a that is constructed with a subdomain b, use the macro a_b to access the b field from
an a value. Example: string s = person_name(p); returns the name of a person p in the string
s.

For sum domains, the function or_tag accesses the tag (of type tag which is typedefed). Tags
from a = b+c are is_a_b and is_a_c. Integer operations can be used on tags. To check the value of
a tag, the boolean function a_b_p can be used. Example: To dispatch on the tag of the period r, use
tag rt = or_tag(r) ; if(rt == is_period_morning) The C switch construct can
also be used.

For the arrow domains f = a->b, i.e. for mappings, the function apply_f is defined. It takes a
function and an object of type a and returns an object of type b.

To access list elements, use the CAR and CDR macros. You have to indicate the type a of the
element with the macro A when you use CAR. Example: To get the second element of a list l of
persons, use PERSON(CAR(CDR(l))). A library of useful Lisp-like functions is provided; look for
usage in the files list.h and ist.c.

To acess set elements, use the set access functions that are exported by the set module; see
set.h and set.c for a list of functions. Note that this specification of sets doesn’t allow the C
assignment but requires the function set_assign to be used. Thus C aliasing is prohibited. Set
elements must be accessed with the SET_MAP macro. Example: To print the integers from a set s, use
SET_MAP(i, {printf(format, i);}, s).

To access array elements, use the usual C brackets. You have to indicate the type a of the
element with the macro A. Example: To get the second element of an array t of passengers, use
person second = PERSON(t[1]);

External values and variables can be declared in the same way. You have to cast your (addresses
to) exogeneous values to the external type. Example: If a login is defined by struct mylogin, then
use

struct mylogin {char *name ; int id;} joe ;
joe.name = "Joe Luser" ;
joe.id = 999 ;
person_login(second) = (login)&joe ;

For debuygging purposes, you can check the validity of a NewGen data structures by calling the
function gen_consistent_p. Also, the function gen_sharing_p returns 1 if its two arguments have
a pointer (either a Newgen value or a CONS cell) in common.

When recursively traversing a Newgen value, one can use the general parametrized traversal
routine gen_recurse, which is a simplified version of gen-recurse used in the CommonLISP
mode. It allows for easy definition of top-down and bottom-up algorithms on Newgen value:

void
gen_recurse(obj, domain, filter, rewrite)
"Newgen object" obj ;
int domain ;
bool (*filter)(<objet Newgen>) ;
void (*rewrite)(<object Newgen>) ;

The object is recursively traversed (until basis domains, except through persistant arcs or
tabulated domains). For any object x in the domain present in obj, the filter function is applied. If
false is returned, the traversal of x is not performed. Otherwise, once the recursive traversal of
subobjects of x is performed, the rewrite function is applied, taking X as an argument.

For any domain d defined in Newgen, the macro d_domain is defined.

An extended version of this function is also available to traverse a Newgen value with top-down
filtering decisions and bottom-up rewriting actions on several domains. The traversal is optimized so
that only useful arcs are followed, i.e. arcs that may lead to a domain to be visited.

void
gen_multi_recurse(<Newgen Obj> obj,
 [int d, bool (*flt)(<Newgen Obj>), void (*rwt)(<Newgen Obj>)]*,
 NULL);

4.3 Modification functions

To modify a value, use the access function in the left hand side of an assignment. Example: To
change the name of the second person, use person_name(second) = "new_name";.

For arrow types, i.e. for mappings, use update_f or extend_f for the domain f.

For sets, use set_assign or the triadic operations defined in set.c.

4.4 Destruction function

To free a (non external) value created by a make function, use gen_free; no value is returned. Values
are recursively freed (except when an undefined member, an inlined value or a tabulated value is
encountered). A tabulated value has to be explicitly freed by a direct call to gen_free. Example: To
free a person p, use gen_free(p).

4.5 IO functions

You can output (non external) Newgen values on a file with gen_write and read them back with
gen_read. In the process, sharing and circular lists are preserved. Example: To output a person p on
a FILE * fd, use gen_write(fd, p). To read it back, use p = (person) gen_read(fd);.

These IO functions recusively write and read their subcomponents in the obvious way, except for
tabulated domains. A value from a tabulated domain, when indirectly reached, is not actually written
on the file; the only information actually output is the unique identifier of the value (plus some
Newgen information). To effectively write a tabulated value, you have to call gen_write directly on
this value.

When read back, an identifier from a tabulated domain will refer to the actual value; this value
will have to have been previously read by a call to gen_read.

4.6 How to use Newgen-C

Once Newgen is installed, call newgenwith the -c option followed by the names, here
reservation.newgen, of the file(s) that contain(s) your specification; the specification files must
form a complete specification. For each file (e.g. reservation.newgen), this creates one file:
reservation.h. reservation.h contains all the definitions of the functions described above (this
file has to be included in your C program). You have to call gen_read_spec in your C program
before using any of Newgen generated functions; the order of the arguments (such as
reservation_spec) is output by newgen.

For each external type, you have to call gen_init_external with five arguments: the type (in

upper case) with _NEWGEN_EXTERNAL appended), a read function that receives as argument the
function to read characters from, a write function that expects a (FILE *), a free function that
receives an object of the external type and a copy function that receives an object of the external type
and returns a freshly allocated copy of it.

A program that uses Newgen functions has to include the file genC.h.

Example: To use our previous example, write:

#include <stdio.h>
#include "genC.h"

/* location is first is it is used by reservation */

#include "location.h"
#include "reservation.h"

/* We use ANSI-C function prototypes */

login read_login(int (*read)()) ;
void write_login(FILE *fd, login obj) ;
void free_login(login obj) ;
login copy_login(login obj) ;

main() {
 gen_read_spec(location_spec, reservation_spec, NULL) ;
 gen_init_external(LOGIN_NEWGEN_EXTERNAL,
 read_login, write_login,
 free_login, copy_login) ;
 {
 person p = make_person("Foo",
 (login)read_login(getchar)) ;

 /* Write user code here */
 }
}

To run this program, you have to link it with the genC.a library.

If you want to perform run-time checking of the consistency of your data structures, compile
your C program with the -DGEN_CHECK option (this may generate incorrect code - especially in
nested function calls - so you should always run “lint” on your program and add supplementary
parentheses where necessary) and position the gen_debug variable to GEN_DBG_CHECK. To get more
information about the way Newgen functions manipulate your data, use GEN_DBG_TRAV in the
gen_debug variable. Various debug flags can be ored in gen_debug (see genC.h),

Run-time checked modules can be used with non-checked modules.

5 Newgen-Lisp

This version describes the CommonLISP implementation of Newgen. All the defined values in a file
are external (in Lisp terminology) to the package file; use use-package to easily access them. You
may have to manage package conflicts with the shadow function.

5.1 Creation Functions

From the definition of a domain a, the function to be used to create a value of that type is

(make-a <list-of-arguments>)

with the syntax of CommonLISP defstructs. Example: (setf p (make-person :name "Foo"
:login login-foo)) creates a person p with name "Foo" and login login-foo supposedly
defined outside.

For every non-inlined type a, an undefined value can be obtained by calling make-a without
arguments.

Lists are made of Lisp cons cells. Example: To create a one-element list containing person p use
(setf l (list p)).

An external value cannot be created within Newgen.

5.2 Access functions

For a domain a that is constructed with a subdomain b, use the macro a-b to access the b field from
an a value. Example: (setf s (person-name p)) returns the name of a person p in the string s.

For sum domains, the function or-tag access the tag. Tags from a = b+c are is-a-b and
is-a-c. Integer operations can be used on tags. To check the value of a tag, the boolean function
a-b-p can be used. You can also use the switch macro accessible from the Newgen-Lisp library.
Example: To dispatch on the tag of the period r, use

(if (= (or-tag r)} is-period-morning) ...)

With the Newgen switch macro:

(switch (or-tag r)
 (is-period-morning ...)
 (:default ...))

If no default is provided, a break is executed in case no tag matches. Insted of a tag as head of a
clause, a two-element list (e.g., ((is-a-b b) ...)) can be used; in that case, inside the body of the
clause, b will be bound to the result of calling a-b on the expression used in the switch macro.

To access list elements, use Lisp. Example: To get the second element of a list l of persons, use
(cadr l).

To access set elements, use the module set.cl that uses the same specification as set.c (see
above).

To access array elements, use the usual Lisp brackets aref. Example: To get the second element
of an array t of passengers, use (setf second (aref t 1)).

NewGen also provides the gen-recurse macro described in the paper ”Recursive Pattern
Matching on Concrete Data Structures” (with B. Dehbonei), SIGPLAN Notices, ACM, Nov.89. This
macro allows recursive programs over recursively defined data structures to be written very simply.
See the documentation string of gen-recurse for a rapid description.

External values and variables can be used in the obvious way.

5.3 Modification functions

To modify a value, use the setf Lisp modification function. Example: To change the name of the
second person, use (setf (person-name second) "new-name").

For sets, use set-assign or the triadic operations.

5.4 Destruction function

No need for that, the GC will do it for you, except for tabulated values (they have to be explictly
freed by a call to gen-free).

5.5 IO functions

You can output (non external) Newgen values on a file with gen-write and read them back with
gen-read. In the process, sharing and circular lists are preserved. Example: To output a person p on
a stream st, use (gen-write st p). To read it back, use (setf p (gen-read st)).

See the same subsection in Newgen-C for a discussion about tabulated domains.

5.6 How to use Newgen-Lisp

Once Newgen is installed, call newgen with the -lisp option followed by the name, here
reservation.newgen, of the file(s) that contain(s) your specifications. For each file, this creates one
file, e.g. reservation.cl. reservation.cl contains all the definitions of the functions described
above (this file has to be loaded in your Lisp program).

For each external type, you have to call gen-init-external with three arguments: the type (in
upper case), a read function that receives as argument the function to read characters from and a
write function that expects a stream and a pointer to an object of the external type.

A program that uses Newgen functions has to load the file genLisplib.

Example: To use our previous example, write:

(load "genLisplib")
(load "location.cl")
(load "reservation.cl")

(use-package :reservation)

(defun main ()
 (gen-init-external login read-login write-login)
 (setf p (make-person :name "Foo"
 :login (read-login read)))
 ; Write user code here
)

You can also use compiled versions of these files.

6 Conclusion

Newgen is currently available on an “as is” basis in the Newgen-C and Newgen-Lisp versions from
the authors. Written in C, it has been successfully used on Sun-3, Sun-4 and ATT-3B5. Requests and
comments can be mailed to:

 jouvelot@cri.ensmp.fr

