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“Power Wall + Memory Wall + ILP Wall = Brick Wall”

“Increasing parallelism is the primary method of improving processor performance.”

David A. Patterson (2006)
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Introduction

No surprise the memory wall issue is getting worse

Possible solution: stream-computing
@ Memory latency: decoupling
@ Off-chip bandwidth: local, on-chip communication

@ False sharing and spatial locality: aggregation of communications
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Stream programming models and languages

Kahn Process Networks (1974)
Data-driven deterministic processes
Unbounded single-producer single-consumer FIFO channels

Cyclic communication can lead to deadlocks
UNIX pipes

Synchronous Data-Flow (1987)
@ Statically defined, periodic behaviour
@ Production/consumption rates known at compile time
@ Ptolemy (1985-96), Streamlt language (2001)

Synchronous languages
@ Reactive systems and signal processing networks
@ Deterministic and deadlock-free
@ Sampled signals instead of streams
@ Signal (1986), LUSTRE (1987), Lucid Synchrone (1996), Faust (2002)
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Can streaming help to efficiently exploit non-streaming applications?

Existing streaming models
@ Regular streams of data
@ Single-producer single-consumer FIFO queues

@ Restricted to specific classes of applications

General-purpose parallel programming

@ Irregular communication patterns
Control flow cannot be ignored
Multi-producer multi-consumer FIFO queues
Express control-dependent irregular data flow

Efficiency is an issue
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Is a new stream programming language necessary? Desirable?

New stream programming language
@ Adopting yet another new language
@ New compilation and debugging tool-chains

@ Mixing different programming styles and parallel constructs

Providing stream-computing semantics to a well-established language
@ Incremental adoption

@ Integration with existing parallel constructs: data-parallel loops, tasks

Pragmatic choice: OpenMP 3.0
@ De facto standard for shared memory parallel programming
@ Widely available and used
® Any language that provides support for task parallelism
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Presentation and Thesis Outline

O Generalized, Dynamic Stream Programming Model for OpenMP

Ch 2. A Stream-Computing Extension to OpenMP
Ch 8. Experimental Evaluation

@ Compilation and Execution of Generalized Streaming Programs

Ch 6. Runtime Support for Streamization
Ch 7. Work-Streaming Compilation

© Contributions and Perspectives

Ch 3. Control-Driven Data-Flow (CDDF) Model of Computation
Ch 4. Generalization of the CDDF Model
Ch 5. CDDF Semantics of Dependent Tasks in OpenMP
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1. Generalized, Dynamic Stream Programming Model for OpenMP

° Generalized, Dynamic Stream Programming Model for OpenMP
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Bird’s Eye View of OpenMP

DI [Pl OpenMP 3.0

allelism

Dependent
tasks

Task parallelism
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OpenMP through examples |

Data-parallel loops

#pragma omp parallel for shared (A) #pragma omp parallel for shared (B)
for(i = 0; i < N; ++i) for(i = 1; i < N; ++i)
Al = ... B[il = ... B[i-1] ...;

@ No verification of validity of annotations
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OpenMP through examples Il

OpenMP 3.0 tasks

Pp=...;

while (p != NULL) {
#pragma omp task firstprivate (p)

do_work (p->data);

}
P = p—>next;
}

@ No order can be assumed on the execution of tasks

@ Dependences must be synchronized by hand
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Motivation for Streaming

Sequential FFT implementation
float A[2 * NJ;
for(i = 0; i < 2 * N; ++i)

Ali] = ...

// Reorder
for(j = 0; j < log(N)-1; ++j)
{

chunks = 2j;

size = 2(1°g(N)—J'+1);

for (i = 0; i < chunks; ++i)
reorder (A[i*size ..

(i+1)*size-1]);

// DFT

for(j = 1; j <= log(N); ++j) {
chunks = 2(l°g(N)_j);
size = 2(j+1);

for (i = 0; i < chunks; ++i)
compute_DFT (A[i*size ..
¥

// Output the results
for(i = 0; i < 2 * N; ++i)
printf ("%f\t", A[il);

(i+1)*size-1]);

Loops on stages (j)

Loop on chunks (i)

Reorder stages

s ] ]
Ris=SIgiN
e ]

e U L

DFT stages
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Example: FFT Data Parallelization

OpenMP parallel loop implementation

float A[2 * NJ;
for(i = 0; i < 2 % N; ++i)

Ali] = ...
// Reorder
for(j = 0; j < log(N)-1; ++j)
{

chunks = 2j;
size = 2es(N)—j+1),
#pragma omp parallel for
for (i = 0; i < chunks; ++i)
reorder (A[i*size .. (i+1)*size-11);

// DFT

for(j = 1; j <= log(N); ++j) {

chunks = 2(l°g(N)_j);

size = 20 +1) ;

#pragma omp parallel for

for (i = 0; i < chunks; ++i)

compute_DFT (A[i*size ..

}

// Output the results

for(i = 0; i < 2 * N; ++i)
printf ("/f\t", A[il);

(i+1)*size-1]1);

Loops on stages (j)

Loop on chunks (i)

Reorder stages

e

DFT stages
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Example: FFT Task Parallelization

1 1
Reorder stages DFT stages Reorder stages DFT stages

Reorder stages DFT stages Reorder stages DFT stages
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Example: FFT Pipeline Parallelization

Dynamic reorder pipeline Dynamic DFT pipeline

> rint(...l

Ipigseigig 0 =810 U

Reorder stages DFT stages Reorder stages DFT stages

=] ] INEiE==INSInl
TN AT TN
1% NN

Reorder stages DFT stages Reorder stages DFT stages

I.‘
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Example: FFT Streamization (pipeline and data-parallelism)

Dynamic reorder pipeline Dynamic DFT pipeline

> rint(...l

Ipigseigig 0 =810 U

Reorder stages DFT stages Reorder stages DFT stages

LA IRiEiz==INInE
TSN A BTN
1% NN

Reorder stages DFT stages Reorder stages DFT stages

I.‘
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Single FFT Performance

B Mixed pipeline W Pipeline parallelism OpenMP3.0 tasks M Data-parallelism | Cilk
and data-parallelism OpenMP3.0 loops

Best configuration for each FFT size

)

core core %Fup ip machin

Z@@@%@bLLLL

10 11 12|13/ 14 1516 17,18 19,20 21|22
Log2 (FFT size)

Speedup vs. sequential

4-socket Opteron — 16 cores
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Performance evaluation of streaming applications

FMradio
@ high amount of data-parallelism, fairly well-balanced
o little effort to annotate with our streaming extension

@ 12.6 X speedup on 16-core Opteron (10.5X automatic code generation — 20%)

@ Streamlt: 8.6 X speedup on 16-core Raw architecture (different implementations)
v

IEEE802.11a

@ complicated to parallelize, more unbalanced
complex code refactoring is necessary to expose data parallelism
annotating the program is straightforward to exploit pipeline parallelism

annotating while enabling data-parallelism is difficult

13X speedup on 16-core Opteron (6 X automatic code generation — 55%)
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Design of the Streaming Extension: FFT Case Study

What needs to be expressed?

Dynamic reorder pipeline Dynamic DFT pipeline
1 2N N N 16 I S TR U 1Y (R - VI | }
STR[O] | STRI1] ~:  STR[log(N)-3]| 2 STRlog(N)}11: R 1
: :v....-‘ST ”3_/ [ S— ” J :

@ Producer-consumer relations (flow dependences)
@ Variable amount of data produced/consumed

@ Dynamic pipeline

v
How can it be expressed?
@ Coding patterns
@ Syntax
V.
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Coding Patterns

Producer-consumer relation

@ Add input and output clauses to OpenMP tasks

int x;

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)
X = ...

#pragma omp task input (x)
el T X

}
>

x
= B

Decoupling through privatization

o Eliminate anti/output dependences
> equivalent to scalar expansion on x

@ Streams naturally map on communication channels
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Coding Patterns

Variable amount of data produced/consumed

@ Enable tasks to consume or produce multiple values at a time: “burst” rates

@ Rename the stream variable within the task: “view"”

@ Use the C++-flavoured << and >> stream operators to connect a view to a stream
int x, IN_view[5], OUT_viewl[5];

for (i = 0; i < N; ++i)

{
#pragma omp task output (x << QUT_view[5]) .
for (int j = 0; j < 5; ++j) OUT _view[0.4] = ...
OUT_view[j]l = ... ; 5
#pragma omp task input (x > IN_view[3]) X
for (int j = 0; j < B; ++j) 3
co.o= ... IN_vi il ... q
. _view[j] ...=... IN_view[0..2]

Monotonic stream accesses

@ Memory accesses are serialized in the stream

» Contiguous memory accesses by design
» Cache locality with memory re-organisation (explicit in the task body)

@ Deterministic concurrency semantics

@ No periodicity requirement 22/42




Coding Patterns

Dynamic pipeline of filters
@ Arrays of streams

@ Dynamic connection of streams/tasks

int x, y, A[K];

for (i = 0; i < N; ++i)

{

#pragma omp task output (A[0] <« x)
X = ...

}

=
for (j = 0; j < K-1; ++j) // Task graph construction loop %
4
for (i = 0; i < N; ++i) w
{ )
#pragma omp task input (A[j] > x) output (A[j+1] <« y) §'
y=...% ... =

¥

}

Explicit dynamic construction of dynamic task graphs

@ Dynamic dependences define the producer-consumer relations
@ Not limited to streaming applications: arbitrary dependences and control
> Flexible and expressive, but can we preserve the streaming properties
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Streamized FFT Implementation with the OpenMP Extension

float x, STR[2*(int)(log(N))];

for(i = 0; i < 2 % N; ++i)
#pragma omp task output (STR[0] <« x)
X = .

s

// Reorder

for(j = 0; j < log(W)-1; ++j) {
int chunks = 2j;
int size = 2(1°g(N)_j+1);
float X[sizel, Y[sizel;

for (i = 0; i < chunks; ++i)
#pragma omp task input (STR[j] > X[sizel) \
output (STR[j+1] <« Y[sizel)
{
Y[0..size-1] = reorder (X[0..size-1]);
s

Dynamic DFT pipeline

% ﬁntL"l

// DFT

for(j = 1; j <= log(N); ++j) {
int chunks = 2(1°g(N)_j);
int size = 2(j+1);
float X[sizel, Y[sizel;

for (i = 0; i < chunks; ++i)
#pragma omp task input (STR[j+log(N)-2] > X[sizel) \
output (STR[j+log(N)-1] <« Y[sizel)
{
Y[0..size-1] = compute DFT (X[0..size-1]);
}
}

for(i = 0; i < 2 * N; ++i)
#pragma omp task input(STR[2*log(N)-1] > x)\
input (stdout) output (stdout)
printf ("/f\t", x);
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2. Compilation and Execution of Generalized Streaming Programs

0 Compilation and Execution of Generalized Streaming Programs
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Execution of Generalized Streaming Programs

Pure streaming applications
@ Synchronous Data-Flow invariants
@ Periodic behaviour

o Statically optimized static schedule

Generalized streaming applications
@ Dynamic behaviour (unknown at compile time)

@ Run-time scheduling
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Work-Streaming Code Generation: naive expansion

Example: streaming task
float x, y;
for (i = 0; i < N; ++i) {
// Do non-streaming work
if (condition ()) {

#pragma omp task input(x) output(y)

y=1f (x);
}
}

1 Work-streaming compilation and runtime |

GOMP_stream-id id_x, id_y;

for (i = 0; i < N; ++i)
{

// Do non-streaming work

if (condition ()) {
GOMP_activate_stream_task
(stream_taskwf, idx, id.y);

void stream_task_wf (&params) {
GOMP_stream s_x = params->X, S_y = params—>y;
float *view_x, *view_y;
int current;

while (get_activation (&current)) {
view_y = stall (s_y, current); // blocking
view_x = update (s_x, current); // blocking

*view_y = f (xview_x);

commit (s_y, current); // non-blocking
release (s_x, current); // non-blocking
}
}

27 /42




Synchronization constraints

Multi-producer multi-consumer streams
@ FIFO queues: non-deterministic interleaving

@ Requires atomic operations

push()

pop ()
> | Stream buffer | <
push() pop ()

Consensus required

Compute access indexes based on control flow
@ Synchronize only producers with consumers

@ No need to reach a consensus between producers or consumers

stall/commit(idx 1 )/\ hupdate/release(idﬁ)

| | | Physical stream buffer | |
stall/commit(idx2) 7 “—__update/release(idx4)

Computed access indexes
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Work-Streaming Code Generation: optimized case

GOMP_stream-id id_x, id_y; void stream_task_wf (&params) {
for (i = 0; i < N; ++i) { GOMP_stream s_x = params->X, S_y = params-—>y;

// Do non-streaming work float *view_x, *view_y;

if (condition ()) { int beg, end, beg_s, end_s;

GOMP_activate_stream_task
(stream_task-wf, id-x, id-y); while (get_activation_range (&beg, &end)) {

} for (beg_s=beg; beg_s<=end; beg_s += AGGREGATE) {

¥ end_s = MIN (beg_s + AGGREGATE, end);

view_y = stall (s_y, end_s); // blocking
view_x = update (s_x, end_s); // blocking

// Automatic vectorized version
for (i=0; i<end_s-beg_s; i+=4)
view_y[i..i+3] = f_v4f_clone (view_x[i..i+3]);

// Fall-back version
for (MAX (0, i-4); i<end_s-beg_s; i++)

view_y[i] = £ (view_x[il);

commit (s_y, end_s); // non-blocking
release (s_x, end_s); // non-blocking

@ Views directly access stream buffers: no unwarranted memory copy

@ Optimization example: automatic vectorization




On-going work: OpenMP late expansion

[ OpenMP annotated code

OpenMP annotated code

R

R

Front-end

Early expansion
'

mmmm——

iStandard I
............. P

Back-end

parallel code + runtime calls:

GCC

Front-end

Lowering to builtin representation
'

.................................. ) A

Optimization passes
'

\
Late expansion
J

Y
Back-end

GCC
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3. Contributions and Perspectives

© Contributions and Perspectives
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Contributions of this thesis |

@ Integration of the streaming paradigm in a high-level, general-purpose parallel
programming language, OpenMP
> no need for a domain specific language (e.g., Streamlt)
> no access barrier for application programmers
> no loss of expressiveness, preserving the existing parallel and sequential constructs
> no loss of efficiency

@ Extension of the streaming paradigm with irregular accesses to streams and
dynamically defined task graphs

» dynamically allocated streams and arrays of streams

» dynamic subscripting of arrays of streams for dynamically connecting tasks with
streams

» dynamically created tasks

© Minimal syntactic extension and maximal semantic compatibility with OpenMP,

offering functional determinism and all the expressiveness of dependent tasks with
streaming computations
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Contributions of this thesis Il

Q Control-Driven Data-Flow: formal model of computation

> proofs of statically analyzable conditions for dead-lock freedom and compile-time
serializability

» proof of functional and deadlock determinism

> generalization to execution in bounded memory and extension of proofs

@ Algorithmic support for performance and debugging

» Stream synchronization algorithm proved to require no atomic operations and no
memory fences
» Runtime deadlock detection algorithm with support for bounded memory execution

@ Code generation and runtime implemented as a prototype in GCC

@ Experimental evaluation

> streaming applications can be efficiently exploited
> non-streaming applications can be (concisely) expressed and efficiently exploited
> evidence of the usefullness of the extension to generalize the streaming paradigm
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Perspectives and Open Questions

Dataflow analysis of streaming applications
» Can stream access patterns be captured by dataflow analysis techniques?
> Is it possible to statically enable task-level optimizations on generalized streaming
programs?

Desynchronization of the LUSTRE synchronous language

Generation of code for distributed memory systems

@ Extending other parallel programming models with streaming
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Antoniu Pop
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Integration of the streaming paradigm in a high-level, general-purpose parallel
programming language, OpenMP

Extension of the streaming paradigm with irregular accesses to streams and
dynamically defined task graphs

Minimal syntactic extension and maximal semantic compatibility with OpenMP,
offering functional determinism and all the expressiveness of dependent tasks with
streaming computations

Control-Driven Data-Flow: formal model of computation
Algorithmic support for performance and debugging
Code generation and runtime implemented as a prototype in GCC

Experimental evaluation
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Control-Driven Data-Flow Execution Model

(GEN) v (EXEC) V (BAR)

6=(Ke,Ae,A0) c'
NEXT(Ke)
(G} (BAR)
LD el me] [ =] [= B[] [ D (TERM)
Ke
(GEN) &(K,, m)
-------------------------- (EXEC)
(s} s
ACPX) ATEPX)
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Properties of CDDF Programs

Condition on state Deadlock Freedom properties Serializability

o= (Ke, Ac, Ao) —D(o) | mID(o) | =FD(o) | =~SD(o) Dyn. order | CP

TC(o) A

Vs € SCC(H(0o)), no no yes yes if ~ID(o) | no
—~MPMC(s)

TC A .

Vs, (—|GI\)/IPMC(S) no no yes yes if ~ID(o) no

SCC(H(o)) =@ no no yes yes if ~ID(0o) no

SC(o) V

NEXT(K.) € TI yes yes yes yes yes no

Vo, SC(o) yes yes yes yes yes yes
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Properties of Generalized CDDF Programs

Condition on state

o= (Ke, Ae, Ao)

-D(o)

—ID (o)

-~ FD(o)

—SD(o)

- LD(o)

—~LSD(o)

TC(o) N Vs € SCC(H(o)), " MPMC(s)

no

no

no

no

Va € Aqo, LP([a]~)not = &,
Vs € I (a) U SCC(H (o)) ~MPMC(s)
TC (o)

no

no

no

TC(o) N Vs, m"MPMC(s)

no

no

no

SCC(H (o)) = o

no

SC(o) vV NEXT(K.) € II

SC(c) Vv NEXT(K) € 1T
VVa € Ao, LP([a]l~) =@

Vo,SC (o)

38/42



OpenMP Extension for Stream-Computing: Syntax

flnput/output (list)

list ::= list, item
| item
item ::= stream

stream ::= var

| array[expr]
expr ::= var

| value

stream >> window
stream << window

~

(int s, Rwin[Rhorizon]; M
int Wwin[Whorizon];
input (s >> Rwin[burstR])

I
burst | poke
<

Wwin -
output (s << Wwin[burstw])

int S[K];
int X[horizon];

// Array of streams
// View

#pragma omp task output (S[0] <« X[burst])
// task code block
// burst <= horizon
for (int i = 0; i < burst; ++i)
X[l = ...

#pragma omp task input (S[0] > X[burst])
// task code block
// burst <= horizon
for (int i = 0; i < horizon; ++i)
.= ... X[il;

int A[5];

// Stream of arrays

#pragma omp task output (A)
// task code block
// Each element is an array
for (int i = 0; i < 5; ++i)
Ali] = ...

#pragma omp task input (A)
// task code block
for (int i = 0; i < 5; ++i)
.= ... ALl

In general, annotations alter the semantics of the underlying sequential code
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Stream Causality |

Serialization by ignoring annotations
o Each state of the program is stream causal

int x;

for (i = 0; i < N; ++i)

{

#pragma omp task output (x)
X = ...

#pragma omp task input (x)
L= X

}.‘
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Stream Causality 11

Underlying program has different semantics than streaming program

@ Only some states are stream causal

int x;

for (i = 0; i < N; ++i)

{

#pragma omp task input (x)
[ I

#pragma omp task output (x)
x= ...

}

int x;

for (i

{

= 0; i < N; ++i)

#pragma omp task output (x)

X = ...

}

for (i

{

H

=0; i < N; ++i)

#pragma omp task input (x)

}

= .. X ...
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