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Context

Working with PIPS: “a source-to-source compilation framework for
analyzing and transforming C and Fortran programs”, initiated by
MINES ParisTech.

Used for program analysis.

Most of program analysis techniques consist in starting from a set of
supposed predicates about a particular position in the transition system,
and then propagating it to other positions by evaluating the effect of each
transition on the predicates.

Particularity of PIPS: computes state transformers = transfer functions,
before state predicates.

Goal: improve the accuracy of invariants found when analyzing a TS.

Transform the program.
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Transformers Definition

Transformer

Let
• Var a finite set of n typed variables.
• Val the set of valuations on Var.

A transformer T is a relation from Val to Val: T ⊆ Val× Val.

T (over)approximates the behavior of a piece of code c if, for all valuations
v , v ′ ∈ Val:

c called on vars. equal to v may result in vars. equal to v ′

⇓
(v , v ′) ∈ T
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Transformers Definition

Example

Let x an integer variable, the instruction

x += 2;

is represented by the transformer

T = {(n, n + 2) | n ∈ Z}
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Transformers Definition

Affine Transformers

An affine transformer is a transformer whose constraints form a convex
polyhedron.

Can also be expressed as a conjunction of affine (in)equalities on 2n integer
variables x1 . . . xn (initial values), x ′1 . . . x

′
n (final values).

T = {(n, n + 2) | n ∈ Z} is an affine transformer, expressible with the affine
equality

x ′ = x + 2
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Transformers Affine Transformer Analysis

Affine Transformer Analysis

PIPS approach:
• Affine transformers are used to approximate each program command,
elementary or compound statement or procedure call.

• Each function is analyzed once and its transformer is reused at each
call site.

• Invariants are propagated using the transformers.
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Transformers Affine Transformer Analysis

Example 1

Consider a simple program with one variable x.

`1: x = 0;

// T`1 = {x ′ = 0}

`2: while (rand())

// T`2 = (T`3)
∗ = {x ′ ≥ 0}

`3: x += 2;

// T`3 = {x ′ = x + 2}
T`2 obtained, for example, by Affine Derivative Closure algorithm.

Computation of loops is factor of inaccuracy.
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Transformers Affine Transformer Analysis

Example 1

Invariants are computed usually from the program entry point, by
propagation along the transformers.

// no invariant
`1: x = 0; // T`1 = {x ′ = 0}
// ???
`2: while (rand()) // T`2 = (T`3)

∗ = {x ′ ≥ x}
`3: x += 2; // T`3 = {x ′ = x + 2}
// ???
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Transformers Affine Transformer Analysis

Example 2
We consider another example:

`1: x = rand();

// T`1 = {x ′ ≥ 0}

`2: while (rand())

// T`2 = (T`3)
∗ = ?

`3: {
`4: if (x > 0) x--;

// T`4 = {x > 0 ∧ x ′ = x − 1}

`5: else if (x <= 0) x++;

// T`5 = {x ≤ 0 ∧ x ′ = x + 1}

`6: }
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Example 2
We consider another example:
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`4: if (x > 0) x--; // T`4 = {x > 0 ∧ x ′ = x − 1}
`5: else if (x <= 0) x++; // T`5 = {x ≤ 0 ∧ x ′ = x + 1}
`6: }

To compute T`2 , T`3 must be known.

Since both if branches may be taken a priori, T`3 ⊇ T`4 ∪ T`5 .
Also, T`3 must be affine.
⇒ Best approximation is the convex union

T`3 = T`4 t T`5

= {x − 1 ≤ x ′ ≤ x + 1}
Yet, inaccurate operation.
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Transformers Affine Transformer Analysis

Example 2
We consider another example:
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Vivien Maisonneuve Control Node Splitting September 13, 2011 9 / 24



Transformers Affine Transformer Analysis

Example 2

During computation of invariants:

// no invariant
`1: x = rand(); // T`1 = {x ′ ≥ 0}
// x ≥ 0
`2: while (rand()) // T`2 = {}
`3: { // T`3 = {x − 1 ≤ x ′ ≤ x + 1}
`4: if (x > 0) x--; // T`4 = {x > 0 ∧ x ′ = x − 1}
`5: else if (x <= 0) x++; // T`5 = {x ≤ 0 ∧ x ′ = x + 1}
`6: }

// no invariant /
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Transformers Affine Transformer Analysis

Issue

What happens:
• Inaccuracy in the computation of effects of parallel paths
(if. . . else), increased by the (∗) operation.

• Occurs when there are parallel loops, i.e. while. . . if structures.

To adress the issue:
• Refine transformers involved in loops.
• Get information on order in which parallel loops can be performed.
• Decrease the number of parallel loops.

⇒ Program restructurations.
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Transformer Automata Definition

Transformer Automaton

An (affine) transformer automaton is a triplet α = (K , kini,Trans) where
• K is a finite set of control points.
• kini ∈ K is the initial control point.
• Trans is a finite set of transitions, i.e. of triplets (k ,T , k ′) with

k , k ′ ∈ K and T is an (affine) transformer.
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Transformer Automata Definition

Example

x = rand();
while (rand())
{

if (x > 0) x--;
else if (x <= 0) x++;

}

k1

k2

Tini : x, x
′ 7→ x′ ≥ 0

T1 : x, x
′ 7→

x > 0∧
x′ = x− 1

T2 : x, x
′ 7→

x ≤ 0∧
x′ = x+ 1

α = (K , kini,Trans):
• K = {k1, k2}.
• kini = k1.
• Trans = {(k1,Tini, k2), (k2,T1, k2), (k2,T2, k2)}.
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Transformer Automata Semantics

Semantics

A global state of α is a couple q = (k , v) where
• k ∈ K is a control point of α.
• v ∈ Val is a valuation of Var.

q is initial if k = kini.

q = (k , v)→ q′ = (k ′, v ′) iff there is a transition (k ,T , k ′) such as
T (v , v ′).
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Transformer Automata Semantics

Example

k1

k2

Tini : x, x
′ 7→ x′ ≥ 0

T1 : x, x
′ 7→

x > 0∧
x′ = x− 1

T2 : x, x
′ 7→

x ≤ 0∧
x′ = x+ 1

State (k2, 2) reachable through trace

(k1,−6)→ (k2, 4)→ (k2, 3)→ (k2, 2).

State (k2,−1) not reachable.
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Control Node Splitting Algorithm

Control Node Splitting

Let Part = P1 ] · · · ] Pm a partition of the domain of valuations Val s.t.
every Pi is convex.

To split a control k in α across Part:
• Replace k with new controls k1, . . . , kn.
• Delete each transition (k ,T , k ′). Add transitions (ki ,Ti , k ′) where

Ti (v , v ′) = T (v , v ′) ∧ v ∈ Pi .
• Delete each transition (k ′,T , k). Add transitions (k ′,Tj , kj) where

Tj(v , v ′) = T (v , v ′) ∧ v ′ ∈ Pj .
• Delete each loop (k ,T , k). Add transitions (ki ,Ti ,j , kj) where

Ti ,j(v , v ′) = T (v , v ′) ∧ v ∈ Pi ∧ v ′ ∈ Pj .
Do not create unnecessary transitions & controls.

Equivalence theorems allows to use the resulting automaton to study the
same properties.

Vivien Maisonneuve Control Node Splitting September 13, 2011 16 / 24



Control Node Splitting Algorithm

Control Node Splitting

Let Part = P1 ] · · · ] Pm a partition of the domain of valuations Val s.t.
every Pi is convex.

To split a control k in α across Part:
• Replace k with new controls k1, . . . , kn.
• Delete each transition (k ,T , k ′). Add transitions (ki ,Ti , k ′) where

Ti (v , v ′) = T (v , v ′) ∧ v ∈ Pi .
• Delete each transition (k ′,T , k). Add transitions (k ′,Tj , kj) where

Tj(v , v ′) = T (v , v ′) ∧ v ′ ∈ Pj .
• Delete each loop (k ,T , k). Add transitions (ki ,Ti ,j , kj) where

Ti ,j(v , v ′) = T (v , v ′) ∧ v ∈ Pi ∧ v ′ ∈ Pj .
Do not create unnecessary transitions & controls.

Equivalence theorems allows to use the resulting automaton to study the
same properties.

Vivien Maisonneuve Control Node Splitting September 13, 2011 16 / 24



Control Node Splitting Algorithm

Control Node Splitting

k

l

m

T1

T2

k

l1 l2

m

v, v′ 7→ T1(v, v
′) ∧ P1(v

′) v, v′ 7→ T1(v, v
′) ∧ P2(v

′)

v, v′ 7→ T2(v, v
′) ∧ P1(v) v, v′ 7→ T2(v, v

′) ∧ P2(v)
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Control Node Splitting Parameters

Parameters

The algorithm tends to create many controls & transitions, parameters
must be chosen carefully.

Choice of controls
Split controls where accuracy loss is important, i.e. those with parallel
loops.

Choice of partition

Limit the size of the resulting automaton:
• Few partition components.
• Chosen s.t. some controls and some transitions are not created
(preferentially those involved in loops).

Make the resulting transformers more precise.
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Experimental Results

Experiments

External tool, whose output is passed to the analyzer.

Partition choice: on a given control, determined by the truth values of all
guards of transitions passing by the control.

Transformer T1.

g1 = {v ∈ Val | ∃v ′ ∈ Val,T1(v , v ′)} = T1 projected on x1 . . . xn.

g1 ∧ g2 ∧ . . .︸ ︷︷ ︸
P1

g1 ∧ g2 ∧ . . .︸ ︷︷ ︸
P2

g1 ∧ g2 ∧ . . .︸ ︷︷ ︸
P3

g1 ∧ g2 ∧ . . .︸ ︷︷ ︸
P4

. . .

Experiments run on 71 previously published small scale transition systems
(∼ 1-10 controls, ∼ 2-10 transitions per control).

Considered successful if the expected invariant is found.
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Experimental Results

Experiments

With PIPS (revision 19448):
• 28 worked directly.
• 28+ 41 = 69 worked with restructuration.
• 2 did not work.

Impact of restructuration: analysis 30% slower, code 50% bigger.

With ASPIC 3.1 (classical LRA with widening + accelerations):
• 44 worked directly.
• 44+ 21 = 65 worked with restructuration
• 6 did not work.

1 fails in both.

Vivien Maisonneuve Control Node Splitting September 13, 2011 20 / 24



Experimental Results

Experiments

With PIPS (revision 19448):
• 28 worked directly.
• 28+ 41 = 69 worked with restructuration.
• 2 did not work.

Impact of restructuration: analysis 30% slower, code 50% bigger.

With ASPIC 3.1 (classical LRA with widening + accelerations):
• 44 worked directly.
• 44+ 21 = 65 worked with restructuration
• 6 did not work.

1 fails in both.

Vivien Maisonneuve Control Node Splitting September 13, 2011 20 / 24



Conclusion

Future Work

Performance issues:
• The restructuration tends to create many controls and transitions,
which limits its scope to small-scale systems.

Suitability issues:
• Usually, better results with a manually chosen partition.
• Restructuration makes things worse on vicious systems.

⇒ Find better partition strategies, handle a wider range of systems.
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Conclusion

Thank you.
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Conclusion

k1

k2

Tini : x, x
′ 7→ x′ ≥ 0

T1 : x, x
′ 7→

x > 0∧
x′ = x− 1

T2 : x, x
′ 7→

x ≤ 0∧
x′ = x+ 1

Vivien Maisonneuve Control Node Splitting September 13, 2011 23 / 24



Conclusion

k1

k′
2

x > 0

k′′
2

x ≤ 0

T ′
ini : x, x

′ 7→ x′ > 0 T ′′
ini : x, x

′ 7→ x′ = 0

T ′
1 : x, x

′ 7→
x > 1∧

x′ = x− 1

T ′′
1 : x, x′ 7→

x = 1∧
x′ = x− 1

T ′
2 : x, x

′ 7→
x = 0∧

x′ = x+ 1

T ′′
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Conclusion
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