Convex Invariant Refinement by Control Node Splitting: a Heuristic Approach

Vivien Maisonneuve

CRI, Mathématiques et systèmes MINES ParisTech

September 13, 2011

Vivien Maisonneuve

Control Node Splitting

→ < ∃ →</p> September 13, 2011 1 / 24

э

Context

Working with PIPS: "a source-to-source compilation framework for analyzing and transforming C and Fortran programs", initiated by MINES ParisTech.

Used for program analysis.

Most of program analysis techniques consist in starting from a set of supposed predicates about a particular position in the transition system, and then propagating it to other positions by evaluating the effect of each transition on the predicates.

Particularity of PIPS: computes state transformers = transfer functions, before state predicates.

A B M A B M

Context

Working with PIPS: "a source-to-source compilation framework for analyzing and transforming C and Fortran programs", initiated by MINES ParisTech.

Used for program analysis.

Most of program analysis techniques consist in starting from a set of supposed predicates about a particular position in the transition system, and then propagating it to other positions by evaluating the effect of each transition on the predicates.

Particularity of PIPS: computes state transformers = transfer functions, before state predicates.

Goal: improve the accuracy of invariants found when analyzing a TS.

Transformer

Let

- Var a finite set of *n* typed variables.
- Val the set of valuations on Var.

A transformer T is a relation from Val to Val: $T \subset$ Val × Val.

э

Transformer

Let

- Var a finite set of *n* typed variables.
- Val the set of valuations on Var.

A transformer T is a relation from Val to Val: $T \subseteq$ Val \times Val.

T (over)approximates the behavior of a piece of code c if, for all valuations $v, v' \in Val$:

c called on vars. equal to v may result in vars. equal to v'

$$(v, v') \in T$$

Definition

Example

Let x an integer variable, the instruction

x += 2;

is represented by the transformer

 $T = \{(n, n+2) \mid n \in \mathbb{Z}\}$

э

∃ → (∃ →

Definition

Affine Transformers

An affine transformer is a transformer whose constraints form a convex polyhedron.

Can also be expressed as a conjunction of affine (in)equalities on 2n integer variables $x_1 \dots x_n$ (initial values), $x'_1 \dots x'_n$ (final values).

э

Affine Transformers

An affine transformer is a transformer whose constraints form a convex polyhedron.

Can also be expressed as a conjunction of affine (in)equalities on 2n integer variables $x_1 \dots x_n$ (initial values), $x'_1 \dots x'_n$ (final values).

 $\mathcal{T} = \{(n, n+2) \mid n \in \mathbb{Z}\}$ is an affine transformer, expressible with the affine equality

x' = x + 2

- 3

A B A A B A

Affine Transformer Analysis

PIPS approach:

- Affine transformers are used to approximate each program command, elementary or compound statement or procedure call.
- Each function is analyzed once and its transformer is reused at each call site.
- Invariants are propagated using the transformers.

Consider a simple program with one variable x.

$$\ell_1$$
: x = 0;

- ℓ_2 : while (rand())
- ℓ_3 : x += 2;

э

Image: A matrix

Consider a simple program with one variable x.

 $\ell_1: x = 0;$

 ℓ_2 : while (rand())

$$\ell_3$$
: x += 2; // $T_{\ell_3} = \{x' = x + 2\}$

- 34

イロト イポト イヨト イヨト

Consider a simple program with one variable \mathbf{x} .

$$\ell_1$$
: x = 0; // $T_{\ell_1} = \{x' = 0\}$
 ℓ_2 : while (rand())

$$\ell_3$$
: x += 2; // $T_{\ell_3} = \{x' = x + 2\}$

э

Image: A matrix

Consider a simple program with one variable x.

 ℓ_1 : x = 0; // $T_{\ell_1} = \{x' = 0\}$

 ℓ_2 : while (rand()) // $T_{\ell_2} = (T_{\ell_3})^* = \{x' \ge 0\}$

$$\ell_3$$
: x += 2; // $T_{\ell_3} = \{x' = x + 2\}$

 T_{ℓ_2} obtained, for example, by Affine Derivative Closure algorithm. Computation of loops is factor of inaccuracy.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Invariants are computed usually from the program entry point, by propagation along the transformers.

// no invariant

$$\ell_1: x = 0; // T_{\ell_1} = \{x' = 0\}$$

// ???
 $\ell_2: \text{ while (rand()) } // T_{\ell_2} = (T_{\ell_3})^* = \{x' \ge x\}$
 $\ell_3: x += 2; // T_{\ell_3} = \{x' = x + 2\}$
// ???

э

4 3 4 3 4 3 4

Invariants are computed usually from the program entry point, by propagation along the transformers.

// no invariant $\ell_1: x = 0; // T_{\ell_1} = \{x' = 0\}$ // x = 0 $\ell_2: \text{ while (rand()) } // T_{\ell_2} = (T_{\ell_3})^* = \{x' \ge x\}$ $\ell_3: x += 2; // T_{\ell_3} = \{x' = x + 2\}$ // ???

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Invariants are computed usually from the program entry point, by propagation along the transformers.

// no invariant $\ell_1: x = 0; // T_{\ell_1} = \{x' = 0\}$ // x = 0 $\ell_2:$ while (rand()) // $T_{\ell_2} = (T_{\ell_3})^* = \{x' \ge x\}$ $\ell_3: x += 2; // T_{\ell_3} = \{x' = x + 2\}$ // $x \ge 0$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

We consider another example:

```
l1: x = rand();
l2: while (rand())
l3: {
l4: if (x > 0) x--;
l5: else if (x <= 0) x++;
l6: }</pre>
```

- 31

Image: Image:

We consider another example:

(ロ) (同) (三) (三) (三) (○)

We consider another example:

To compute T_{ℓ_2} , T_{ℓ_3} must be known.

Since both if branches may be taken a priori, $T_{\ell_3} \supseteq T_{\ell_4} \cup T_{\ell_5}$. Also, T_{ℓ_3} must be affine.

 \Rightarrow Best approximation is the convex union

$$\begin{array}{rcl} T_{\ell_3} & = & T_{\ell_4} \sqcup T_{\ell_5} \\ & = & \{x - 1 \leq x' \leq x + 1\} \end{array}$$

Yet, inaccurate operation.

We consider another example:

 $T_{\ell_2} = (T_{\ell_3})^* = \{\}.$ There is no constraint in $T_{\ell_2}!$

3

< □ > < □ > < □ > < □ > < □ > < □ >

During computation of invariants:

// no invariant

$$\ell_1: x = rand(); // T_{\ell_1} = \{x' \ge 0\}$$

// $x \ge 0$
 $\ell_2: while (rand()) // T_{\ell_2} = \{\}$
 $\ell_3: \{ // T_{\ell_3} = \{x - 1 \le x' \le x + 1\}$
 $\ell_4: if (x > 0) x - ; // T_{\ell_4} = \{x > 0 \land x' = x - 1\}$
 $\ell_5: else if (x <= 0) x + +; // T_{\ell_5} = \{x \le 0 \land x' = x + 1\}$
 $\ell_6: \}$

э

10 / 24

(日) (同) (三) (三)

During computation of invariants:

// no invariant

$$\ell_1: x = rand(); // T_{\ell_1} = \{x' \ge 0\}$$

// $x \ge 0$
 $\ell_2: while (rand()) // T_{\ell_2} = \{\}$
 $\ell_3: \{ // T_{\ell_3} = \{x - 1 \le x' \le x + 1\}$
 $\ell_4: if (x > 0) x - ; // T_{\ell_4} = \{x > 0 \land x' = x - 1\}$
 $\ell_5: else if (x <= 0) x + ; // T_{\ell_5} = \{x \le 0 \land x' = x + 1\}$
 $\ell_6: \}$

// no invariant 🙂

э

10 / 24

(日) (同) (三) (三)

Issue

What happens:

- Inaccuracy in the computation of effects of parallel paths (if... else), increased by the (*) operation.
- Occurs when there are parallel loops, i.e. while... if structures.

Issue

What happens:

- Inaccuracy in the computation of effects of parallel paths (if... else), increased by the (*) operation.
- Occurs when there are parallel loops, i.e. while... if structures.

To adress the issue:

- Refine transformers involved in loops.
- Get information on order in which parallel loops can be performed.
- Decrease the number of parallel loops.

 \Rightarrow Program restructurations.

Transformer Automaton

An (affine) transformer automaton is a triplet $\alpha = (K, k_{ini}, Trans)$ where

- K is a finite set of control points.
- $k_{ini} \in K$ is the initial control point.
- Trans is a finite set of transitions, i.e. of triplets (k, T, k') with $k, k' \in K$ and T is an (affine) transformer.

Т

 $\alpha = (K, k_{ini}, Trans):$

•
$$K = \{k_1, k_2\}.$$

•
$$k_{ini} = k_1$$
.

• Trans = {
$$(k_1, T_{ini}, k_2), (k_2, T_1, k_2), (k_2, T_2, k_2)$$
}.

3

イロン 不聞と 不同と 不同と

Semantics

A global state of α is a couple q = (k, v) where

- $k \in K$ is a control point of α .
- $v \in Val$ is a valuation of Var.

q is initial if $k = k_{ini}$.

 $q = (k, v) \rightarrow q' = (k', v')$ iff there is a transition (k, T, k') such as T(v, v').

3

$$T_{1}: x, x' \mapsto x' \geq 0$$

$$T_{1}: x, x' \mapsto x' \geq 0$$

$$T_{2}: x, x' \mapsto x' \geq 0$$

$$x \geq 0 \land x' = x - 1$$

$$x' = x + 1$$

State $(k_2, 2)$ reachable through trace

$$(k_1,-6) \to (k_2,4) \to (k_2,3) \to (k_2,2).$$

State $(k_2, -1)$ not reachable.

< AP

э

Control Node Splitting

Let $Part = P_1 \uplus \cdots \uplus P_m$ a partition of the domain of valuations Val s.t. every P_i is convex.

To split a control k in α across Part:

- Replace k with new controls k_1, \ldots, k_n .
- Delete each transition (k, T, k'). Add transitions (k_i, T_i, k') where $T_i(v, v') = T(v, v') \land v \in P_i$.
- Delete each transition (k', T, k). Add transitions (k', T_j, k_j) where $T_j(v, v') = T(v, v') \land v' \in P_j$.
- Delete each loop (k, T, k). Add transitions $(k_i, T_{i,j}, k_j)$ where $T_{i,j}(v, v') = T(v, v') \land v \in P_i \land v' \in P_j$.

Do not create unnecessary transitions & controls.

Control Node Splitting

Let $Part = P_1 \uplus \cdots \uplus P_m$ a partition of the domain of valuations Val s.t. every P_i is convex.

To split a control k in α across Part:

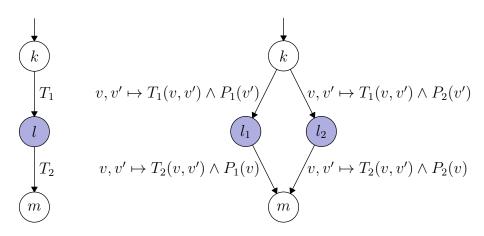
- Replace k with new controls k_1, \ldots, k_n .
- Delete each transition (k, T, k'). Add transitions (k_i, T_i, k') where $T_i(v, v') = T(v, v') \land v \in P_i$.
- Delete each transition (k', T, k). Add transitions (k', T_j, k_j) where $T_j(v, v') = T(v, v') \land v' \in P_j$.
- Delete each loop (k, T, k). Add transitions $(k_i, T_{i,j}, k_j)$ where $T_{i,j}(v, v') = T(v, v') \land v \in P_i \land v' \in P_j$.

Do not create unnecessary transitions & controls.

Equivalence theorems allows to use the resulting automaton to study the same properties.

Algorithm

Control Node Splitting



Parameters

The algorithm tends to create many controls & transitions, parameters must be chosen carefully.

Choice of controls

Split controls where accuracy loss is important, i.e. those with parallel loops.

Parameters

The algorithm tends to create many controls & transitions, parameters must be chosen carefully.

Choice of controls

Split controls where accuracy loss is important, i.e. those with parallel loops.

Choice of partition

Limit the size of the resulting automaton:

- Few partition components.
- Chosen s.t. some controls and some transitions are not created (preferentially those involved in loops).

Make the resulting transformers more precise.

18 / 24

イロト イポト イヨト イヨト

Experiments

External tool, whose output is passed to the analyzer.

Partition choice: on a given control, determined by the truth values of all guards of transitions passing by the control.

Transformer T_1 .

$$g_1 = \{ v \in \mathsf{Val} \, | \, \exists v' \in \mathsf{Val}, \, T_1(v, v') \} = T_1 \text{ projected on } x_1 \dots x_n.$$

$$\underbrace{g_1 \wedge g_2 \wedge \dots}_{P_1} \quad \underbrace{\overline{g_1} \wedge g_2 \wedge \dots}_{P_2} \quad \underbrace{g_1 \wedge \overline{g_2} \wedge \dots}_{P_3} \quad \underbrace{\overline{g_1} \wedge \overline{g_2} \wedge \dots}_{P_4} \quad \dots$$

Experiments run on 71 previously published small scale transition systems (\sim 1-10 controls, \sim 2-10 transitions per control).

Considered successful if the expected invariant is found.

- 4月 10 - 4 三 5 - 4 三 5

Experiments

With PIPS (revision 19448):

- 28 worked directly.
- 28 + 41 = 69 worked with restructuration.
- 2 did not work.

Impact of restructuration: analysis 30 % slower, code 50 % bigger.

B> B

Experiments

With PIPS (revision 19448):

- 28 worked directly.
- 28 + 41 = 69 worked with restructuration.
- 2 did not work.

Impact of restructuration: analysis 30 % slower, code 50 % bigger.

With ASPIC 3.1 (classical LRA with widening + accelerations):

- 44 worked directly.
- 44 + 21 = 65 worked with restructuration
- 6 did not work.

1 fails in both.

э.

Future Work

Performance issues:

• The restructuration tends to create many controls and transitions, which limits its scope to small-scale systems.

Suitability issues:

- Usually, better results with a manually chosen partition.
- Restructuration makes things worse on vicious systems.
- \Rightarrow Find better partition strategies, handle a wider range of systems.

21 / 24

Thank you.

Vivien		

Control Node Splitting

September 13, 2011

イロト イヨト イヨト イヨト

22 / 24

æ

Conclusion

$$T_{1}: x, x' \mapsto x' \geq 0$$

$$T_{1}: x, x' \mapsto x' \geq 0$$

$$T_{2}: x, x' \mapsto x' \geq 0$$

$$T_{2}: x, x' \mapsto x' \geq 0$$

$$x' = x - 1$$

$$x' = x + 1$$

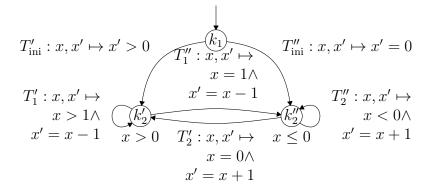
Vivien Maisonneuve

Control Node Splitting

September 13, 2011

23 / 24

Conclusion



September 13, 2011

4 3 4 3 4 3 4

э

Contents

1 Transformers

Definition Affine Transformer Analysis

2 Transformer Automata Definition

Semantics

3 Control Node Splitting

Algorithm Parameters

4 Experimental Results

6 Conclusion

э