Polyèdres et compilation

François Irigoin \& Mehdi Amini \& Corinne Ancourt \& Fabien Coelho \& Béatrice Creusillet \& Ronan Keryell

MINES ParisTech - Centre de Recherche en Informatique

12 May 2011

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism

Still holding today for manycore and GPU computing!

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
- full inlining is ineffective because of complexity
- cannot cope with recursion

Still holding today for manycore and GPU computing!

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
- full inlining is ineffective because of complexity
- cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful

Still holding today for manycore and GPU computing!

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
- full inlining is ineffective because of complexity
- cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful
- No restrictions on input code... Fortran 77, 90, C, C99

Still holding today for manycore and GPU computing!

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
- full inlining is ineffective because of complexity
- cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful
- No restrictions on input code... Fortran 77, 90, C, C99
- Hence decidability issues \Longrightarrow over-approximations

Still holding today for manycore and GPU computing!

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
- full inlining is ineffective because of complexity
- cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful
- No restrictions on input code... Fortran 77, 90, C, C99
- Hence decidability issues \Longrightarrow over-approximations
- But exact analyses when possible

Still holding today for manycore and GPU computing!

Polyhedral School of Fontainebleau... vs Polytope Model

- Summarization/abstraction vs exact information
- No restrictions on input code

What can we do with polyhedra?

- Refine Bernstein's conditions

What can we do with polyhedra?

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion

What can we do with polyhedra?

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion
- Memory allocation: privatization, statement isolation

What can we do with polyhedra?

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion
- Memory allocation: privatization, statement isolation
- And many more transformations:

Control simplification, constant propagation, partial evaluation, induction variable substitution, scalarization, inlining, outlining, invariant generation, property proof, memory footprint, dead code elimination...

What can we do with polyhedra?

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion
- Memory allocation: privatization, statement isolation
- And many more transformations:

Control simplification, constant propagation, partial evaluation, induction variable substitution, scalarization, inlining, outlining, invariant generation, property proof, memory footprint, dead code elimination...

- Code synthesis

Simplified notations

- Identifiers i, a, Locations / or (a, ϕ), Values
- Environment: $\rho: I d \rightarrow$ Loc
- Memory state: $\sigma:$ Loc \rightarrow Val, $\sigma(i)=0$
- Preconditions: $P(\sigma) \subset \Sigma$, for $(\mathrm{i}=0$; i<n; i++) $\{\ldots\} \longrightarrow\{\sigma \mid 0 \leq \sigma(i)<\sigma(n)\}$
- Transformers: $T\left(\sigma, \sigma^{\prime}\right) \subset \Sigma \times \Sigma$, i++; $\longrightarrow\left\{\left(\sigma, \sigma^{\prime}\right) \mid \sigma^{\prime}(i)=\sigma(i)+1\right\}$
- Array regions: $R: \Sigma \rightarrow$ Loc, $\mathrm{a}[\mathrm{i}] \longrightarrow \sigma \rightarrow\{(a, \phi) \mid \phi=\sigma(i)\}$
- Statements $S, S_{1}, S_{2} \in \Sigma \rightarrow \Sigma$ function call, sequence, test, loop, CFG...
- Programs П: a statement

Convex Array Region for a Reference

$$
\begin{aligned}
& W_{S_{1}}(\sigma)=\{(a, \phi) \mid 0 \leq \phi<5\} \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<5 ; \mathrm{i}++) \\
& \quad W_{S_{2}}(\sigma)=\{(a, \phi) \mid \phi=\sigma(i)[\wedge 0 \leq \sigma(i)<5]\} \\
& \mathrm{a}[\mathrm{i}]=0 .
\end{aligned}
$$

Convex Array Regions of Statement S

Property of a written region W_{S}

$$
\begin{equation*}
\forall \sigma \quad \forall I \notin W_{S}(\sigma), \quad \sigma(I)=(S(\sigma))(I) \tag{1}
\end{equation*}
$$

Note: The property holds for any over-approximation $\overline{W_{S}}$ of W_{S}.

Property of a read region R_{S}

$$
\begin{array}{r}
\forall \sigma \quad \forall \sigma^{\prime} \tag{2}\\
\forall I \in R_{S}(\sigma), \sigma(I)=\sigma^{\prime}(I) \Rightarrow\left\{\begin{array}{l}
R_{S}(\sigma)=R_{S}\left(\sigma^{\prime}\right) \\
W_{S}(\sigma)=W_{S}\left(\sigma^{\prime}\right) \\
\forall I \in W_{S}(\sigma),(S(\sigma))(I)=\left(S\left(\sigma^{\prime}\right)\right)(I)
\end{array}\right.
\end{array}
$$

Note: The property holds for any over-approximation $\overline{R_{S}}$ of R_{S} in the left-hand side, but not for other over-approximations.

Conditions to exchange two statements S_{1} and S_{2}

Evaluation of $S_{1} ; S_{2}: \sigma \xrightarrow{S_{1}} \sigma_{1} \xrightarrow{S_{2}} \sigma_{12}$
Assumptions:

$$
\begin{array}{ll}
\forall \sigma, & W_{S_{1}}(\sigma) \cap R_{S_{2}}\left(\sigma_{1}\right)=\varnothing \\
\forall \sigma, & W_{S_{1}}(\sigma) \cap W_{S_{2}}\left(\sigma_{1}\right)=\varnothing \tag{4}
\end{array}
$$

Final state σ_{12} :

$$
\begin{aligned}
& \text { (3) } \begin{aligned}
& \forall I \in R_{S_{2}}\left(\sigma_{1}\right), \quad I \notin W_{S_{1}}(\sigma) \stackrel{(1)}{\Longrightarrow} \sigma_{1}(I)=\sigma(I) \\
& \stackrel{(2)}{\Longrightarrow}\left\{\begin{array}{l}
R_{S_{2}}\left(\sigma_{1}\right)=R_{S_{2}}(\sigma) \\
W_{S_{2}}\left(\sigma_{1}\right)=W_{S_{2}}(\sigma) \\
\forall I \in W_{S_{2}}(\sigma), \quad \sigma_{12}(I)=\sigma_{2}(I)
\end{array}\right. \\
&(4) \forall I \in W_{S_{1}}, \quad I \notin W_{S_{2}} \Longrightarrow \sigma_{12}(I)=\sigma_{1}(I) \\
& \forall I \notin W_{S_{1}} \cup W_{S_{2}}, \quad \sigma(I)=\sigma_{1}(I)=\sigma_{12}(I)
\end{aligned}
\end{aligned}
$$

Conditions to exchange two statements S_{1} and S_{2}

Evaluation of $S_{2} ; S_{1}: \sigma \xrightarrow{S_{2}} \sigma_{2} \xrightarrow{S_{1}} \sigma_{21}$
Assumptions:

$$
\begin{array}{ll}
\forall \sigma, & W_{S_{2}}(\sigma) \cap R_{S_{1}}\left(\sigma_{2}\right)=\varnothing \\
\forall \sigma, & W_{S_{2}}(\sigma) \cap W_{S_{1}}\left(\sigma_{2}\right)=\varnothing \tag{6}
\end{array}
$$

Final state σ_{21} :

$$
\begin{aligned}
& (5) \forall I \in R_{S_{1}}\left(\sigma_{2}\right), \quad I \notin W_{S_{2}}(\sigma) \stackrel{(1)}{\Longrightarrow} \sigma_{2}(I)=\sigma(I) \\
& \quad \stackrel{(2)}{\Longrightarrow}\left\{\begin{array}{l}
R_{S_{1}}\left(\sigma_{2}\right)=R_{S_{1}}(\sigma) \\
W_{S_{1}}\left(\sigma_{2}\right)=W_{S_{1}}(\sigma) \\
\forall I \in W_{S_{1}}\left(\sigma_{2}\right), \quad \sigma_{21}(I)=\sigma_{1}(I)
\end{array}\right. \\
& (6) \forall I \in W_{S_{2}}(\sigma), \quad I \notin W_{S_{1}}\left(\sigma_{2}\right) \Rightarrow \sigma_{21}(I)=\sigma_{2}(I) \\
& \forall I \notin W_{S_{1}}\left(\sigma_{2}\right), \cup W_{S_{2}}(\sigma) \quad \sigma(I)=\sigma_{2}(I)=\sigma_{21}(I)
\end{aligned}
$$

Bernstein's Conditions to Exchange S_{1} and S_{2}

- Necessary condition:

$$
\forall \sigma \quad \text { let } \sigma_{1}=S_{1}(\sigma), \sigma_{2}=S_{2}(\sigma)
$$

$$
\left.\begin{array}{l}
W_{S_{1}}(\sigma) \cap R_{S_{2}}\left(\sigma_{1}\right)=\varnothing \\
W_{S_{1}}(\sigma) \cap W_{S_{2}}\left(\sigma_{1}\right)=\varnothing \\
W_{S_{2}}(\sigma) \cap R_{S_{1}}\left(\sigma_{2}\right)=\varnothing \\
W_{S_{2}}(\sigma) \cap W_{S_{1}}\left(\sigma_{2}\right)=\varnothing
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
W_{S_{1}}(\sigma) \cap R_{S_{2}}(\sigma)=\varnothing \\
W_{S_{1}}(\sigma) \cap W_{S_{2}}(\sigma)=\varnothing \\
W_{S_{2}}(\sigma) \cap R_{S_{1}}(\sigma)=\varnothing
\end{array}\right.
$$

according to the two previous slides.

Starting from Bernstein's conditions

- Let's assume: $\forall \sigma W_{S_{1}}(\sigma) \cap R_{S_{2}}(\sigma)=\varnothing$
- This implies by (1): $\forall \sigma \forall I \in R_{S_{2}} \quad\left(S_{1}(\sigma)\right)(I)=\sigma(I)$
- Hence by (2): $\forall \sigma R_{S_{2}}\left(\sigma_{1}\right)=R_{S_{2}}(\sigma) \wedge W_{S_{2}}\left(\sigma_{1}\right)=W_{S_{2}}(\sigma)$
- In the same way: $\forall \sigma W_{S_{2}}(\sigma) \cap R_{S_{1}}(\sigma)=\varnothing$
- Implies: $R_{S_{1}}\left(\sigma_{2}\right)=R_{S_{1}}(\sigma) \wedge W_{S_{1}}\left(\sigma_{2}\right)=W_{S_{1}}(\sigma)$

So Bernstein's conditions are sufficient to prove:

$$
\forall \sigma \quad\left(S_{1} ; S_{2}\right)(\sigma)=\left(S_{2} ; S_{1}\right)(\sigma)
$$

Coarse grain parallelization of a loop

- Let's assume convex array regions R_{B} and W_{B} for the loop body
- Let P_{B} be the body precondition and $T_{B, B}^{+}$the inter-iteration transformer
- Direct parallelization of a loop using convex array regions with Bernstein's conditions for the iterations of the body B :
$\forall v \in I d \quad \forall \sigma, \sigma^{\prime} \in P_{B}$ s.t. $T_{B, B}^{+}\left(\sigma, \sigma^{\prime}\right)$
$R_{B, v}(\sigma) \cap W_{B, v}\left(\sigma^{\prime}\right)=\varnothing$
$R_{B, v}\left(\sigma^{\prime}\right) \cap W_{B, v}(\sigma)=\varnothing$
$W_{B, v}(\sigma) \cap W_{B, v}\left(\sigma^{\prime}\right)=\varnothing$
- Note: $T_{B, B}^{+}\left(\sigma, \sigma^{\prime}\right) \Rightarrow \sigma(i)<\sigma^{\prime}(i)$ where i is the loop index
- Each iteration can be interchanged with any other one.
- No dependence graph, no restrictions on loop body, no restriction on control, no restriction on references, no restriction on loop bounds...

Coarse Grain Parallelization of a Loop with Privatization

- Beyond Bernstein's conditions, use $I N_{B}$ and $O U T_{B}$ array regions instead of R_{B} and W_{B} regions
- Insure non-interference for interleaved execution: privatization or expansion for locations in $W_{B}-O U T_{b}$
- $O U T_{B}$ can be over-approximated with $\overline{O U T_{B}}$ because it is used to decide the parallelization
- W_{B} cannot be overapproximated
- Must be combined with reduction detection

Fusion of Loops L_{1} and L_{2} with delay d

- for(i1...) S1; for(i2...) S2
- initial schedule:

$$
\begin{aligned}
& S_{1}^{0} \rightarrow S_{1}^{1} \rightarrow S_{1}^{2} \rightarrow S_{1}^{3} \rightarrow S_{1}^{4} \\
& S_{2}^{0} \rightarrow S_{2}^{1} \rightarrow S_{2}^{2} \rightarrow S_{2}^{3} \rightarrow S_{2}^{4} \rightarrow
\end{aligned}
$$

- new schedule:

$$
S_{1}^{0} \rightarrow S_{1}^{1} \rightarrow S_{2}^{0} \rightarrow S_{1}^{2} \rightarrow S_{2}^{1} \rightarrow S_{1}^{3} \rightarrow S_{2}^{2} \rightarrow S_{1}^{2}
$$

- for(...) S1; for(...) \{S1;S2\} for(...) S2

Fusion of Loops L_{1} and L_{2} with delay d : Legality

- Assumes convex array regions R_{1} and W_{1} for body B_{1} of loop L_{1} with index i_{1}, R_{2} and W_{2} for body B_{2} of loop L_{2} with index i_{2}
- Permutation of the last iterations of L_{1} and the first iterations of L_{2} with a delay d :

$$
\begin{aligned}
\forall \sigma_{1} \forall \sigma_{2} \quad P_{1}\left(\sigma_{1}\right) \wedge & P_{2}\left(\sigma_{2}\right) \wedge T_{12}\left(\sigma_{1}, \sigma_{2}\right) \wedge \sigma_{1}\left(i_{1}\right)>\sigma_{2}\left(i_{2}\right)+d \\
& R_{1}\left(\sigma_{1}\right) \cap W_{2}\left(\sigma_{2}\right)=\varnothing \\
& R_{2}\left(\sigma_{2}\right) \cap W_{1}\left(\sigma_{1}\right)=\varnothing \\
& W_{1}\left(\sigma_{1}\right) \cap W_{2}\left(\sigma_{2}\right)=\varnothing
\end{aligned}
$$

- $P_{1}, P_{2}, T_{12}, R_{1}, W_{1}, R_{2}, W_{2}$ can be all over-approximated
- Check emptiness of convex sets for a polyhedral instantiation
- No restrictions on B_{1} nor B_{2} nor the loop index identifiers or ranges

Fusion of Loops L_{1} and L_{2} with delay d: Profitability

- Reduce memory loads:

$$
\left(\bigcup_{\sigma_{1} \in P_{1}} R_{1}\left(\sigma_{1}\right)\right) \bigcap \bigcup_{\sigma_{2} \in P_{2} \cap T_{1,2}\left(\sigma_{1}\right)} R_{2}\left(\sigma_{2}\right) \neq \varnothing
$$

- Avoid intermediate store and reloads:

$$
\left(\bigcup_{\sigma_{1} \in P_{1}} W_{1}\left(\sigma_{1}\right)\right) \bigcap \bigcup_{\sigma_{2} \in P_{2} \cap T_{1,2}\left(\sigma_{1}\right)} R_{2}\left(\sigma_{2}\right) \neq \varnothing
$$

- With minimal cache size:

$$
\left(\bigcup_{\sigma_{1} \in P_{1}}\left(R_{1}\left(\sigma_{1}\right) \cup W_{1}\left(\sigma_{1}\right)\right)\right) \bigcup \bigcup_{\sigma_{2} \in P_{2} \cap T_{1,2}\left(\sigma_{1}\right)}\left(R_{2}\left(\sigma_{2}\right) \cup W_{2}\left(\sigma_{2}\right)\right)
$$

Array privatization

- An array a is privatizable in a loop / with body B if

$$
\forall \sigma \in P_{B}, \quad I N_{B, a}(\sigma)=O U T_{B, a}(\sigma)=\varnothing
$$

- $I N_{B, a}$ is the set of elements of a whose input values are used in B. For a sequence $\mathrm{S} 1 ; \mathrm{S} 2$:

$$
I N_{S_{1} ; S_{2}}=I N_{S_{1}} \cup\left(\left(I N_{S_{2}} \circ T_{S_{1}}\right)-W_{S_{1}}\right)
$$

- $O U T_{B, a}(\sigma)$ is the set of elements of a whose output values are used by the continuation of B executed in memory state σ. For a sequence $\mathrm{S} 1 ; \mathrm{S} 2$:

$$
O U T_{S_{1}}=\left(O U T_{S_{1} ; S_{2}}-W_{S_{2}} \circ T_{S_{1}}\right) \cup\left(W_{S_{1}} \cap I N_{S_{2}} \circ T_{S_{1}}\right)
$$

Examples of IN and OUT regions

- Source code for function foo

```
void foo(int n, int i, int a[n], int b[n]) {
    a[i] = a[i]+1;
    i++;
    b[i] = a[i]; }
```

- Source code for main:

```
int main() {
    int a[100], b[100], i;
    foo(100, i, a, b);
    printf("%d\n", b[0]); }
```

- R,W,IN and OUT array regions for call site to foo:

```
// <a[PHI1]-R-EXACT-{i<=PHI1, PHI1<=i+1}>
// <a[PHI1]-W-EXACT-{PHI1==i}>
// <b[PHI1]-W-EXACT-{PHI1==i+1}>
// <a[PHI1]-IN-EXACT-{i<=PHI1, PHI1<=i+1}>
// <b[PHI1]-OUT-EXACT-{PHI1==0, PHI1==i+1}>
    foo(100, i, a, b);
```


Properties of IN regions

- If two states σ and σ^{\prime} assign the same values to the locations in $I N_{S}$, statement S produces the same trace with σ and σ^{\prime} :

$$
\begin{aligned}
\forall \sigma & \forall \sigma^{\prime} \\
\forall I \in I N_{S}(\sigma), \sigma(I)=\sigma^{\prime}(I) \Rightarrow & \left\{\begin{array}{l}
R_{S}(\sigma)=R_{S}\left(\sigma^{\prime}\right) \\
W_{S}(\sigma)=W_{S}\left(\sigma^{\prime}\right) \\
I N_{S}(\sigma)=I N_{S}\left(\sigma^{\prime}\right) \\
\forall I \in W_{S}(\sigma),(S(\sigma))(I)=\left(S\left(\sigma^{\prime}\right)\right)(I)
\end{array}\right.
\end{aligned}
$$

- Almost identical to property for R regions
- But also $\forall \sigma \quad \forall \sigma^{\prime}$:

$$
\forall I \notin \bigcup_{\sigma \in P_{S}}\left(R_{S}(\sigma)-I N_{S}(\sigma)\right), \sigma(I)=\sigma^{\prime}(I) \Rightarrow \text { Equivalent }_{s}\left(\sigma, \sigma^{\prime}\right)
$$

Properties of OUT regions

- The values of variables written by S but not used later do not matter:

$$
\begin{align*}
& \forall \sigma, \forall \sigma^{\prime}, \forall I \notin \bigcup_{\sigma \in P_{S}}\left(W_{S}(\sigma)-\text { OUT }_{S}(\sigma)\right), \tag{8}\\
& (S(\sigma))(I)=\left(S\left(\sigma^{\prime}\right)\right)(I) \Rightarrow \text { Equivalent }_{C}\left(\sigma, \sigma^{\prime}\right)
\end{align*}
$$

- In other words, statement S can be substituted by statement S^{\prime} in Program Π if they only differ by writing different values in memory locations that are not read by the continuation

Scalarization

- Replace a set of array references by references to a local scalar:

$$
\begin{aligned}
& \mathrm{a}[j]=0 ; \operatorname{for}(i \ldots) \quad\{\ldots \quad a[j]=a[j] * b[i] ; \ldots\} \\
& \rightarrow s=0 ; \text { for }(i \ldots) \quad\{\ldots \quad s *=b[i] ; \ldots \quad\} \quad a[j]=s ;
\end{aligned}
$$

- Let B and i be a loop body and index, and W_{B} the write region function
- Sufficient condition: each loop iteration accesses only one array element
- Let
$f:$ Val $\rightarrow \mathcal{P}(\Phi)$ s.t. $f(v)=\left\{\phi \mid \exists \sigma: \sigma(i)=v \wedge(a, \phi) \in W_{B}(\sigma)\right\}$
- If f is a mapping $\mathrm{Val} \rightarrow \Phi$, array a can be replaced by a scalar.
- Initialization and exportation according to $I N_{B}$ and $O U T_{B}$.

Statement Isolation

- Goal: replace S by a new statement S^{\prime} executable with a different memory M^{\prime} :
$i=i+1$;
\rightarrow int $j ; j=i ; j=j+1 ; i=j ;\}$
- Let S be a statement with regions $R_{S}, W_{S}, I N_{S}$ and $O U T_{s}$.
- Declare new variables new (I) for $I \in \cup_{\sigma \in P_{S}}\left(R_{S}(\sigma) \cup W_{S}(\sigma)\right)$
- Copy in: $\forall I \in I N_{S}(\sigma) M^{\prime}[n e w(I)]=M[/]$
- Substitute all references to I by references to new (I) in S
- Copy out: $\forall I \in O U T_{S}(\sigma) M[I]=M^{\prime}[\operatorname{new}(I)]$

Statement Isolation

- Goal: replace S by a new statement S^{\prime} executable with a different memory M^{\prime} :
$i=i+1$;
\rightarrow int j; $j=i ; j=j+1 ; i=j ;\}$
- Let S be a statement with regions $R_{S}, W_{S}, I N_{S}$ and $O U T_{s}$.
- Declare new variables new (I) for $I \in \cup_{\sigma \in P_{S}}\left(R_{S}(\sigma) \cup W_{S}(\sigma)\right)$
- Copy in: $\forall I \in I N_{S}(\sigma) M^{\prime}[n e w(I)]=M[I]$
- Substitute all references to I by references to new (I) in S
- Copy out: $\forall I \in O U T_{S}(\sigma) M[I]=M^{\prime}[n e w(I)]$
- Copy out fails because of over-approximations of $O U T_{S}$!
- Copy in: $\forall I \in \overline{\left(I N_{S}(\sigma)\right)} \cup \overline{\left(O U T_{S}(\sigma)\right)} M^{\prime}[n e w(I)]=M[I]$
- related to outlining and privatization and localization

Induction variable substitution

- Substitute k by its value, function of the loop index i :

$$
\begin{aligned}
& \mathrm{k}=0 ; \operatorname{for}(\mathrm{i}=0 ; \ldots)\{\mathrm{k}+=2 ; \mathrm{b}[\mathrm{k}]=\ldots\} \\
& \operatorname{for}(\mathrm{i}=0 ; \ldots)\left\{\mathrm{b}\left[2^{*} \mathrm{i}+2\right]=\ldots\right\}
\end{aligned}
$$

- Variable k can be substituted in statement S with precondition P_{S} within a loop of index i if P_{S} defines a mapping from $\sigma(i)$ to $\sigma(k)$:

$$
v \rightarrow\left\{v^{\prime} \mid \exists \sigma \in P_{S} \sigma(i)=v \wedge \sigma(k)=v^{\prime}\right\}
$$

Constant Propagation

- Replace references by constants:

$$
\begin{aligned}
& \operatorname{if}(j==3) a[2 * j+1]=0 ; \\
& \operatorname{if}(j==3) a[7]=0 ;
\end{aligned}
$$

- An expression e can be substituted under precondition P if:

$$
|\{v \in V a l \mid \exists \sigma \in P v=\mathcal{E}(e, \sigma)\}|=1
$$

- Simplify expressions:

$$
\begin{aligned}
& i f(i+j==n) a[i+j]=0 ; \\
& i f(i+j==n) a[n]=0 ;
\end{aligned}
$$

Dependence Test for Allen\&Kennedy Parallelization

- If you insist on:
- using an algorithm with restricted applicability
- reducing locality with loop distribution
- Use array regions to deal at least with procedure calls
- Dependence system for two regions of array a in statements S_{1} and S_{2} in a loop nest $\vec{\imath}$:

$$
\begin{align*}
\left\{\left(\sigma_{1}, \sigma_{2}\right) \mid\right. & \sigma_{1}(\vec{\imath}) \prec \sigma_{2}(\vec{\imath}) \wedge T_{S_{1}, S_{2}}\left(\sigma_{1}, \sigma_{2}\right) \wedge P_{S_{1}}\left(\sigma_{1}\right) \wedge P_{S_{2}}\left(\sigma_{2}\right) \\
& \left.\wedge R_{S_{1}}^{a}\left(\sigma_{1}\right) \cap W_{S_{2}}^{a}\left(\sigma_{2}\right)\right\}=\varnothing \tag{9}
\end{align*}
$$

- Useful for tiling, which includes all unimodular loop transformations

Dead code elimination

- Remove unused definitions:
int foo(int i) \{int $j=i+1$; $i=2$; int $k=i+1$; return j; \}
\rightarrow int foo(int i) \{int $j=i+1$; return $j ;\}$
- Useless? See some automatically generated code
- Useless? See some manually maintained code -
- Any statement S with no $O U T_{S}$ region?
- Possible, but not efficient with the current semantics of OUT regions in PIPS

Code synthesis

Time-out!

- Declarations
- Control
- Communications
- Copy operations

Conclusion: simple polyhedral conditions in a compiler

- Difficulties hidden in a few analyses, available with PIPS: T, P, W, R, IN, OUT
- Legality of many program transformations can be checked with analyses: mapping, function, empty set,...
- Yes, quite often:

Control simplification, constant propagation, partial evaluation, induction variable substitution, privatization, scalarization, coarse grain loop parallelization, loop fusion, statement isolation,...

- But not always: graph algorithms are useful too Dead code elimination,... wih OUT regions?

Conclusion: what might go wrong with polyhedra?

- The analysis you need is not available in PIPS: re-use existing analyses to implement it
- Its accuracy is not sufficient: implement a dynamic analysis (a.k.a. instrumentation)
- The worst case complexity is exponential: exceptions are necessary for recovery
- Monotonicity of results on space, time or magnitude exceptions:
more work needed, exploit parallelism within PIPS
- Possible recomputation of analyses after each transformation: more work needed, composite transformations...

Conclusion: see what is available in PIPS!

- Many more program transformations
- Pointer analyses are improving
- Try PIPS with no installation cost: http://paws.pips4u.org On-going work... Do not overload our PIPS server ©
- Or install it: http://pips4u.org
- Or install Par4all: http://www.par4all.org
- Or simply talk to us!

Questions?

