
Advances in Parallel-Stage Decoupled Software Pipelining
Leveraging Loop Distribution, Stream-Computing and the SSA Form

Feng Li
INRIA

feng.li@inria.fr

Antoniu Pop
Centre de recherche en informatique,

MINES ParisTech
antoniu.pop@mines-paristech.fr

Albert Cohen
INRIA

albert.cohen@inria.fr

Abstract
Decoupled Software Pipelining (DSWP) is a program partitioning
method enabling compilers to extract pipeline parallelism from se-
quential programs. Parallel Stage DSWP (PS-DSWP) is an exten-
sion that also exploits the data parallelism within pipeline filters.

This paper presents the preliminary design of a new PS-DSWP
method capable of handling arbitrary structured control flow, a
slightly better algorithmic complexity, the natural exploitation of
nested parallelism with communications across arbitrary levels,
with a seamless integration with data-flow parallel programming
environments. It is inspired by loop-distribution and supports nest-
ed/structured partitioning along with the hierarchy of control de-
pendences. The method relies on a data-flow streaming extension
of OpenMP.

These advances are made possible thanks to progresses in com-
piler intermediate representation. We describe our usage of the
Static Single Assignment (SSA) form, how we extend it to the con-
text of concurrent streaming tasks, and we discuss the benefits and
challenges for PS-DSWP.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors-Compilers, Optimization

General Terms optimization

Keywords automatic parallelization, stream-computing, loop dis-
tribution

1. Introduction
In recent years, the CPU manufacturers have embraced chip mul-
tiprocessors because of technology, power consumption and ther-
mal dissipation constraints, and because of diminishing returns in
instruction-level parallelism. The amount of performance gained
by the use of multicore processor depends highly on the software
fraction that can be parallelized to run on multiple cores simul-
taneously. Multiprocessor programming leaves the burden to pro-
grammer who faces the extra complexity, heisenbugs, deadlocks
and other problems associated with parallel programming. The sit-
uation is worse when dealing with the migration of legacy code.

Decoupled Software Pipelining (DSWP) is an automatic thread
partitioning method which could partition a sequential program
to run on multiple cores, and Parallel-Stage DSWP (PS-DSWP)
exposes data parallelism into task pipelines extracted by DSWP.
These automatic thread partitioning methods free the programmer
from manual parallelization. They also promise much wider flexi-
bility than data-parallelism-centric methods for processors, aiming
for the effective parallelization of general-purpose applications.

In this paper, we provide another method to decouple control-
flow regions of serial programs into concurrent tasks, exposing
pipeline and data parallelism. The power and simplicity of the
method rely on the restriction that all streams should retain a
synchronous semantics [8]. It amounts to checking the sufficient
condition that the source and target of any decoupled dependence
are control-dependent on the same node in the control dependence

tree (this assumes structured control flow). This restriction may
appear as a severe one for experienced parallel programmers; but at
the potential expense of adding extra levels of nested parallelism,
it does not restrict the degree of pipeline parallelism. In fact, any
pair of computational statements can be decoupled and assigned to
different concurrent tasks. The partitioning algorithms also handle
DOALL parallelization within task pipelines, and arbitrarily nested
data-parallel pipelines following the control dependence tree of a
structured control flow graph. Unlike existing DSWP algorithms,
our method does not explicitly copy conditional expressions and
can handle arbitrary backward data and control dependences.

We are using two intermediate representations.

• A conventional SSA-based representation, annotated with nat-
ural loop and control dependence trees (for structured control
flow).

• And a streaming data-flow extension of the latter representation
as a backend for our partitioning algorithm, still in SSA form
but with explicit task boundaries (for single-entry single-exit
regions) and multi-producer multi-consumer streams to com-
municate across tasks.

The backend representation streamlines the decoupling of
multi-producer multi-consumer data flow through explicit, compiler-
controlled sampling and merging stages. Multi-producer multi-
consumer semantics is absolutely essential to handle general de-
coupling patterns where data-parallel stages feature an unbalance
in the number of worker threads. Sampling is handled transparently
by nesting tasks into enclosing control flow. Merging is captured by
Φ functions at task boundaries, introducing a minor variant of the
SSA form satisfying the so-called task-closed property that multi-
ple incoming flows targeting the same use in a given task should be
explicitly merged by a dedicated Φ function at the task entry point.

Relying on SSA avoids building the complete program depen-
dence graph: with the exception of the array dependence graph, our
method only processes linear-size data structures, as opposed to the
worst-case quadratic program dependence graph in DSWP.

2. Related Work
The most closely related work to this paper is decoupled soft-
ware pipelining and loop distribution. We recall the state-of-the-
art in both and present the original finding at the source of this
work: by extending loop distribution with pipelining and assert-
ing a synchronous concurrency hypothesis, arbitrary data and con-
trol dependences can be decoupled very naturally with only minor
changes to existing algorithms that have been proposed for loop
distribution [10].

2.1 Decoupled software pipelining
Decoupled Software Pipelining (DSWP) [13] is one approach
to automatically extract threads from loops. It partitions loops
into long-running threads that communicate via inter-core queues.
DSWP builds a Program Dependence Graph (PDG) [7], combining
control and data dependences (scalar and memory). Then DSWP

Workshop on Intermediate Representations Chamonix, 2011

29

introduces a load-balancing heuristic to partition the graph accord-
ing to the number of cores, making sure no recurrence spans across
multiple partitions. In contrast to DOALL and DOACROSS [4]
methods which partition the iteration space into threads, DSWP
partitions the loop body into several stages connected with pipelin-
ing to achieve parallelism. It exposes parallelism in cases where
DOACROSS is limited by loop-carried dependences on the critical
path. And generally speaking, DSWP partitioning algorithms han-
dles uncounted loops, complex control flow and irregular pointer-
based memory accesses.

Parallel-Stage Decoupled Software Pipelining [16] (PS-DSWP)
is an extension to combine pipeline parallelism with some stages
executed in a DOALL, data-parallel fashion. For example, when
there are no dependences between loop iterations of a DSWP stage,
the incoming data can be distributed over multiple data-parallel
worker threads dedicated to this stage, while the outgoing data can
be merged to proceed with downstream pipeline stages.

These techniques have a few caveats however. They offer lim-
ited support for decoupling along backward control and data de-
pendences. They provide a complex code generation method to de-
couple dependences among source and target statements governed
by different control flow, but despite its complexity, this method
remains somewhat conservative.

By building the PDG, DSWP also incurs a higher algorith-
mic complexity than typical SSA-based optimizations. Indeed, al-
though traditional loop pipelining for ILP focuses on innermost
loops of limited size, DSWP is aimed at processing large control
flow graphs after aggressive inter-procedural analysis optimization.
In addition, the loops in DSWP are handled by the standard algo-
rithm as ordinary control flow, missing potential benefits of treat-
ing them as a special case. To address these caveats, we turned our
analysis to the state of the art in loop distribution.

2.2 Loop distribution
Loop distribution is a fundamental transformation in program re-
structuring systems designed to extract data parallelism for vector
or SIMD architectures [10].

In its simplest form, loop distribution consists of breaking up
a single loop into two or more consecutive loops. When aligning
loop distribution to the strongly connected components of the data-
dependence graph, one or more of the resulting loops expose iter-
ations that can be run in parallel, exposing data parallelism. Barri-
ers are inserted after the parallel loops to enforce precedence con-
straints with the rest of the program. An example is presented in
Figure 1.

for (i = 1; i < N; i++) {
S1 A[i] = B[i] + 1;
S2 C[i] = A[i-1] + 1;
}

for (i = 1; i < N; i++)
S1 A[i] = B[i] + 1;

<barriers inserted here>

for (i = 1; i < N; i++)
S2 C[i] = A[i-1] + 1

Figure 1. Barriers inserted after loop distribution.

3. OpenMP Extension for Stream-Computing as
a Code Generation Target

A recently proposed stream-computing extension to OpenMP [14]
allows the expression of pipeline parallelism by making explicit
the flow dependences, or producer-consumer patterns, between
OpenMP tasks. It provides a simple way for explicitly building
dynamic task graphs, where tasks are connected through streams
that transparently privatize the data.

The extension consists of two additional clauses, input and
output to the task construct, that define the producer-consumer
relationships between tasks. The OpenMP language, with this ex-
tension, is a natural fit as a target for our code generation. It pro-
vides for dynamic task creation and connection in the task graph, it

input/output (list)
 list ::= list, item
 | item
 item ::= stream
 | stream >> window
 | stream << window
 stream ::= var
 | array[expr]
 expr ::= var
 | value

input (s >> Rwin[burstR])

s

Rwin

Wwin

peek

poke

burst

burst

int s, Rwin[Rhorizon];
int Wwin[Whorizon];

output (s << Wwin[burstW])

Figure 2. Syntax for input and output clauses.

handles arbitrary nesting of pipelined tasks in control-flow, and it
allows the hierarchical nesting of tasks.

The task construct is extended with input and output clauses
as presented on Figure 2. Both clauses take a list of items, each
of which describes a stream and its behavior w.r.t. the task to
which the clause applies. In the abbreviated item form, stream,
the stream can only be accessed one element a time through the
same variable s. In the second form, stream >> window, the
programmer uses the C++ flavoured << >> stream operators to
connect a sliding window to a stream, gaining access, within the
body of the task, to horizon elements in the stream.

One of the main issues that needs to be addressed in order to
distribute a PDG to the OpenMP stream-computing extension is
that, in the latter, the data flow bypasses the control flow. In other
words, when a task produces values on an output stream, these
values will all reach the consumers of the stream, even if, in the
serial semantics, the values would have been overwritten before
reaching the consumers. This means that the only case where a
direct annotation scheme will work is if all tasks are in the same
control flow. There are multiple ways this issue can be handled, the
most systematic one being to always ensure that every producer-
consumer pair share the same control dependence. This is achieved
by sinking all control flow surrounding the tasks, and not shared
by both producer and consumer, in the tasks. To avoid the loss
of parallelization opportunities, each task’s body can be further
partitioned into nested pipelines.

The GCC implementation of the OpenMP extension for stream-
computing has been shown to be efficient to exploit mixed pipeline-
and data-parallelism, even in dynamic task graphs [14]. It relies
on compiler and runtime optimizations to improve cache locality
and relies on a highly efficient lock-free and atomic operation-free
synchronization algorithm for streams.

4. Observations
It is quite intuitive that the typical synchronization barriers in be-
tween distributed data-parallel loops can be weakened, resulting
into data-parallel pipelines. We aim to provide a comprehensive
treatment of this transformation, generalizing PS-DSWP in the pro-
cess.

4.1 Replacing loops and barriers with a task pipeline
In the previous example, we could remove the barriers between two
distributed loops with pipelining so that the two loops could run in
parallel.
/* Initialize the stream,

inserting a delay. */
void INIT_STREAM() {

produce(stream, A[0]);
}

/* Decoupled producer and
consumer. */

for (i = 1; i < N; i++) {
S1 A[i] = B[i] + 1;

produce(stream, A[i]);
}
for (i = 1; i < N; i++) {

tmp = consume(stream);
S2 C[i] = tmp + 1;
}

Figure 3. Pipelining inserted between distributed loops. Initialize
the stream (left), producer and consumer thread (right).

Figure3 shows that pipelined execution is possible: the INIT_STREAM
function inserts one delay into a communication stream; the

Workshop on Intermediate Representations Chamonix, 2011

30

produce/consume primitives implement a FIFO, enforcing the
precedence constraint of the data dependence on array A and com-
municating the value in case the hardware needs this information.

When distributing loops, scalar and array expansion (privati-
zation) is generally required to eliminate memory-based depen-
dences. The conversion to a task pipeline avoids this complication
through the usage of communication streams. This transformation
can be seen as an optimized version of scalar/array expansion in
bounded memory and with improved locality [15].

4.2 Extending loop distribution to PS-DSWP
The similarity between DSWP and distributed loops with data-
parallel pipelines is striking. First, both of them partition the loop
into multiple threads. Second, both of them avoid partitioning the
loop iteration space: they partition the instructions of the loop body
instead. But four arguments push in favor of refining DSWP in
terms of loop distribution.

1. Loop distribution leverages the natural loop structure, where
the granularity of thread partitioning can be easily controlled.
Moreover, it is useful to have a loop control node to which
to attach information about the iteration of the loop, including
closed forms of induction variables; this node can also be used
to represent the loop in additional transformations.

2. Using a combination of loop distribution and fusion, then re-
placing barriers with pipelining leads to an incremental path in
compiler construction. This path leverages existing intermedi-
ate representations and loop nest optimizers, while DSWP re-
lies on new algorithms and a program dependence graph.

3. Considering the handling of control dependences, a robust and
general algorithm already exists for loop distribution. McKin-
ley and Kennedy’s technique handles arbitrary control flow
[10] and provides a comprehensive solution. The same meth-
ods could be applied for DSWP, transforming control depen-
dences into data dependences, and storing boolean predicates
into stream. After restructuring the code, updating the control
dependence graph and data dependence graph, the code gen-
eration algorithm for PDGs [2, 5, 6] can be used to generate
parallel code. This solution would handle all cases where the
current DSWP algorithm fails to clone a control condition.

4. Since loop distribution does not partition the iteration space,
it can also be applied to uncounted loops. Unfortunately, the
termination condition needs to be propagated to downstream
loops. This problem disappears through the usage of a conven-
tional communication stream when building task pipelines.

From this high-level analysis, it appears possible to extend loop
distribution with pipelining to implement PS-DSWP and handle
arbitrary control dependences. Yet the method still seems rather
complex, especially the if-conversion of control dependences and
the code generation step from the PDG. We go one step further
and propose a new algorithm adapted from loop distribution but
avoiding these complexities.

4.3 Motivating example
Our method makes one more assumption to reduce complexity and
limit risks of overhead. It amounts to enforcing the synchronous
hypothesis on all communicating tasks in the partition [8]. A suffi-
cient condition is to check if the source and target of any decoupled
dependence is dependent on the same control node.

Consider the example in Figure 4. S1 and S7 implement the
loop control condition and induction variable, respectively. S2, S3
and S6 are control dependent on S1. S3 is a conditional node, S4,
S5 and L1 are control dependent on it. In the inner loop, L2 and
L3 are control dependent on L1. When we apply DSWP to the
outer loop, the control dependences originating from S1 must be
if-converted by creating several streams (the number of streams
depends on the number of partitions). When decoupling along the

control dependence originating from S3, a copy of the conditional
node must be created as well as another stream.
S1 while (p != NULL) {
S2 x = p->value;
S3 if(c1) {
S4 x = p->value/2;
S5 ip = p->inner_loop;
L1 while (ip) {
L2 do_something(ip);
L3 ip = ip->next;

}
}

S6 ... = x;
S7 p = p->next;

}

Figure 4. Uncounted nested loop before partitioning.

S1 while (p1 = Φloop(p0,p2)) {
S2 x1 = p1->value;
S3 if(c1) {
S4 x2 = p1->value/2;
S5 ip1 = p1->inner_loop;

L1 while (ip2 = Φloop(ip1, ip3)) {
L2 do_something(ip2);
L3 ip3 = ip2->next;

}
}

x3 = Φcond
c1 (x1, x2);

S6 ... = x3;
S7 p2 = p1->next;

}

Figure 5. Uncounted nested loop in SSA form.

//task0-0(main task)

S1 while (p1 = Φloop(p0, p2)) {
//persistent-task1-1
#pragma task firstprivate (p1) output(x1)

{
S2 x1 = p1->value;

}
//persistent-task1-2
#pragma task firstprivate (p1) output(c1, x2)

{
S3 if(c1) {
//persistent-task2-1
#pragma task firstprivate (p1) output(ip1) lastprivate(x2)

{
S4 x2 = p1->value/2;
S5 ip1 = p1->inner_loop;

}
//persistent-task2-2
#pragma task input(ip1)

{

L1 while (ip2 = Φloop(ip1, ip3)) {
//parallel - task3-1
#pragma omp task firstprivate (ip2)

{
L2 do_something(ip2);

}
L3 ip3 = ip2->next;

}
}

}
}

//persistent-task1-3
#pragma task input(c1, x1, x2)

{

x3 = Φcond
c1 (x1, x2);

S6 ... = x3;
}

S7 p2 = p1->next;
}

Figure 6. Loops after partitioning and annotated with OpenMP
stream extension.

Figure 5 shows the conversion to SSA form. Just like GCC, we
use a loop-closed SSA form distinguishing between loop-Φ and
cond-Φ nodes. The latter take an additional condition argument,
appearing as a subscript, to explicit the selection condition. The

Workshop on Intermediate Representations Chamonix, 2011

31

main task

persistent_task1_1

persistent_task1_2
persistent
_task1_3

parallel
task3_1 ith
iteration

Xpesistent
task2_1

P

P

X

pesistent task2_2

ip

Figure 7. Pipelining and parallelization framework.

partitioning technique will build a stream to communicate this
condition from its definition site to the cond-Φ node’s task.

We build on the concept of treegion, a single-entry multiple-exit
control-flow region induced by a sub-tree of the control dependence
graph. In the following, we assume the control flow is structured,
which guarantees that the control dependence graph forms a tree.
Every sub-tree can be partitioned into concurrent tasks according
to the control dependences originating from its root. Any data
dependence connecting a pair of such tasks induces communication
over a dedicated stream. We call taskM_N the N-th task at level M
of the control flow tree.

In Figure 5, after building the control dependence tree, one may
partition it into 3 tasks (task1_1, task1_2 and task1_3) at the
root level, and for task1_2, one may further partition this task into
inner nested tasks task2_1 and task2_2. One may then check
for data parallelism in the inner loops; if they do not carry any
dependence, one may isolate them in additional data-parallel tasks,
such as task3_1 in this example.

Figure 6 shows the task and stream-annotated code using an
OpenMP syntax. Figure 7 shows the nested pipelining and data par-
allelization corresponding to the partitioned code. The main task
will be executed first, and a pipeline will be created for the main
task and its inner tasks three task1_1, task1_2 and task1_3.
Among these, the same variable x used to be defined in the con-
trol flow regions of both task1_1 and task1_2, to be used in
task1_3. This output dependence must be eliminated prior to par-
titioning into tasks, so that task1_1 and task1_2 could be decou-
pled, while task1_3 may decide which value to use internally.

Nested tasks are introduced to provide fine grained parallelism.
It is of course possible to adapt the partition and the number of
nesting levels according to the load balancing and synchronization
overhead. The generated code will be well structured, and simple
top-down heuristics can be used.

In the execution model of OpenMP 3.0, a task instance is cre-
ated whenever the execution flow of a thread encounters a task
construct; no ordering of tasks can be assumed. Such an execu-
tion model is well suited for unbalanced loads, but the overhead
of creating tasks is significantly more expensive than synchroniz-
ing persistent tasks. To improve performance, we use the persistent
task model for pipelining, in which a single instance will handle
the full iteration space, consuming data on the input stream and
producing on the output stream [14]. In Figure 7, all the tasks ex-
cept task3_1 use the persistent model to reduce the overhead of
task creation; task3_1 is an ordinary task following the execution
model of OpenMP 3.0 (instances will be spawned every time the
control flow encounters the task directive). All these tasks will be
scheduled by the OpenMP runtime.

One problem with the partitioning algorithms is the fact that the
def-use edges (scalar dependences) can become very large, some-
times quadratic with respect to the number of nodes [9]. Figure 8
(left) presents an example that illustrates this problem, Statements

S1, S2 define the variable x. These definitions all reach the uses
in the statements S3, S4 by passing through S5. Because each def-
inition could reach every use, the number of definition-use edges
is proportional to the square of the number of statements. These
dependences constitute the majority of the edges in a PDG. SSA
provide a solution to this problem. In SSA form, each assignment
creates a different variable name and at point where control flow
joins, a special operation is inserted to merge different incarnations
of the same variable. The merge nodes are inserted just at the place
where control flow joins. Figure 8 (right) is the original program
under SSA form. A merge node (Φ) is inserted at S5, and killed the
definition of S1 and S2. We could see here, in the SSA form, we
could reduce the definition-use edges from quadratic to linear.

x=

=x =x

x=
S1 S2

S3 S4

x1=

=x5 =x5

x2=
S1 S2

S3 S4

x5=
phi(x1,x2)S5

Figure 8. Definition and use edges in the presence of control flow.

The systematic elimination of output dependences is also facil-
itated by the SSA form, with a Φ node in task3_1. Notice that the
conditional expression from which this Φ node selects one or an-
other input also needs to be communicated through a data stream.

When modifying loop distribution to rely on tasks and pipelin-
ing rather than barriers, it is not necessary to distribute the loop
control node and one may run it all in the master task, which in
turn will activate tasks for the inner partitions. The statements in-
side each partition form a treegion whose root is the statement that
is dependent on the loop control node. With pipelining inserted,
distributed loops could be connected with pipelining when there
are data dependences.

One concern here is that loop distribution with task pipelines
may not provide expressiveness to extract pipeline parallelism. This
is not a problem however, since we may apply the same method to
every conditional statement rooted treegion, with some special care
to the nested tasks, we could get fine grained parallelism without
explicitly decoupling the control dependences. Considering again
the example in Figure 4, its control dependence tree is given in
Figure 9. The root treegion includes all the nodes in the control
dependence graph, treegion1_2 represents the treegion at condi-
tional level 1 and its root is node 2, treegion1_3 is at conditional
level 1 and includes nodes (S3,S4,S5,L1,L2,L3). treegion2_1 is
in conditional level 2 and its root is node (L1), which is the loop
control node of the inner loop.

So following our approach, we may start from the treegion
at conditional level 0, which is the whole loop, an implicit task
will be created as the master task. For the treegions at level 1,
we could create them as sub-tasks running at the context of the
main task. If there are data dependences between the treegions
at the same level and without recurrence, we will connect them
with communication streams. If there is a dependence from the
master task to one inner task, the value from the enclosing con-
text can be forwarded to the inner task like in a firstprivate
clause of OpenMP. Dependences from an inner task to the mas-
ter task are also supported, although lastprivate is not natively
supported for OpenMP3.0 tasks, it is a necessary component of
our streaming task representation. lastprivate(x) is associated
with a synchronization point at the end of the task and makes the
value of x available to the enclosing context. The same algorithms
could be recursively applied to the treegion at the next inner level.
e.g. For treegion1_3 at level 1, the sub treegion at level 2 is

Workshop on Intermediate Representations Chamonix, 2011

32

S2 S3

S4 S5

S6

S1
S7

L1
L3

L2
Figure 9. Control dependence graph of Figure 4. Express the def-
inition of treegion.

treegion2_4, treegion2_5 and treegion2_1, we could cre-
ate sub-tasks by merging treegion2_4 and treegion2_5 as one
sub-task and treegion2_1 (which is also the inner loop) as one
sub-task, or just for part of them. To reveal data parallelism, we
can reuse the typed fusion algorithm introduced by McKinley and
Kennedy [11]: it is possible to fuse communicating data-parallel
nodes to increase the synchronization grain or improve the load
balancing. In this example, the loop in node L2 does not carry any
dependence, and we need to decouple it from its enclosing task to
expose data-parallelism.

5. Partitioning Algorithm
In this section, we present our partitioning algorithm, based on the
SSA and treegion representations. We define our model and the
important constructs that will be used by our algorithm, then we
present and describe our algorithm.

5.1 Definitions
In this work, we are only targeting natural structured loops [3].
Such loops are single-entry single-exit CFG sub-graphs with one
entry block and possibly several back edges leading to the header
from inside of the loop. break and continue statements can be
preprocessed to comply with this restriction, but we plan to lift it
altogether in the future.

Treegion The canonical definition of a treegion is a non-linear,
single-entry multiple-exit region of code containing basic blocks
that constitute a sub-graph of the CFG. We alter this definition to
bear on the Control-Dependence Graph (CDG) instead, so we will
be looking at single-entry multiple-exit sub-graphs of the CDG.

Loop Control Node In the representation we employ later, we
will use the loop control node to represent the loop. The loop con-
trol node include statements which will evaluate the loop control
expression and determines the next iteration.

Although control dependences in loops can be handled by the
standard algorithm by converting them to a control flow graph,
there are advantages in treating them as a special case with co-
alescing them in a single node (loop control node): not only the
backward dependence is removed by building the loop control node
so that the control dependence graph will form a tree, but also, this
node can be used to represent the loop in all sort of transformations.

Conditional Level The control dependence graph of the struc-
tured code is a tree after building the loop control node. The root

of the tree is the loop control node at the loop’s outermost level.
We define the conditional level for every node in the control depen-
dence graph as the depth of the node in the tree. The root of the tree
with depth 0 has conditional level 0.

We define the conditional level for the treegion is the condi-
tional level of the root node of the treegion (subtree). We define
treegionN_M to identify a treegion where N is the conditional level
of the treegion and M is the root node number of the treegion.

5.2 The algorithm
The algorithm takes an SSA representation of a single function,
and returns a concurrent representation annotated with tasks and
communication streams.

Step 1: Transform Conditional Statements to Conditional Vari-
ables To achieve fine-grained pipelining, conditional statements
are split to conditional variables. As showed in Figure 10. Full
conversion to three-address SSA form is also possible (as it is per-
formed in GCC or LLVM, for example).
if (condition(i))
//is transformed to
c1 = condition(i)
if (c1)

Figure 10. Split conditional statements to expose finer grained
pipelining.

Step 2: Build the Program Dependence Graph under SSA By
building the program dependence graph, the control dependence
graph, data dependence graph (through memory) and scalar depen-
dence graph (through registers) are built together.

The control dependence graph for the structured code is a tree,
the root of the tree is the loop control node. The leaves of the tree
are non-conditional statements and the other nodes inside the tree
are the conditional statements or the loop control node of the inner
loops. We start from building the control dependence graph, and
evaluate the conditional level for each node in the graph. Every
node inside the control dependence graph is an statement from the
compiler’s intermediate representation of the loop except for the
loop control node. The loop control node will be built by searching
the strongly connect component started from the loop header node
(at each loop nest level) in the program dependence graph.

The data dependence graph could be built by the array depen-
dence analysis [9] for the loop. We should analyse every pair of
data dependences to mark the irreducible edges in a later step if
there are recurrence.

Step 3: Marking the Irreducible Edges A partition can preserve
all dependences if and only if there exists no dependence cycle
spanning more than one output loop [1, 12]. In our case, for the
treegion at the same conditional level, if there are dependences that
form a cycle, we mark the edges in between as irreducible. If we
have statements in different conditional level, we promote the inner
one to its ancestor until both of them are in the same treegion, mark
the promoted root node and the other root node as irreducible. The
algorithms is presented in Figure 11.

Step 4: Structured Typed Fusion Before partitioning, to reveal
data parallelism, we type every node in the dependences graph
as parallel or !parallel. If there are loop-carried dependence
inside this node, then it should be typed as !parallel, otherwise,
typed as parallel.

The parallel type nodes are candidates for data paralleliza-
tion. The goal is to merge this type of nodes to create the largest
parallel loop, reducing synchronization overhead and (generally)
improving data locality. Further partitioning can happen in the fol-
lowing step, starting from this maximally type-fused configuration.
Given a DAG with edges representing dependences and the ver-
tices representing statements in the loop body, we want to produce
an equivalent program with minimal number of parallel loops. We
want it to be as large as possible to balance the synchronization

Workshop on Intermediate Representations Chamonix, 2011

33

// input: PDG Graph PDG(V,E) PDG--Program Dependence Graph
// input: CDG Graph CDG(V,E) CDG--Control Dependence Graph
// output: irreducible_edge_set Irreducible_edge_set
SCCS = find_SCCs(PDG)
For each SCC in SCCs:
for each pair of node (Vx,Vy) in SCC:
// CL represents for conditional level
// in the Control dependence graph.

// if they are in the same treegion, merge into one node.
if Vx.CL == Vy.CL:
merge_to_one_nodes(Vx, Vy)
continue

// if not in the same treegion, go up for n=|Vx.CL-Vy.CL|
// levels. And mark the edge between the nodes as irreducible.

max_CL = Vx.CL>Vy.CL?Vx.CL:Vy.CL
Vx = up_n_level(CDG, max_CL - Vx.CL)
Vy = up_n_level(CDG, max_CL - Vy.CL)
//mark edge (Vx,Vy) irreducible
Irreducible_edge_set.insert(edge(Vx,Vy))

Figure 11. Algorithm for marking the irreducible edges.

overhead. Even when we don’t want that coarse grained parallel
loops, we could also partition between iterations if possible.

In our case, we need a structured typed loop fusion algorithm.
We revisit McKinley and Kennedy’s fast typed fusion [11] into a
recursive algorithm traversing the control dependence tree. Starting
from the treegion at conditional level 0, which is the whole loop, we
will check if there are loop carried dependences between iterations.
If there are no loop carried dependence, we stop here by annotating
the whole loop as parallel. If there are, we are going into each inner
treegion, identifying those that have no loop carried dependences.
If some of them carried no loop carried dependence, mark the
nodes as parallel and try to merge them. There are some constraints
when we fuse the nodes: (1) parallelization-inhibiting constraints;
(2) ordering constraints. The parallelization-inhibiting fusion is
that there are no loop-carried dependences before fusion, but will
have the loop carried dependences after. So we should skip this
kind of fusion which will degrades data parallelism. The ordering
constraints describe that two loops cannot be validly fused if there
exists a path of loop-independent dependences between them that
contains a loop or statement that is not being fused with them.

The time complexity of the typed fusion algorithms is O(E+V)
[11], and our structured extension has the same complexity.

void StructuredTypedFusion()
Queue queue = new Queue()
queue.push(treegions_at_level_0)
while (not queue.empty()) {
treegions = queue.pop()
G = build_pdg_by_treegion(treegions)
for each treegion in treegions:
if loop_carried_no_dependence (treegion) {
parallel_treegion.insert(treegion)
update_typed_dependence_graph(G, treegion.num)

}else{
treegions_at_inner_level.insert(treegion)

}
queue.push (treegions_at_inner_level)
B = Get_parallelization_inhabiting_edges

(parallel_treegion)
t0 = ’parallel’
TypedFusion (G, T, B, t0)

}
procedure TypedFusion(G, T, B, t0)
//G=(V,E) is the TYPED dependences graph,
//including control,data,scalar dependences.
//type(n) will return the type of a node.
//B is the set of parallelization-inhabiting edges.
//t0 is a specific type for which we will find a minimal fusion

end TypedFusion

Figure 12. Structured typed fusion algorithm.

Step 5: Structured Partitioning Algorithms Updating the CDG
after typed fusion, start from the treegion which has conditional

level 0 for our partitioning algorithms, and for all of its child tree-
gions at conditional level 1, we should decide where to partition.
The partition point could be any point between each of these tree-
gions at the same level except the irreducible edges that we have
created in step 3. The algorithm may decide at every step if it is
desirable to further partition any given task into several sub-tasks.

Look at the example Figure 13:

for(i...)

x = work(i)

if (c1)
y = x + i;

if (c2)
z = y*y;

q = z - y;

for (i...)
BEGIN task1_1
x = work(i)

END task1_1
BEGIN task1_2
if (c1)
BEGIN task2_1
y = x + i;

END task2_1
BEGIN task2_2
if (c2)
z = y*y;

END task2_2
BEGIN task2_3
q = z - y;

END task2_3
END task1_2

Figure 13. Before partitioning (left), and After partitioning (right).
Loop with control dependences.

The code in Figure 13 (left) is partitioned into 2 tasks, and one
task (task1_2) is partitioned further into 3 sub-tasks.

6. Code Generation
After the partitioning algorithms, we have decided the partition
point between the original treegions, with the support of the stream
extension of OpenMP. We ought to generate the code by insert-
ing the input output directives. With the support of nested tasks,
relying on the downstream, extended OpenMP compilation algo-
rithm (called OpenMP expansion). But some challenges remain,
especially in presence of multiple producers and consumers. We
are using SSA form as an intermediate representation and generat-
ing the streaming code.

6.1 Decoupling dependences across tasks belonging to
different treegions

Clearly if we decouple a dependence between tasks in the same
treegion, the appropriate input and output clauses can be natu-
rally inserted. But what about the communication between tasks at
different level?

Considering the example in Figure 14, if we decide to partition
the loop to 3 main tasks: task1 1 with S1, task1 2 with (S2,S3), and
task1 3 with S4, task1 2 is further divided to task2 1 with S3. If we
insert the produce and consume directly into the loop, unmatched
production and consumption will result.

for (...) {
S1 x = work(i)

S2 if (c1)
S3 y = x + i;
S4 ... = y;
}

for (i = 0; i < N; I++) {
S1 x = work(i)

produce(stream_x, x) //task1_1 end

x = consume(stream_x)
S2 if (c1) //task1_2 start

x = consume(?) //task2_1 start
S3 y = x + i;

produce(?, y) //task2_1 end
produce(stream_y, y) //task1_2 end
y = consume(stream_y)

S4 ... = y; //task1_3 end
}

Figure 14. Normal form of code (left) and using streams (right).

The answer comes from following the synchronous hypothesis
and slightly modifying the construction of the SSA form in pres-
ence of concurrent streaming tasks.

Workshop on Intermediate Representations Chamonix, 2011

34

6.2 SSA representation
We are using the Static Single Assignment (SSA) form as an in-
termediate representation for the source code. A program in SSA
form if every variable used in the program appears a single time in
the left hand side of an assignment. We are using the SSA form to
eliminate the output dependences in the code, and to disambiguate
the flow of data across tasks over multiple producer configurations.
/* Normal form of the code. */
S1: r1 = ...
S2: if (condition)
S3: r1 = ...
S4: ... = r1

/* Code under SSA form. */
S1: r1_1 = ...
S2: if (condition)
S3: r1_2 = ...
S4: r1_3 = phi(r1_1, r1_2)
S5: ... = r1_3

Figure 15. Normal form of code (left) and SSA form of the code
(right).

Considering the example in Figure 15, if we partition the state-
ments into (S1), (S2,S3), (S4), we need to implement precedence
constraints for the output dependence between partition (S1) and
(S2,S3), which decreases the degree of parallelism and induces syn-
chronization overhead.

Eliminating the output dependences with the SSA form leads
to the introduction of multiple streams in the partitioned code. In
order to merge the information coming from different control flow
branches, a Φ node is introduced in the SSA form. The Φ function
is not normally implemented directly, after the optimizations are
completed the SSA representation will be transformed back to
ordinary one with additional copies inserted at incoming edges of
(some) Φ functions. We need to handle the case where multiple
producers in a given partition reach a single consumer in a different
partition. When decoupling a dependence whose sink is a Φ node,
the exact conditional control flow leading to the Φ node is not
accessible for the out-of-SSA algorithm to generate ordinary code.

Task-closed Φ node In SSA loop optimization, there is a concept
called loop-closed Φ node, which implements the additional prop-
erty that no SSA name is used outside of loop where it is defined.
When enforcing this property, Φ nodes must be inserted at the loop
exit node to catch the variables that will be used outside of the loop.
Here we give a similar definition for task-closed Φ node: if multi-
ple SSA variables are defined in one partition and used in another, a
phi node will be created at the end of the partition for this variable.
This is the place where we join/split the stream. We need to make
sure that different definitions of the variable will be merged in this
partition before it continues to a downstream one. This node will
be removed when converting back from SSA.

Task-closed stream Our partitioning algorithms generate nested
pipelining code to guarantee that all communications follow the
synchronous hypothesis. For each boundary, if there are one or
more definitions of a variable coming through from different parti-
tions, we insert a consumer at this boundary to merge the incoming
data, and immediately insert a producer to forward the merged data
at the rate of the downstream control flow.

1. When partitioning from a boundary, if inside the treegion, there
are multiple definitions of a scalar and it will be used in other
treegions which has the same conditional level, we create a Φ
node at the end of this partition to merge all the definitions, and
also update the SSA variable in later partitions.

2. If there is a Φ node at the end of a partition, insert a stream
named with the left-hand side variable of the Φ node.

3. At the place where this variable is used, which is also a Φ node,
add a special stream-Φ node to consume.

4. To generate code for the stream-Φ, use the boolean condition
associated with the conditional phi node it originates from.

Let us consider the SSA-form example in Figure 15 where we
partition the code into (S1,S2,S3) and (S4,S5). A Φ node will be
inserted at the end of the first partition, r1 4 = phi(r1 1, r1 2),

the Φ node in a later partition should be updated from r1 3 =
Φ(r1 1, r1 2) to r1 5 = Φ(r1 4). In the second step, we find out
that in partition (S1,S2,S3), there is a Φ node at the end, so we
insert a stream to produce there. And in partition (S4,S5), after the
Φ node there is a use of the variable, so we insert a stream consume.
The generated code will look like Figure 16.

/* Producer. */
S1: r1_1 = ...
S2: if (condition)
S3: r1_2 = ...

r1_4 = phi(r1_1, r1_2)
produce(stream_r1_4, r1_4)

/* Consumer. */
S4: r1_5 = phi(r1_4)

r1_5 = consume(stream_r1_4, i)
S5: ... = r1_5

Figure 16. Apply our algorithm to generate the parallel code.
Producer thread (left) and consumer thread (right).

This example illustrates the generality of our method and shows
how fine-grain pipelines can be built in presence of complex, multi-
level control flow.

If we decide to partition the statements into (S1), (S2,S3), (S4,S5),
which is the case for multiple producers, the generated code will
look like in Figure 17.

/* Producer 1. */
S1: r1_1 = ...

r1_2 = phi(r1_1)
produce(stream_r1_2, r1_2)

/* Producer 2. */
S2: if (condition)

r1_3 = ...
r1_4 = phi(r1_3)
produce(stream_r1_4, r1_4)

/* Consumer. */
S4: r1_5 = phi(r1_2, r1_4)

if (condition)
r1_5 = consume(stream_r1_4, i)

else
r1_5 = consume(stream_r1_2, i)

S5: ... = r1_5
i++

Figure 17. Multiple producers with applied our algorithm, the
generated code.

For multiple consumers, the stream extension of OpenMP will
broadcast to its consumers, which is appropriate for our case.

7. Conclusion
In this paper, we propose a method to decouple independent tasks in
serial programs, to extract scalable pipelining and data-parallelism.
Our method leverages a recent proposition of a stream-processing
extension of OpenMP, with a persistent task semantics to elimi-
nate the overhead of scheduling task instances each time a pair of
tasks need to communicate. Our method is inspired by the syn-
chronous hypothesis: communicating concurrent tasks share the
same control flow. This hypothesis simplifies the coordination of
communicating tasks over nested levels of parallelism. Synchrony
also facilitates the definition of generalized, structured typed fusion
and partition algorithms preserving the loop structure information.
These algorithms have been proven to be essential to the adapta-
tion of the grain of parallelism to the target and to the effective-
ness of compile-time load balancing. These partitioning algorithms
also handle DOALL parallelization inside a task pipeline. We are
using a combination of SSA, control dependence tree and (non-
scalar) dependence graph as an IR. With the support of SSA, our
method eliminates the nested multiple producer and multiple con-
sumer problems of PS-DSWP. SSA also provides additional appli-
cability, elegance and complexity benefits. This work is currently
under development in a development branch of GCC, the partition-
ing algorithms is partially developed. For the code generation part,
we first need to migrate the existing OpenMP expansion pass of
GCC to work under SSA form, which has been a long-running
challenge. When this work is complete, our method will leverage
the array data-flow analysis of the Graphite polyhedral compilation
pass of GCC to provide more precise data dependence information
in loop nests with regular control flow.

Acknowledgments This work was partly funded by the European
FP7 project TERAFLUX id. 249013, http://www.teraflux.eu

Workshop on Intermediate Representations Chamonix, 2011

35

References
[1] R. Allen and K. Kennedy. Automatic translation of fortran programs

to vector form. ACM Trans. Program. Lang. Syst., 9:491–542, October
1987.

[2] W. Baxter and H. R. Bauer, III. The program dependence graph and
vectorization. In Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’89,
pages 1–11, New York, NY, USA, 1989. ACM.

[3] C. Böhm and G. Jacopini. Flow diagrams, turing machines and
languages with only two formation rules. Commun. ACM, 9:366–371,
May 1966.

[4] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In
Intl. Conf. on Parallel Processing (ICPP), Saint Charles, IL, 1986.

[5] J. Ferrante and M. Mace. On linearizing parallel code. In Proceed-
ings of the 12th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’85, pages 179–190, New York, NY,
USA, 1985. ACM.

[6] J. Ferrante, M. Mace, and B. Simons. Generating sequential code from
parallel code. In Proceedings of the 2nd international conference on
Supercomputing, ICS ’88, pages 582–592, New York, NY, USA, 1988.
ACM.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9:319–349, July 1987.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[9] K. Kennedy and J. R. Allen. Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2002.

[10] K. Kennedy and K. S. McKinley. Loop distribution with arbitrary
control flow. In Proceedings of the 1990 ACM/IEEE conference on
Supercomputing, Supercomputing ’90, pages 407–416, Los Alamitos,
CA, USA, 1990. IEEE Computer Society Press.

[11] K. Kennedy and K. S. Mckinley. Typed fusion with applications to
parallel and sequential code generation. Technical report, Department
of Computer Science Rice University, CITI, 1993.

[12] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. De-
pendence graphs and compiler optimizations. In Proceedings of the
8th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’81, pages 207–218, New York, NY, USA,
1981. ACM.

[13] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread
extraction with decoupled software pipelining. Microarchitecture,
IEEE/ACM International Symposium on, 0:105–118, 2005.

[14] A. Pop and A. Cohen. A stream-comptuting extension to OpenMP.
In Proc. of the 4th Intl. Conf. on High Performance and Embedded
Architectures and Compilers (HiPEAC’11), Jan. 2011.

[15] A. Pop, S. Pop, and J. Sjödin. Automatic streamization in GCC. In
GCC Developer’s Summit, Montreal, Quebec, June 2009.

[16] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In Proceedings of the
6th annual IEEE/ACM international symposium on Code generation
and optimization, CGO ’08, pages 114–123, New York, NY, USA,
2008. ACM.

Workshop on Intermediate Representations Chamonix, 2011

36

