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1. Introduction

Since Music III, the first language for digital audio synthesis, developed by
Max Mathews in 1959 at Bell Labs, to Max [1], and from MUSICOMP, con-
sidered one of the very first music composition languages, developed by Lejaren
Hiller and Robert Baker in 1963, to OpenMusic [2] and Elody [3], research in
music programming languages has been very active and innovative. With the con-
vergence of digital arts, such languages, and in particular visual programming
languages like Max, have gained an even larger audience, well outside the com-
puter music research community.

Within this context, the Faust language [4] introduces a dual programming
paradigm, based on a highly abstract, purely functional approach to signal pro-
cessing while offering a high level of performance. Faust semantics is based on a
clean and sound framework that enables mathematical correction proofs for Faust
applications to be performed, while being complementary to current audio lan-
guages by providing a viable alternative to C/C++ for the development of efficient
signal processing libraries, audio plug-ins or standalone applications.

The definition of the Faust programming language uses a two-tiered approach:
(1) a core language provides constructs to manage signal transformations and (2)
a macro language is used on top of this kernel to build and manipulate signal
processing patterns. The macro language has rather straightforward syntax and
semantics, since it is a syntactic variant of the untyped lambda-calculus with a
call-by-name semantics (see [5]). On the other hand, core Faust is more unusual,
since, in accordance with its musical application domain, it is based on the notion
of “signal processors” (see below).

The original definition of Faust provided in [6] is based on monorate signal
processors; this is a serious limitation when specifying spectral-based sound ma-
nipulation algorithms (such as FFT) or extending the language applicability out-
side the music domain, for instance for image analysis and manipulation (such as
data compression). We propose here a multirate extension of Faust based on a key
innovative principle: data rate changes are intertwined with vector data structure
manipulation operations, i.e., creating an output signal where samples are vectors
divides the rate of input signals by the vector size, while serializing vectors mul-
tiplies rates accordingly. We also introduce new, dual constructs to build record-
like signals; contrarily to vector operations, record signals do not induce signal
rate modifications. Since Faust current definition does not offer first-class struc-
tured data, this proposal kills two birds with one stone by adding both multirate
processing and data structures; this interplay between vectors, records and rates is
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made possible in the typing semantics of Faust by the introduction of dependent
types.

The contributions of this paper are as follows: (1) the specification of a new
extension of Faust for vector processing, record data manipulation and multirate
applications, (2) a static typing semantics of Faust, based on dependent types, (3)
a denotational semantics of Faust (the one presented in [6] is operational) and
(4) Subject Reduction and Rate Correctness theorems that validate the multirate
synchronous nature of this vector extension.

After this introduction, Section 2 provides a brief informal overview of Faust
basic operations. Section 3 is a proposal for a multirate extension of this core,
which we illustrate with a simple vector application implementing a Haar-like
subsampling operation. Section 4 defines the static domains used to define Faust
static typing semantics (Section 5). Section 6 defines the semantic domains and
rules used in the Faust dynamic denotational semantics, which is shown to be
compatible with the static semantics in Section 7. Proving that this structuring
and multirate extension of Faust indeed behaves properly, i.e., that signals of dif-
ferent rates merge gracefully in a multirate program, is the subject of the Rate
Correctness theorem in Section 8. The last section concludes.

2. Overview of Faust

A Faust program does not describe a sound or a group of sounds, but a sig-
nal processor, a function that gets input signals, themselves functions of time to
values, and produces output signals. The program source is organized, basically,
as a set of definitions mapping identifiers to expressions; the keyword identifier
process is the equivalent of main in C. Running a Faust program amounts to
plugging the I/O signals implicitly used by process to the actual sound environ-
ment, such as a microphone or an audio system for instance, usually via software
audio card managers such as Jack1.

To begin with, here are two very simple Faust examples. The first one pro-
duces silence, i.e., a signal providing an infinite supply of 0s:

process = 0;

Note that 0 is an unusual signal processor, since it takes an empty set of input
signals and generates a signal of constant values, namely the integer 0. The second

1http://www.jackaudio.org.
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simple example illustrates the conversion of a two-channel stereo input signal into
a one-channel mono output signal using the + primitive that adds its two input
signals together to yield a single, summed signal:

process = +;

Faust primitives are assembled via a set of high-level composition operators
on signal processors, generalizations of the mathematical function composition
operator ◦ and defined via a block-diagram algebra [7]. For instance, connecting
the output of + to the input of abs in order to compute the absolute value of the
summed output signal can be specified using the sequential composition operator
“:” (colon):

process = + : abs;

Here is an example of parallel composition (think of a stereo cable) using the
operator “,” that puts in parallel its left and right expressions. This example uses
the _ (underscore) primitive that denotes the identity function on signals (akin to
a simple audio cable for a sound engineer):

process = _,_;

These operators can be arbitrarily combined, modulo typing constraints we
present below. For example, to multiply a mono, input signal by 0.5, one can
write:

process = _,0.5 : *;

Taking advantage of some syntactic sugar the details of which are not addressed
here, the above example can be rewritten, using what functional programmers
know as curryfication:

process = *(0.5);

The recursive composition operator “˜” can be used to create processors with
delayed cycles. Here is the example of an integrator:

process = + ˜ _;
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where the “˜” operator connects here in a feedback loop the output of + to the
input of “_”, via an implicit connection to the mem signal processor which imple-
ments a 1-sample delay, and the output of “_” is then used as one of the inputs
of +. As a whole, process thus takes a single input signal x and computes an
output signal y such that2 y(t) = x(t) + y(t − 1), thus performing a numerical
integration operation.

To illustrate the use of this recursive operator and also provide a more mean-
ingful audio example, the following 3-line Faust program defines a pseudo-noise
generator3:

random = +(12345) ˜ *(1103515245);
noise = random,2147483647.0 : /;
volumeUI = vslider("noise", 0,0, 100, 0.1);
process = (noise,volumeUI : *),100 : /;

The definition of random specifies a (pseudo) random number generator that
produces a signal s such that s(t) = 12345 + 1103515245 ∗ s(t− 1). Indeed, the
expression +(12345) denotes the operation of adding 12345 to a signal, and
similarly for *(1103515245). These two operations are recursively composed
using the ˜ operator, which connects in a feedback loop the output of +(12345)
to the input of *(1103515245) (via an implicit 1-sample delay) and the output
of *(1103515245) to the single input of +(12345).

The definition of noise transforms the random signal into a noise signal by
scaling it between -1.0 and +1.0, while the definition of process adds a simple
user interface to control sound production; the noise signal is multiplied by the
value delivered by a slider to control its volume. The whole process expression
thus does not take any input signal but outputs a signal of pseudo random numbers
(see the block diagram representation of this process in Figure 1, where the
little square near the addition block denotes a 1-sample delay operator).

The last two composition operators in the definition of core Faust, <: and :>,
perform fan-out and fan-in transformations, as we illustrate in the next section.

2y(−1) is set to 0 by Faust.
3We limit ourselves in this example to the Faust core syntax presented in Section 5.1; Faust

provides friendlier syntactic sugar, in particular when dealing with arithmetic expressions.

5



Figure 1: Noise generator process block diagram.

3. Multirate Extension

Traditional synchronous languages such as Esterel, Lustre, Signal or State
Charts [8] are built upon the concept of clocks and time stamps upon which com-
putation steps are, one way or another, scheduled; the presence (or absence) of
clock ticks are generally used to activate (or stop) processing. The use of differ-
ent clocks allows program parts to be activated at different rates. Clocks can be
seen as objects of interest either at the programmer’s level (e.g., in Lucid Syn-
chrone [9]), at the static semantics level ([10], [11]) or at the mathematical level
([12]).

Faust, as described in [6], is a monorate language; in monorate languages,
there is just one time domain involved when accessing successive signal values.
However, digital signal processing traditionally may use subsampling and over-
sampling operations, which naturally lead to the introduction of multirate con-
cepts. Since Faust targets the domain of highly efficient, multimedia (mostly au-
dio) DSP processing, we suggest to use simpler, multiple rates to deal with such
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issues [13], instead of one of the more general clock designs reviewed above. We
informally describe below this approach, and illustrate it with a simple example
of its use.

3.1. Rates for Vector Processing
We propose to see clocking issues as an add-on to the Faust static semantics

(Faust is a strongly typed language). Rates (or frequencies) f are elements of the
Rate = Q+ domain. Signals, which are traditionally typed according to the type
of their codomain, are here characterized by a pair formed by a type and a rate:
Type× Rate.

The first key idea to introduce multirate processing in Faust is to posit that
multiple rates in an application are introduced via vectors. Vectors are created us-
ing the new vectorize primitive; informally, it collects n consecutive samples
(the constant value n is provided by the signal that is the second argument to this
primitive) from an input signal of rate f and outputs vectors with n elements at
rate f/n; if the input values are of type τ , then output vector samples have type
vectorn(τ). We illustrate the case of vectorize with n = 3 in Figure 2.

Figure 2: Vectorizing an input signal of integers into an output signal of 3-vectors.

The dual serialize primitive maps a signal of vectors of type vectorn(τ)
at rate f to the signal of rate f × n of their linearized elements, of type τ . We
illustrate the case of serialize in Figure 3; note that the value of n, here 3,
does not have to be explicitly provided, since it will be recovered automatically,
via the language type system presented in Section 5.

Figure 3: Serializing an input signal of 3-vectors into an output signal of integers.
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The primitive [] provides, using as inputs a signal of vectors and one of in-
teger indexes, an output signal of successively indexed vector elements. Finally,
the primitive # builds a signal of concatenated vectors from its two vector signal
inputs.

The second key feature of this multirate extension is, as we just saw, that
the size n of vectors is encoded into vector types; moreover this size is provided
via the value of a signal, argument of the vectorize primitive. This calls for
a dependent-type [14] static semantics that embeds values within types. Since
Faust strives for high run-time performance, this type system must furthermore
be sophisticated enough to be able to ensure, at compile time, that a given signal
is constant (when it is to be used as a signal denoting the size of a vector): we
introduce intervals of values in the static semantics to deal with such an issue.

We show below that this interplay between types, vector sizes and rates leads
to the addition of rate constraints to the more traditional typing constraints of Faust
static semantics. Basic rate values are, ultimately, provided by the sampling rate
of the audio card manager to which a process signal processor is eventually
linked.

3.2. Records and Vectors Rating Duality
Most traditional programming languages offer, at their most fundamental level,

at least two kinds of data structuring concepts: vectors and records. There are nat-
ural dualities between these notions:

1. Vectors are index-based collections of elements, while records are symbol-
based (via field names);

2. Vector elements are ordered, while record fields generally are not (some
languages such as C support some notion of field ordering in their subtyping
relationship);

3. All elements in a vector have to have the same type, while record fields may
accommodate different types;

4. Vector sizes are generally dynamic values, while the number of fields in
records is a compile-time constant (again, some languages also allow some
leeway here, in subtyping or inheritance relationships).

Note that our Faust extension does not enforce this last duality property since, for
efficiency reasons, we decided to make vector sizes compile-time constants. How-
ever, the presence of rates in the static semantics of our Faust extension suggests
to add to these existing duality relationships a new duality relation (rating duality)
between vectors and records:
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5. Vector (signal) constructs are rate modifiers, while record (signals) are not.

In our proposal, a record constructor signal such as [foo,bar,baz> accepts,
as inputs, a collection of signals, here three, that operate at the same rate and
outputs a single signal, still with the same rate, each of its samples being a labelled
collection of input samples. Accessing elements of a record signal is symbol-
based: <bar,foo] takes as input a signal of records and outputs two signals of
the corresponding elements.

Before describing formally our framework in the remainder of this paper, we
illustrate it with an example.

3.3. Haar Filtering, an Example
To get a better intuitive understanding of how data structuring constructs in-

teract with Faust primitives, we present a Haar-like downsampling process, which
is a simplified step in the Discrete Wavelet Transform shown to be of use, for
instance, in some audio feature extraction algorithms [15]. The signal processor
process takes an input signal s at rate f and produces two output signals at rate
f/2, the mean o1 and difference o2, such that o1(t) = (s(2t) + s(2t + 1))/2 and
o2(t) = o1(t) − s(2t + 1). It could be defined in our extended Faust as follows
(see Figure 4 for the block diagram of process):

down = vectorize(2) : [](1);
mean = _ <: _,mem : + : /(2);
left = _,!;
process = _ <: (mean:down),down <: left,-;

Here, down gathers the data from its input signal in pairs stored in vectors of size
2 (hence the size 2 used in the curried version of vectorize) from which the
second element is extracted, again using a signal processor, here [], curried over
its second argument 1 (vector indices start at 0). This function downsamples its
input signal of frequency f into an output signal of frequency f/2, picking one
value over two from the input.

The definition of mean indicates that its input signal s (here _) is duplicated,
using the <: fan-out operator. Two copies are expected since the output of <: is
fed into a parallel composition of two one-input signals: the first copy is simply
passed along by _, while the second one is being delayed via mem by one sample.
Both signals s(t) and its delayed copy s(t − 1) are then added together using the
+ operator. The sum signal is then divided by 2 via a curried division operation
to yield an average signal m(t) = (s(t) + s(t− 1))/2. Note that, instead of +, we
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Figure 4: Haar filtering process, using Faust vector extension. Vector-valued signals are dis-
played with thick arrows and labelled with vector dimensions.

could also have used the Faust fan-in operator :>, which mixes its input signals
by adding them together into a single signal, as in:

mean = _ <: _,mem :> /(2);

The signal processor process duplicates its single input s (as before, _)
to a two-input parallel process: the first copy is averaged using mean and then
downsampled using sequencing with down, yielding signal m2; the second copy
is simply downsampled, yielding s2. These two signals are then fanned-out into
the four-input signal processor left,-; it indeed takes four inputs, since (1)
left takes a pair of signals, here (m2, s2), keeping only its left component m2

using the primitive ! that maps, by definition, its own s2 to nothing and (2) the
subtraction operation - takes two inputs, here againm2 and s2, yielding the signal
m2 − s2. The end result is the expected pair of signals (o1, o2) = (m2,m2 − s2)
of downsampled means and differences.

To further illustrate the data structuring features we want to introduce into
Faust, we provide below of variant of Processor process that uses records:

diff = _ <: <mid],<second] : -;
process =

_ <: (mean:down),down : [mid,second> <: <mid],diff;

Here, the signal processor process begins, as before, by yielding the parallel
processor (m2, s2). But, here, these two parallel data signals are then fed into
the two-input signal processor [mid,second>, which outputs a single signal
of record-like structures with two fields, named mid and second. This record
signal is fanned-out into the parallel two-input signal processor (<mid],diff):
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(1) <mid] takes a signal of records, keeping only the component named mid
and thus retrieving signal m2, and (2) diff fans out its input signal of records
to a parallel process that destructures each of them before subtraction, yielding
m2−s2. The result is, as before, the pair of signals (m2,m2−s2) of downsampled
means and differences.

4. Static Domains

The multirate extension of Faust static semantics relies heavily on dependent
typing, which is formally defined below.

4.1. Dependent Types
Since the values embedded in signals are typed, the static typing semantics of

extended Faust uses basic types b in BasicType, which is a defined set of prede-
fined types:

b ∈ BasicType = int | float .

Since our type system uses dependent types, we need a way to abstract values to
yield a decidable framework. We introduce intervals a in Interval, which are pairs
of signed reals4 n (or m); intervals represent the sets of values that expressions
may have at run time:

n,m ∈ Rω = {−ω,+ω} ∪ R ,

a ∈ Interval = Rω × Rω ,

where we assume the usual extensions of arithmetic operations on R to Rω; we
take care in the following to avoid introducing meaningless expressions such as
−ω + +ω. An interval a = (n,m) is written [n,m] in the sequel.

A basic-typed expression is thus typed with an element b of BasicType, to-
gether with an interval [n,m] that specifies an over-approximation of the set of
values this expression might have. For instance, a sample of value 0.5 may be
characterized by the basic type float and the interval [0.5, 0.5]. Note that it is
also, but in a less precise way, characterized by the intervals [0, 2] or even [0,+ω],
since 0.5 is a positive number and is less than 2; we deal with such indeterminacy
in Subsection 5.3.

4Since N is included in R, we also use n or m to denote integers, when no confusion can arise.
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We need to introduce more complex type expressions to deal with structured
values. Vectors, as groups of n values, are typed using their size (the number
n) and the type of their elements. Records are typed according to their list of
field names and the type of the corresponding element in the data record. Finally,
since signed integers are part of types, via intervals, we need to perform some
operations over these values, and thus introduce the notion of type addition.

The whole type domain Type of value types τ is then5:

τ ∈ Type = BasicType× Interval |
N× Type |
Record |
Type× Type ,

u ∈ Record =
⋃
n>0

Iden × Typen .

As a shorthand, we note, for each of the four possible cases of a type definition in
Type:

• b[a], for a basic type b with interval a;

• vectorn(τ), for vector types of n elements of type τ ;

• (L, T), for records, where L is a list of field names and T a list of correspond-
ing types;

• and τ + τ ′, for the type resulting from performing the addition operation on
two types τ and τ ′.

Thus, for instance, the Faust signal processor 0.5 denotes timed samples of
type float[0.5, 0.5] (among others, as we saw above), while 0:vectorize(2)
creates vector values of type vector2(float[0, 0]) and (0,1):[mid,second>
record values of type6 ((mid,second), (float[0, 0], float[1, 1])). Type addition
is useful when dealing with Faust fan-in operations such as (0,1):>_, which
outputs samples of type float[0, 0] + float[1, 1]; we come back to this issue in
Subsection 5.2.

5The domain Ide of identifiers is introduced in Section 5.1.
6We write lists as comma-separated sequences of terms. A more formal definition is given in

Subsection 4.3.
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Not all combinations of these type-building expressions make sense. We for-
mally define below the notion of a well-formed type:

Definition 1 (Well-Formed Type wff (τ)).
A type τ is well-formed, denoted wff (τ), iff:

• when τ = b[n,m], then n ≤ m, ¬(n = m = −ω) and ¬(n = m = +ω);

• when τ = vectorn(τ ′), then wff (τ ′) and n ∈ N;

• when τ = (L, T), then wff (τ ′) for all τ ′ in T, |L| = |T| and, for all i 6= j in
[1, |L|], one has Li 6= Lj;

• when τ = τ ′ + τ ′′, then wff (τ ′) and wff (τ ′′).

4.2. Signal Types
Since vectors are used to introduce multirate signal processing into Faust, we

need to deal with these rate issues in the static semantics. As hinted above, we use
rates f in Rate to manage rates:

f ∈ Rate = Q+ .

In our framework, the only signal processing operations that impact rates are re-
lated to over- and sub-sampling conversions. To represent such conversions, we
use multiplication and division arithmetic operations, thus defining Rate as the
set of positive rational numbers.

The static semantics of signals manipulated in our extended Faust thus not
only deals with value types, but also with rates. We link these two concepts in the
notion of signal types γ in SignalType:

γ ∈ SignalType = Type× Rate |
SignalType× SignalType .

We note τ f the signal type (τ, f) and γ+γ′ the addition of two signal types, which
we enforce (see below) to have the same rate. Note that, here again, we mix values
and types in a static domain, thus relying on the notion of dependent type systems
introduced above.

Thus, for instance, the Faust signal processor 0.5 outputs a constant signal of
signal type float[0.5, 0.5]10, but also of signal types float[0, 2]10, float[0.5, 0.5]2/3,
float[0, 2]2/3 and many others. In fact, in the absence of any other information,
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the least constrained signal type one can come up with for the output of 0.5 is
float[−ω,+ω]f , where f can be any rate whatsoever. It is the role of the static
semantics presented in Section 5 to constrain signal rates in accordance with the
use of the various Faust expressions in a given program. The correctness of this
constraint-based assignment of rates to signals is the topic of Section 8.

As for types, not all combinations of these signal type-building expressions
make sense. We formally define below the notion of a well-formed signal type:

Definition 2 (Well-Formed Signal Type wff (γ)).
A signal type γ is well-formed, denoted wff (γ), iff:

• when γ = τ f , then wff (τ) and f ∈ Rate, and we note ](γ) the rate f ;

• when γ = γ′ + γ′′, then wff (γ′), wff (γ′′) and ](γ′) = ](γ′′); we note ](γ)
the rate ](γ′).

4.3. Beam Types
A Faust signal processor maps beams of signals, i.e., tuples of signals, to

beams of signals. In the same way that signals are statically characterized by
signal types (see Definition 12), beams admit a static representation called a beam
type z in BeamType. Type checking a Faust expression amounts to verifying the
compatibility of the input and output beam types of its composed subexpressions:

z ∈ BeamType =
⋃
n≥0

SignalTypen .

Thus, for instance, the input beam of + in the Faust expression 0.5 <: + has
beam type

(float[0.5, 0.5]10, float[0.5, 0.5]10) ,

among others with different rates, in which case its output beam type would be
(float[0.5, 0.5]10 + float[0.5, 0.5]10) = (float[1, 1]10). Note how signal type addi-
tion plays a key role in the determination of the output beam type; we return to this
issue when defining the type of + in the initial type environment in Subsection 5.4.

Formally, the null beam type, in SignalType0, is (), and is used when no signal
is present. A simple beam type is (tf ), and corresponds to a beam containing one
signal that maps, at rate f , time to values of type t. The beam type length |z| is
defined such that z ∈ SignalType|z|. The i-th signal type in z (1 ≤ i ≤ |z|) is
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written z[i]. Two beam types z1 and z2 can be concatenated as z = z1‖z2, to yield
a beam type in SignalTyped1+d2 where di = |zi|, defined as follows:{

z[i] = z1[i] (1 ≤ i ≤ d1) ,
z[i+ d1] = z2[i] (1 ≤ i ≤ d2) .

To build more complex beam types, we introduce the ‖n′,d
n iterator as follows:

‖n′,d
n M =

{
(), if n > n′ ,

M(n) ‖ ‖n
′,d

n+dM otherwise .

where M is any function that maps integers to beam types. Intuitively, ‖n′,d
n M is

the concatenation of M(n),M(n + d),M(n + 2d), ...M(n′); when d = 1, it can
be omitted. As a shorthand, z[n, n′, d], which selects from z the types from the
n-th type to the n′-th one by step of d , is ‖n′,d

n λi.(z[i]), while a simple slice of z
is z[n, n′] = z[n, n′, 1]. Applying a function M to all elements of a beam type z
is written ‖zM , which is a shorthand for ‖|z|1 λi.(M(z[i])).

Finally, to simplify our notations, we assume in the following that all the above
introduced shorthands can also be used with any term, such as L or T, member of
an iterated product domain.

Definition 3 (Well-Formed Beam Type wff (z)).
A beam type z is well-formed, denoted wff (z), iff, for all i ∈ [1, |z|], one has
wff (z[i]).

Definition 4 (Isochronous Beam Type iso(z)). A beam type z is isochronous,
denoted iso(z), iff there exists a rate f , denoted ](z), such that, for all i ∈ [1, |z|],
one has ](z[i]) = f .

4.4. Schemes
Each Faust expression is characterized, in the static semantics, by a pair (z, z′),

denoted z → z′, of input and output beam types. Yet, some Faust processors, such
as the identity processor _ or the delay processor mem, must be able to accommo-
date beams of any beam type; they are polymorphic. The static definitions of Faust
primitives are thus type schemes that may abstract some parts of their input and
output beam types over abstractable sorts S, in Sort. Type schemes k in Scheme
are defined as follows:

S ∈ Sort = {N,Type,Rate, SignalType} ,
k ∈ Scheme =

⋃
n≥0

(Var× Sort)n × BeamType× BeamType .
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We write Λl.z → z′ for the scheme k = (l, z, z′) abstracted over the list l =
((x, S), ..., (x′, S ′)), also denoted7 x : S.....x′ : S ′, where x, ..., x′ are distinct
abstracting variables in Var. These schemes, which represent generic versions of
pairs (z, z′) of input and output beam types, may be instantiated where needed;
the substitution (z → z′)[l′/l] of a list l by a list l′ of elements of the proper sorts
(S, ..., S ′) in the pair (z, z′) is defined as usual: each variable x of l occurring in
z → z′ is replaced there by the corresponding element in l′.

The static definitions of Faust primitives are gathered in type environments T
that map Faust identifiers to schemes. The reader can find illustrative examples of
type schemes in Subsection 5.4 where the initial type environment is defined.

5. Static Semantics

In our core definition of Faust, every expression represents a signal processor,
i.e., a function that maps signals, which are functions from time to values, to
other signals. The static semantics specifies, by induction on Faust syntax, how
beam type pairs are assigned to signal processor expressions. We define the core
language syntax, some auxiliary operations on static domains and finally the static
semantics rules for Faust.

5.1. Syntax
Faust syntax uses identifiers I from the set Ide and expressions E in Exp.

Numerical constants, be they integers or floating point numbers, are seen as pre-
defined identifiers. The core syntax of Faust is defined in Table 1.

5.2. Beam Type Matching
Complex Faust expressions are constructed by connecting together simpler

processor expressions. In the case of fan-in (respectively fan-out) expressions,
such connections require that the involved signal processors match in some spe-
cific sense: Faust uses the beam type matching relation z′1 � z2 (resp.≺) to ensure
such compatibility conditions. Such a relation goes beyond simple type equality
by authorizing a larger (resp. smaller) output z′1 to fit into a smaller (resp. larger)

7Keeping with a long tradition, we choose the usual “:” sign to denote typing relations, even
though it is also used to represent the sequence operation in Faust. The reader should have no
problem distinguishing both uses.
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E ::= I |
[L> | <L] |
E1 : E2 | E1, E2 |
E1 <: E2 | E1 :> E2 |
E1 ∼ E2

L ∈ Ides ::=
⋃
n>0

In

Table 1: Faust Syntax

input z2, using the following definitions (� requires mixing of signals using addi-
tion, while ≺ simply dispatches the unmodified signals in an iterative manner) in
which d′1 = |z′1| and d2 = |z2|:

z′1 � z2 = d′1d2 6= 0 and

mod(d′1, d2) = 0 and∑
i∈[0,d′1/d2−1]

z′1[1 + id2, (i+ 1)d2] = z2 ,

z′1 ≺ z2 = d′1d2 6= 0 and

mod(d2, d
′
1) = 0 and

‖d2,d
′
1

1 λi.z′1 = z2 ,

where equality on beam types is defined by structural induction and “mod” de-
notes the arithmetic modulo operation.

Since we deal in our framework with dependent types (values, via intervals,
appear in the static domains), performing the mixing of signals, as above, require
the ability to perform, in the static semantics, additions over beam types and,
consequently, over types; for instance, as we explained above, mixing a signal
of signal type int[0, 2]f with one of signal type int[3, 6]f has to yield a signal of
signal type int[0, 2]f +int[3, 6]f , which can then be simplified to int[3, 8]f . To for-
malize such simplification operations, we assume the existence of static semantics
addition rules on types such as:
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(b+)
b[n,m] + b[n′,m′] = b[n+ n′,m+m′] ,

(v+)
vectorn(τ) + vectorn(τ ′) = vectorn(τ + τ ′) ,

(t+)
τ + τ ′ = τ ′′

τ f + τ ′f = τ ′′f
,

(z+)
|z| = |z′| = |z′′|

∀i ∈ [1, |z|].z[i] + z′[i] = z′′[i]
z + z′ = z′′

.

5.3. Subtyping
The presence of numbers in types logically induces a reflexive, antisymmetric

order relationship τ ⊂ τ ′ on types, signal types and beam types. This subtyping
relation specifies that, if something is of type τ , then, whenever τ ⊂ τ ′, it is also
of type τ ′. Thus, for instance, a signal of signal type int[0, 2]f is also of signal
type int[−2, 4]f , since any integer between 0 and 2 is also between -2 and 4 and
both signal types have the same rate. The⊂ static inclusion relationship is defined
by rules such as:

(i2f)
int[n,m] ⊂ float[n,m] ,

(b)
[n,m] ⊂ [n′,m′]
b[n,m] ⊂ b[n′,m′]

,

(t)
τ ⊂ τ ′

τ f ⊂ τ ′f
.

To these basic rules, we add traditional structural rules on vectors and records
such as:

(v)
τ ⊂ τ ′

vectorn(τ) ⊂ vectorn(τ ′)
,
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(r)
set(L′) ⊂ set(L)

∀I′ ∈ L′. T[L−1(I′)] ⊂ T′[L′−1(I′)]
(L, T) ⊂ (L′, T′)

.

where we introduce the notations set(L) as the set of elements in List L and
L−1(I) = i when L[i] = I. Note that L−1 is here well defined since we assume
from the start that there are no duplicates in field names.

Note that if τ ⊂ τ ′ and τ ′ ⊂ τ , then τ = τ ′.

5.4. Type Environments
We assume that there is an initial type environment T0 that provides the typing

definitions for the predefined signal processors. For instance, one has:

T0(_) = Λγ : SignalType.(γ)→ (γ) ,

T0(!) = Λγ : SignalType.(γ)→ () ,

T0(0) = Λf : Rate.()→ (int[0, 0]f ) ,

T0(-2.8) = Λf : Rate.()→ (float[−2.8,−2.8]f ) ,

T0(+) = Λγ : SignalType.γ′ : SignalType.(γ, γ′)→ (γ + γ′) ,

T0(mem) = Λγ : SignalType.(γ)→ (γ) .

As a consequence of the implicit “mixing by addition” introduced by the beam
type matching relation � used in fan-in operations, the signal processor for the
numerical operator + must be able to deal with any type; it is thus associated to a
polymorphic type scheme in the type environment. Its arguments must have the
same rate, a constraint enforced by the use of signal type addition in this type
scheme (see Rule (t+) in Section 5.2).

Introducing the vector extension in the static semantics simply amounts to
adding, beside the empty vector {}, of type Λf : Rate.τ : Type.()→ (vector0(τ)f ),
four bindings in the initial environment T0:

• T0(vectorize) =
Λf : Rate.f ′ : Rate.τ : Type.n : N.(τ f , int[n, n]f

′
)→ (vectorn(τ)f/n);

• T0(#) =
Λf : Rate.τ : Type.m : N.n : N.
(vectorm(τ)f , vectorn(τ)f )→ (vectorm+n(τ)f );
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• T0([]) =
Λf : Rate.τ : Type.n : N.(vectorn(τ)f , int[0, n− 1]f )→ (τ f );

• T0(serialize) = Λf : Rate.τ : Type.n : N.(vectorn(τ)f )→ (τ f×n).

The dependent type system is key here. In the primitive vectorize, we are
able to specify that the vector size has to be constant, since its type uses an in-
terval restricted to be one-valued, [n, n]; note that the rate f ′ of this signal is also
irrelevant, and can be of any value. When concatenating vectors with the # pro-
cessor, the resulting vector size m + n sums the sizes of the input vectors. We
are also able to ensure that no out-of-bound accesses can occur in Faust, since the
index signal argument fed to the [] signal processor is constrained, at compile
time, to be between 0 and the vector size, since its interval is [0, n − 1]. Finally,
notice how size information impacts signal rates; this is key to prove the theorem
of Section 8.

5.5. Typing Rules
Faust is strongly and statically typed. Every expression, a signal processor, is

typed by its I/O beam types:

Definition 5 (Expression Type Correctness T ` E).
An expression E is type correct in an environment T , denoted T ` E, if there exist
beam types z and z′ such that T ` E : z → z′ with wff (z) and wff (z′).

The static semantics inference rules are defined in Table 2; some are rather
straightforward. Rule (i) ensures that identifiers are typable in the type environ-
ment T ; type schemes can be instantiated to adapt themselves to each given typing
context of Identifier I. The typical rule (⊂) allows types to be extended according
to the order relationship induced by intervals in types, records and basic types. In
Rule (:), signal processors are plugged in sequence, which requires that the output
beam type of E1 is the same as E2’s input. In Rule (,), running two signal proces-
sors in parallel requires that their input and output beam types are concatenated.
In Rules (<:) and (:>), the ≺ and � constraints are used to ensure that a proper
matching of the output of E1 to the input of E2 is possible.

In Rules ([>) and (<]), we deal with records. First, we specify how the [>
construct builds a single signal u of records with the proper field names L from
an isochronous beam of signals of the same length; we use here the type function
that extracts, from a signal type, its type component. With (<]), we perform the
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(i)
T (I) = Λl.z → z′

∀(x, S) ∈ l . l′[l−1(x, S)] ∈ S
T ` I : (z → z′)[l′/l]

(⊂)

T ` E : z → z′

z′ ⊂ z′1
z1 ⊂ z
T ` E : z1 → z′1

(:)
T ` E1 : z1 → z′1
T ` E2 : z′1 → z′2

T ` E1 : E2 : z1 → z′2

(,)
T ` E1 : z1 → z′1
T ` E2 : z2 → z′2

T ` E1, E2 : z1‖z2 → z′1‖z′2

(<:)

T ` E1 : z1 → z′1
T ` E2 : z2 → z′2
z′1 ≺ z2

T ` E1 <: E2 : z1 → z′2

(:>)

T ` E1 : z1 → z′1
T ` E2 : z2 → z′2
z′1 � z2

T ` E1 :> E2 : z1 → z′2

([>)

|z| = |L|
iso(z)

u = (L, ‖ztype)
T ` [L> : z → (u](z))

(<])

u = (L, T)
L′ ⊂ L

z′ = ‖L′ λI.T[L−1(I)]f

T ` <L′] : (uf )→ z′

(∼)

T ` E1 : z1 → z′

T ` E2 : z2 → z′2
z2 = z′[1, |z2|]
z′2 = z1[1, |z′2|]

iso(z2)

T ` E1 ∼ E2 : z1[|z′2|+ 1, |z1|]→ ẑ′

Table 2: Faust Static Semantics

dual operation, generating a beam of isochronous signals from a (subset L′ of field
names in a) single signal u of records.

The most involved rule deals with loops (∼). Here, the input beam type z2 of
the feedback expression E2 is constrained to be the first |z2| types of the output
beam type z′; as such, this enforces |z2| ≤ |z′|. Also, the first |z′2| elements of the
input beam type of the main expression E1 must be the same as the output beam
type of the feedback expression E2; these looped-back signals will not thus impact
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the global input beam type z1[|z′2| + 1, |z1|]. Again, here |z′2| ≤ |z1|. To simplify
the dynamic semantics (see Table 3), all looped-back signals are required to have
the same rate. We do not expect this constraint to be a problem in practice since all
operations have eventually to be performed in such a manner; any rate mismatch
at the “∼” level can be fixed by moving there the down/up sampling conversions
that would have to be present anyhow in E2. Finally, note that the output beam type
ẑ′ is here an approximation of z′. This is introduced not for semantic reasons, but
to make type checking decidable while ensuring that the dependent return type is
valid independently of the unknown bounds of the iteration space:

Definition 6 (Beam Type Widening ẑ).
The widened beam type of Beam type z, denoted ẑ, is such that |ẑ| = |z| and
∀i ∈ [1, |z|].ẑ[i] = ẑ[i], with:

• ̂vectorn(τ)f = vectorn(τ̂)f ;

• (̂L, T) = (L, ‖Tλτ.τ̂);

• b̂[a]f = b[â]f ;

• [̂n,m] = [−ω,+ω].

Basically, all knowledge on value bounds is lost under widening.

6. Dynamic Semantics

The dynamic semantics for core Faust is based on the standard notions of
the denotational framework, which we chose here because it is particularly well
suited to the functional paradigm adopted by Faust. Since evaluation processes
may be non-terminating, we posit thus that sets used in the dynamic semantics
are complete partial orders (cpos), with order relation @ and bottom ⊥ (see for
instance [16]). Note that, since Faust sees parallelism as an implementation issue
(Faust expressions can be trivially evaluated in parallel, since no side-effects can
be performed in the core language), we do not introduce parallel-specific, denota-
tional concepts such as powerdomains.

6.1. Domains
A Faust expression denotes a signal processor; as such its dynamic semantics

manipulates signals, which assign various values to time ticks.
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Time. The time domain needs only be a sorted set of discrete events t in Time:

Time = N .

Value. Signals map times to sample values v in Val :

v ∈ Val = N +R + (N→ Val) + (Ide→ Val) ,

N = N ∪ {?} ,
R = R ∪ {?} .

Basic-typed values in Val are just integers in N and reals in R. The functional
cpo N → Val is used to represent vector values; for instance, all samples in the
signal denoted by 1.5:vectorize(3) have as value the function v defined on
i ∈ {0, 1, 2} such that v(i) = 1.5. The domain Ide → Val is used for records;
here, the value of a sample in 1,2:[foo,bar> is the function v, defined on
{foo,bar}, such that v(foo) = 1 and v(bar) = 2.

Definition 7 (Domain dom(f)).
The domain of any function f in A→ B, denoted dom(f), is such that dom(f) =
{a|f(a) 6=⊥}.

Definition 8 (Support f ).
The support of any function f in A → B, denoted f , is the size |dom(f)| of the
domain of f , and a member of N + {ω}, where ω is used to deal with infinite
function domains.

For any value v, we introduce its “zero” value, zero(v); this initialization value
will be of use when dealing with delayed signals, which need to provide a default
value at the lower bound of their domains.

Definition 9 (Zero value zero(v)). For any value v in Val, the value v′ = zero(v)
is defined such that:

• when v ∈ R or v ∈ N , then v′ = 0;

• when v ∈ N → Val, then v′ ∈ N → Val, dom(v′) = [0, v − 1] and, for all
i ∈ [0, v − 1], v′(i) = zero(v(i));

• when v ∈ Ide→ Val, then v′ ∈ Ide→ Val, dom(v′) = dom(v) and, for all
I ∈ dom(v), v′(I) = zero(v(I)).

A value v is said to be a “zero value” if zero(v) = v.
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Signal. A signal s, which is intuitively a “history” represented by a function, is a
member of Signal = Time→ Val. Signal is a cpo ordered by:

s @ s′ = dom(s) ⊂ dom(s′) and

∀t ∈ [0, s− 1], s(t) = s′(t) .

We define the domain dom(s) and support s of a signal s as above.

Beam. We gather signals into beams m = (m1, ...,mn) in Beam:

m ∈ Beam =
⋃
n≥0

Signaln .

We consider that all notations introduced to manipulate beam types can similarly
be applied to beams. Note that we do not need to consider Beam as a cpo, although
each Signaln is, with the order (m and m′ being in Signaln):

m @ m′ = ∀i ∈ [1, n], m[i] @ m′[i] ,

⊥ = (λt. ⊥, ..., λt. ⊥) ∈ Signaln .

Signal Processor. A signal processor p in Proc is the basic constituent of Faust
programs: p ∈ Proc = Beam → Beam. We define dim(p) = (n, n′) such that
p ∈ Signaln → Signaln

′
.

Note that, interestingly, rate information as present in signal types is not nec-
essary to define the semantics of signal processors. This is a direct consequence
of our use of a static semantics that ensures that actual computations on signals,
e.g., arithmetic operations, are always performed on signals that have the same
signal type, and hence the same rate. This two-stage approach is the key element
to providing a simple, yet powerful, semantics for Faust multirate signal process-
ing capability.

6.2. States
The standard semantics of a Faust expression is a function of the semantics of

its free identifiers; we collect these in a state r, a member of State = Ide→ Proc.
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We assume given an initial state r0, which binds the Faust predefined identi-
fiers of T0 to their value such that, for instance:

r0(_) = λ(s).(s) ,

r0(!) = λ(s).() ,

r0(0) = λ().(λt.0) ,

r0(+) = λ(s1, s2).(λt.s1(t) + s2(t)) ,

r0(/) = λ(s1, s2).

(λt.

s1(t)/s2(t) if t < min(s1, s2) and s2(t) 6= 0,

? if t < min(s1, s2),

⊥ otherwise) ,

r0(mem) = λ(s).(delay(s, λt.1)) .

Notice that + is supposed to be defined for all types, as one can also check in
the definition of T0, since it is used in the dynamic definition of :> (see below).

We assume the existence of a delay function defined as:

delay(s1, s2) = λt.

⊥ if s2(t) =⊥ or s2(t) < 0,

s1(t− s2(t)) if t− s2(t) ≥ 0,

zero(s1(t)) otherwise ,

which delays each sample of Signal s1 by a number of time slots given, at each
time t, by s2(t); the usual one-slot delay used in the semantics of “∼” loops is
thus delay(s1, λt.1), as is the semantics of mem.

As in the static semantics, introducing the vector extension in the dynamic
semantics simply amounts to adding, beside the value λ().(λt.λi. ⊥) for {}, four
straightforward bindings in the initial state8:

• r0(vectorize) =
λ(s1, s2).(λt.λi ∈ [0, n− 1].s1(i+ nt), where n = s2(0));

• r0(#) =
λ(s1, s2).(λt.λi ∈ [0, s1 + s2 − 1].s2(i− s1) if i ≥ s1, s1(i) otherwise);

8We note “λx ∈ A.f(x)” the function “λx.f(x) if x ∈ A,⊥ otherwise”.
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• r0([]) = λ(s1, s2).(λt.s1(t)(s2(t)));

• r0(serialize) =
λ(s).(λt. ⊥ if n = s(0) = 0, s(bt/nc)(mod(t, n)) otherwise).

To be able to properly define the semantics of Faust, one needs to ensure that
we operate with states, in particular the initial state, that are type-correct:

Definition 10 (State Type Correctness T ` r).
A state r is type correct in an environment T , denoted T ` r, if, for all I in
dom(r), one has T ` I.

One can then easily prove the following theorem:

Theorem 1 (Initial State Type Correctness).

T0 ` r0 .

6.3. Denotational Rules
The semantics E[[E]]r of a type-correct expression E in a type-correct state r is

a signal processor, mapping an input beam m to an output beam m′ (see Table 3):

E ∈ Exp→ State→ Proc .

The semantics of an identifier is available in the state r. The semantics of “:”
is the usual composition of the subexpressions’ semantics. The semantics of a
parallel composition is a function that takes a beam of size d1 + d2 and feeds the
first d1 signals into p1 and the subsequent d2 into p2; the outputs are concatenated.
The fan-out construct repeatedly concatenates enough outputs of p1 to feed them
into the (larger) d2 inputs of p2. The fan-in construct performs a kind of opposite
operation; all mod(i, d2)-th output values of p1 are summed together to construct
the i-th input value of p2. The management of records is rather straightforward.
Note though that, when building records with [>, one needs to enforce that all
incoming signals have a defined value at time t to build a proper, strict record.
The loop expression has the most complex semantics. Its feedback behavior is
represented by a fix point construct; the output of p2 is fed to p1, after being
concatenated to m, to yield m′; the input of p2 is the one-slot delayed appropriate
part of m′, with a beam type the static semantics ensures is isochronous.
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E[[I]]r = r(I)

E[[E1 : E2]]r = p2 ◦ p1
E[[E1, E2]]r = λm.p1(m[1, d1])‖p2(m[d1 + 1, d1 + d2])

E[[E1 <: E2]]r = λm.p2(‖1,d2,d′1λi.p1(m))

E[[E1 :> E2]]r = λm.p2(‖1,d2λi.mix(p1(m)[i, d′1, d2]))

where mix(m′) = (m′), if |m′| = 1 and

mix(m′) = E[[+]]r(m′[1, 1]‖mix(m′[2, |m′|])), if |m′| > 1

E[[[L>]]r = λm.(λt ∈
⋂

i∈[1,|m|]

dom(m[i]).λI ∈ L.m[L−1(I)](t))

E[[<L′]]]r = λ(s).‖L′λI′ .λt.s(t)(I′)

E[[E1 ∼ E2]]r = λm.fix(λm′.p1(p2(@(m′[1, d2]))‖m))

where @(m) = ‖mλs.delay(s, λt.1)

Table 3: Faust Denotational Semantics: we note pi = E[[Ei]]r and (di, d
′
i) = dim(pi)

6.4. Properties
An interesting corollary of Faust denotational semantics is that one can easily

prove that the “:” constructor is actually not necessary:

Theorem 2 (: as Syntactic Sugar). Assume T ` E1 : E2 : z → z′. Then T `
E1 <: E2 : z → z′ and T ` E1 :> E2 : z → z′. Moreover, E[[E1 : E2]] = E[[E1 <:
E2]] = E[[E1 :> E2]].

Despite such as theorem, the “:” constructor remains of course useful, since
its use by a programmer signals the presence of additional matching constraints
on beam types.

7. Subject Reduction Theorem

One needs to ensure the consistency of both static and dynamic semantics
along the evaluation process; this amounts to showing that the types of values,
signals and beams are preserved.

Definition 11 (Value Type Consistency v : τ ). A value v is type consistent w.r.t. a
type τ , denoted v : τ , iff:
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• when v ∈ N, then τ = int[n,m] and n ≤ v ≤ m;

• when v ∈ R, then τ = float[n,m] and n ≤ v ≤ m;

• when v ∈ N→ Val, then τ = vectorn(τ ′), dom(v) = [0, n− 1] and, for all
i ∈ [0, n− 1], v(i) : τ ′;

• when v ∈ Ide → Val, then τ = (L, T), dom(v) = L and, for all I ∈
L, v(I) : T[L−1(I)].

Definition 12 (Signal Type Consistency s : τ f ). A signal s is type consistent w.r.t.
a signal type τ f , denoted s : τ f , if, for all t ∈ dom(s), one has s(t) : τ .

Definition 13 (Beam Type Consistency m : z). A beamm is type consistent w.r.t.
a beam type z, denoted m : z, if |m| = |z| and, for all i ∈ [1, |m|], one has
m[i] : z[i].

For the evaluation process to preserve consistency, the environment T and state
r, which provide the static and semantic values of predefined identifiers, must
provide consistent definitions for their domains. We use the following definition
to ensure this constraint:

Definition 14 (State Type Consistency r : T ). A state r is type consistent w.r.t. an
environment T , denoted r : T , if, for all I in dom(r), for all z, z′,m, one has: if
T ` I : z → z′ and m : z, then r(I)(m) : z′ and dim(r(I)) = (|z|, |z′|).

We are now equipped to state our first typing theorem. The Subject Reduction
theorem basically states that, given a Faust expression E, if the state r is consistent
w.r.t. the environment T and E maps beams of beam type z to beams of beam type
z′, then, given a beam m that is type consistent w.r.t. z, then the semantics p(m)
of E will yield a beam m′ of beam type z′:

Theorem 3 (Subject Reduction). For all E, T, z, z′, r and m, if

r : T ,

m : z and

T ` E : z → z′ ,

then p(m) : z′ and dim(p) = (|z|, |z′|), where p = E[[E]]r.
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Proof. By induction on the structure of E.

• E = I. Use E[[I]]r = r(I) and State Type Consistency.

• E = E1 : E2. T ` E : z → z′ implies, using Rule (:), there exists z′1 such
that T ` E1 : z → z′1 and T ` E2 : z′1 → z′.

By induction on E1, p1(m) : z′1 and dim(p1) = (|z|, |z′1|).

By induction on E2, one gets p2(p1(m)) : z′ and dim(p2) = (|z′1|, |z′|).

The definition of E[[E]] yields E[[E]]rm : z′ and

dim(p) = (|m|, |p2(p1(m))|) = (|z|, |z′|) .

• E = E1, E2. T ` E : z → z′ implies, using Rule (,), there exist z1, z2, z′1, z
′
2

such that z = z1‖z2, z′ = z′1‖z′2, T ` E1 : z1 → z′1 and T ` E2 : z2 → z′2.

By Beam Type Consistency on m : z, one gets |m| = |z| and, for all i in
[1, |m|], m[i] ∈ Time→ z[i].

By definition of z, |z| = |z1| + |z2|. Using the first |z1| elements of z,
one gets m[1, |z1|] : z1. By induction on E1, one gets p1(m[1, |z1|]) : z′1
and dim(p1) = (|z1|, |z′1|). Since, in the definition of E, d1 = |z1|, thus
p1(m[1, d1]) : z′1.

Using the subsequent |z2| elements of z, one getsm[d1+1, d1+|z2|] : z2. By
induction on E2,E[[E2]]r(m[d1+1, d1+|z2|]) : z′2 and dim(p2) = (|z2|, |z′2|).
Since d2 = |z2|, then E[[E2]]r(m[d1 + 1, d1 + d2]) : z′2.

The definition ofE on E yields p(m) = p1(m[1, d1])‖p2(m[d1+1, d1+d2]).
By definition of Beam Type Consistency, p(m) : z′1‖z′2 = z′ and dim(p) =
(|m|, |z′|) = (|z|, |z′|).

• E = E1 <: E2. T ` E : z → z′ implies, using Rule (<:), there exist z′1, z2, k
such that T ` E1 : z → z′1, T ` E2 : z2 → z′, |z2| = k|z′1| and, for all i in
[0, k − 1], one has z2[1 + i|z′1|, |z′1|+ i|z′1|] = z′1.

By induction on E1, one gets p1(m) : z′1 and dim(p1) = (|z|, |z′1|). By
induction on E2, dim(p2) = (|z2|, |z′|). By definition of E, d′1 = |z′1| and
d2 = |z2|; thus d2 = kd′1.

Let m′ = ‖d2,d
′
1

1 λi.p1(m) = p1(m)‖....‖p1(m) ∈ Signalkd
′
1 . By definition of

Beam Type Consistency and k, one gets m′ : z2. By induction on E2, one
gets p2(m′) : z′ and dim(p2) = (|z2|, |z′|).
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By definition of E on E, then p(m) : z′ and dim(p) = (|z|, |z′|).

• E = E1 :> E2. T ` E : z → z′ implies, using Rule (:>), there exist z′1, z2, k
such that T ` E1 : z → z′1, T ` E2 : z2 → z′, |z′1| = k|z2| and, for all i in
[0, k − 1], one has z′1[1 + i|z2|, |z2|+ i|z2|] = z2.

By induction on E1, one gets p1(m) : z′1 and dim(p1) = (|z|, |z′1|). By
induction on E2, dim(p2) = (|z2|, |z′|). By definition of E, d′1 = |z′1| and
d2 = |z2|; thus d′1 = kd2.

For all i in [1, d2], let mi = p1(m)[i, d′1, d2]. Thus:

mi = ‖d
′
1,d2

i λj.(p1(m)[j])

: ‖d
′
1,d2

i λj.(z′1[j]), by induction on E1

= (z′1[i])‖(z′1[i+ d2])‖...‖(z′1[i+ (k − 1)d2]), by definition of k.

Thus, by definition of mix and the application of + on beam types, one
gets:

mix(mi) : (
∑

l∈[0,k−1]

z′1[i+ ld2] )

= (z2[i]), since z′1 � z2 .

Let m2 = ‖d21 λi.mix(mi). Then m2 : (z2[1], ..., z2[d2]) = z2.

By induction on E2, then p(m) = p2(m2) : z′ and dim(p) = (|z|, |z′|).

• E = [L>. T ` [L>: z → z′ implies iso(z), |z| = |L| and there exists u =
(L, ‖ztype) such that z′ = (u](z)). By definition of the dynamic semantics,
one has p(m) = (s′) with

s′ = λt′ ∈
⋂

i∈[1,|m|]

dom(m[i]).λI′ ∈ L.m[L−1(I′)](t′) .

Thus, one sees dim(p) = (|m|, 1) = (|z|, |z′|), since, by hypothesis, m : z.

To prove p(m) : z′, one needs to show that, for all t′ in dom(s′), one has
s′(t′) : u. Thus, since v = s′(t′) = λI′ .m[L−1(I′)](t′), when I′ ∈ L, and ⊥
otherwise, one needs to show, by Value Type Consistency, that there exist
Lu and Tu such that

u = (Lu, Tu) ∧ dom(v) = Lu ∧ ∀Iu ∈ Lu.v(Iu) : Tu[Lu
−1(Iu)] .
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Choosing Lu = L and Tu = ‖ztype, the first two propositions are satisfied.
To prove p(m) = z′, one is left to show, given the definition of v and Value
Type Consistency, that for all Iu in L:

m[L−1(Iu)](t′) : ‖ztype [L−1(Iu)] .

Since, by definition of L−1, one has L−1(Iu) = iu if and only if L[iu] =
Iu, we see, collecting quantifiers, that proving p(m) : z′ is equivalent to
showing that:

∀t′ ∈ dom(s′).∀iu ∈ [1, |L|].m[iu](t′) : type(z[iu])

is true. Yet, by hypothesis,m : z, and thus ∀i ∈ [1, |z|] and ∀t ∈ dom(m[i]),
m[i](t) : type(z[i]) is true, and implies what is needed. Indeed, first, |z| =
|L| and, second, since dom(s′) =

⋂
i∈[1,|m|] dom(m[i]), the proposition with

the two universal quantifiers exchanged is also true.

• E =<L′]. T `<L′] : z → z′ implies that there exist L, T, f and u such that
u = (L, T), z′ = ‖L′λI′ .T[L−1(I′)]f , L′ ⊂ L and z = (uf ). By definition of
the dynamic semantics, one has p(m) = m′ with

m′ = λ(s).‖L′λI′ .λt.s(t)(I′) ,

where m = (s).

Thus, one sees dim(p) = (1, |L′|) = (|z|, |z′|), by definition of z and z′.

To prove p(m) : z′, one needs to show that

‖L′λI′ .λt.s(t)(I′) : ‖L′λI′ .T[L−1(I′)] ,

which yields, by definition of Value Type Consistency, that for all I ∈ L′,
one has:

λt.s(t)(I) : T[L−1(I)] .

Thus, one needs to show that, for all t ∈ dom(s) and I ∈ L′, one has
s(t)(I) : T[L−1(I)]. Yet, by definition of the m : z hypothesis, i.e., (s) :
(uf ), one knows that ∀t ∈ dom(s).s(t) : u. By Value Type Consistency on
records, one gets that ∀I ∈ L.s(t)(I) : T[L−1(I)], which implies what is
needed to prove p(m) : z′, since L′ ⊂ L.
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• E = E1 ∼ E2. T ` E : z → ẑ′ implies, using Rule (∼), there exist z1, z2, s′2
such that T ` E1 : z1 → z′, T ` E2 : z2 → z′2, z2 = z′[1, |z2|], z′2 =
z1[1, |z′2|] and z = z1[|z′2|+ 1, |z1|]. One sees that z1 = z′2‖z.

Let m′ = fix(F ), with F = λm′.p1(p2(@(m′[1, d2]))‖m). We are going
to prove fix(F ) : z′ and dim(λm.fix(F )) = (|z|, |z′|). Using fix point
induction (which is valid since we stay in the cpo Signal|z

′|), this needs to
be proven for the bottom element and, assuming this is true for m′, show it
is true for F (m′).

– Let ⊥′ be bottom in Signal|z
′| : ⊥′= (λt. ⊥, ..., λt. ⊥) : z′. One

immediately gets dim(λm. ⊥′) = (|m|, |z′|) = (|z|, |z′|).

– Assumem′ : z′. We need to show thatF (m′) : z′ and dim(λm.F (m′)) =
(|z|, |z′|). One has F (m′) = p1(p2(@(m′[1, d2]))‖m).
Using the lemma (left to the reader) that, if m′ : z′, then @(m′) : z′,
we get that @(m′[1, d2]) : z2.
By induction on E2, F (m′) = p1(m

′′‖m), where m′′ : z′2.
Since m : z, then, by induction on E1, one has F (m′) : z′ and
dim(λm.F (m′)) = (|m|, |z′|) = (|z|, |z′|).

– By fix point induction then, m′ : z′. Since one easily sees that z′ ⊂ ẑ′,
then, using Rule (⊂) and dim(λm.m′) = (|z|, |z′|) = (|z|, |ẑ′|), one
gets the required result. �

The Subject Reduction theorem can be readily applied to typing Faust expres-
sions in the initial environment T0 and state r0, since one can easily check that, by
the very type and value definitions of each predefined identifier, one has r0 : T0.

8. Rate Correctness Theorem

In the presence of signals that use different rates at run time, the consistency
of their rate assignment must be ensured. In particular, we show below that the
support of signals and, more generally, beams can be bounded in a way consistent
with their relative rates; this is the Rate Correctness theorem.

8.1. Beam Boundedness Definition
Even though Faust expressions only denote total signal processors, the seman-

tics of “∼” loops is defined as a fixed point, which is based on partially defined
signals. This leads us to the notion of beam boundedness.
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Definition 15 (Beam Bound µ(m, z)).
The bound µ(m, z), in N ∪ {ω}, of a beam m of beam type z is defined by

µ(m, z) = min
i∈[1,|z|]

bm[i]/](z[i])c ,

where, for all n ∈ N, we have n/0 = ω.

Informally, when µ(m, z) = c, then there is at least one signal i∗ in m that has
at most (c+1)](z[i∗])−1 elements in its domain of definition9. This is interesting
since the supports of signals in a beam m tell us something about how many
values can be computed if we use m as input of a signal processor. Thus c](z[i∗])
is an upper bound on the number of elements that can be used in a synchronous
computation (all subsequent values are⊥), thus yielding some clues about the size
of buffers needed to perform it.

Another way to look at c-boundedness comes from c itself; being the inverse
of a rate, its unit is the second, and thus c is a time. The definition of beam bound-
edness yields an upper bound on the number of time ticks required to exhaust at
least one of the signals ofm, thus providing a (logical) time limit on computations
that would use these as actual inputs. Even though this limit, as stated here, holds
for a complete computation, it also applies when one deals with slices of the com-
putation process, for instance when considering buffered versions of a program.

We illustrate this notion of beam boundedness in Figure 5, where incoming
signals si have different rates. The support of s1 is 5, while s2’s support is 3. Note
that at most 4 elements are available in the output signal s′1, since s1 would need
one additional element for the computation of two additional elements in s′1 to be
valid.

Of course, in general, explicit delaying operations introduced via the 1-sample
delay mem primitive may occur in Faust programs. Since these operations cumu-
latively extend the support of signals, we need to provide an upper-bound estimate
of such an extension, as a count of the additional elements introduced by a given
signal processor E; the number of such elements is, of course, related to the rate
of each given mem use. We define then @T (E) as follows:

@T (E) =
∑

{z/mem:z→z ∈ids(T,E)}

d1/](z)e .

9When signals are properly synchronized, e.g., in an actual computation, all bm[i]/](z[i])c are
equal, and the comments in this section about i∗ apply in fact to all signals.
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Here, ids(T, E) denotes the list of Faust identifier typings I : zi → z′i obtained10

via the application of Rule (i) during the typing derivation T ` E : z → z′. To
get a correct upper-bound, @T (E) simply sums the impact of each mem operation,
which is a safe albeit not very tight upper bound. Note that @T (E) is a static
notion, defined by induction on E and independent of the size of the input signals.

Figure 5: A beam bound example, with m = (s1, s2) and µ(m, z) = 2.

8.2. Theorem
The Rate Correctness theorem states that, given a Faust expression E, if the

state r is consistent w.r.t. the environment T and E maps beams of beam type z to
beams of beam type z′, then, given a beam m that is type consistent w.r.t. z and is
bounded, then the semantics p(m) of E will yield a similarly bounded beam m′ of
beam type z′.

Theorem 4 (Rate Correctness).
For all E, T, z, z′, c, r,m and m′, if

r : T ,

m : z ,

T ` E : z → z′ ,

then |z′| = 0 ∨ µ(m′, z′) ≤ µ(m, z) + @T (E), where m′ = p(m) : z′ and
p = E[[E]]r.

10We leave to the reader the exact specification of this function, which extends Faust static
semantics with simple bookkeeping operations, e.g., via rules such as T ` I : (z → z′, {I :
z → z′}).
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Basically, this theorem tells us that the running time of E is always upper-
bounded, whichever way we try to assess it via any of its observable facets (namely
input or output data), modulo the presence of explicit delays: µ(m, z) is consistent
and thus a characteristics of E. This shows that the synchronous nature of Faust
beams is preserved by evaluation.

Proof. By induction on the structure of E.

• E = I. Use E[[I]]r = r(I) and then:

– trivial for _;

– for constants (thus with z = ()), since the minimum of the empty set is
ω, then µ(m, z) = ω. The property µ(m′, z′) ≤ ω is always satisfied;

– for !, since |z′| = 0, then the theorem is trivially satisfied;

– for mem, one has µ(m′, z′) = mini∈[1,|z′|]bm′[i]/](z′[i])c. Since z′ =
z, |z| = 1 and m′[1] = m[1] + 1 by definition of mem, one gets
bm′[1]/](z′[1])c = b(m[1]+1)/](z[1])c ≤ bm[1]/](z[1])c+d1/](z[1])e.
Thus, µ(m′, z′) ≤ µ(m, z) + @T (I), as required;

– for synchronous operations such as + or [], this is obvious since
](z[i]) = ](z′[i′]).

– for vectorizing and serializing operations, the relationship on rates is,
by design, the exact inverse of the one on the size of the domains, thus
yielding in fact the stronger relation µ(m′, z′) = µ(m, z).

• E = E1 : E2. T ` E : z → z′ implies, using Rule (:), there exists z′1 such
that T ` E1 : z → z′1 and T ` E2 : z′1 → z′.

By induction on E1, we get m′1 = p1(m) : z′1 and |z′1| = 0 ∨ µ(m′1, z
′
1) ≤

µ(m, z) + @T (E1).

If |z′1| = 0, the proof for E2 follows the lines of the one we used above for
constants.

Otherwise, by induction on E2, one gets m′ = p2(m
′
1) : z′ and |z′| =

0 ∨ µ(m′, z′) ≤ µ(m′1, z
′
1) + @T (E2). Since @T (E) = @T (E1) + @T (E2),

one gets µ(m′, z′) ≤ µ(m′1, z
′
1) + @T (E2) ≤ µ(m, z) + @T (E1) + @T (E2),

we get the required result.

• E = E1, E2. T ` E : z → z′ implies, using Rule (,), there exist z1, z2, z′1, z
′
2

such that z = z1‖z2, z′ = z′1‖z′2, T ` E1 : z1 → z′1 and T ` E2 : z2 → z′2.
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Since m = m1‖m2, with m1 = m[1, |z1|] and similarly for m2, we can
assume, without loss of generality, that the minimum of the bm[i]/](z[i])c
in m occurs in m1: thus µ(m1, z1) = µ(m, z).

By induction on E1, one gets m′1 = p1(m1) : z′1 and |z′1| = 0 ∨ µ(m′1, z
′
1) ≤

µ(m, z) + @T (E1).

Let c2 be such that µ(m2, z2) = c2, with c2 ≥ µ(m, z) and m2 = m[|z1| +
1, |z1| + |z2|]. By induction on E2, one gets m′2 = p2(m2) : z′2 and |z′2| =
0 ∨ µ(m′2, z

′
2) ≤ c2 + @T (E2).

Since m′ = m′1‖m′2, then |z′| = |z′1|+ |z′2|. So, either |z′| = 0 or

µ(m′, z′) = min(µ(m′1, z
′
1), µ(m′2, z

′
2)) .

One gets µ(m′, z′) ≤ µ(m, z) + @T (E1) ≤ µ(m, z) + @T (E), as required.

• E = E1 <: E2. The proof is similar to the one for “:”. Indeed, “<:” dis-
patches its input signals to its output signals, and then composes them, us-
ing “:”. Since the dispatch operation does not modify the signal supports,
this operation is, for rate correctness purposes, identical to “:”.

• E = E1 :> E2. Same as above, except that the dispatched signals are merged
using the + function. Since we know that + is synchronous, mixing does
not modify the rate behavior.

• [L> and < L]. Record building and accessing are synchronous operations,
as can be seen by looking at the rate of z and z′.

• E = E1 ∼ E2. T ` E : z → ẑ′ implies, using Rule (∼), there exist z1, z2, s′2
such that T ` E1 : z1 → z′, T ` E2 : z2 → z′2, z2 = z′[1, |z2|], z′2 =
z1[1, |z′2|] and z = z1[|z′2|+ 1, |z1|]. One sees that z1 = z′2‖z.

Letm′ = fix(F ), with F = λm′.p1(p2(@(m′[1, d2]))‖m). We prove below
that P (m′) = (|z′| = 0 ∨ µ(m′, z′) ≤ c + @T (E)), with c = µ(m, z), is
true.

Using fix point induction (which is valid since we stay in the cpo Signal|z
′|),

P (m′) needs to be proven for the bottom element ⊥ and, assuming that P
is true for m′, show it is true for F (m′).

– If |z′| = 0, in both steps, P is obviously true.
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– For the basis case of ⊥, P is obvious too, since µ(⊥, z′) = 0 ≤ c +
@T (E), for all c.

– Assume µ(m′, z′) ≤ c+@T (E). We need to show that µ(F (m′), z′) ≤
c+ @T (E), with F (m′) = p1(p2(@(m′[1, d2]))‖m).
Since m′[1, d2] is part of m′, then µ(m′[1, d2], z2) = c2 with c2 ≥ c.
By definition of the delaying semantics of @, which extends signal
supports, then one has µ(@(m′[1, d2]), z2) = c@2 for some c@2 ≥ c2.
By induction on E2, we get that F (m′) = p1(m

′′‖m) with µ(m′′, z′2) ≤
c@2 + @T (E2) and m′′ = p2(@(m′[1, d2])).
By concatenation of beams and beam types, one gets µ(m′′‖m, z1) =
min(µ(m′′, z′2), µ(m, z)).
By induction on E1, one has µ(F (m′), z′) ≤ min(µ(m′′, z′2), µ(m, z))+
@T (E1) ≤ µ(m, z) + @T (E1), as required, since @T (E1) ≤ @T (E).

– By fix point induction then, µ(fix(F ), z′) ≤ c+ @T (E).

Since ](γ̂) = ](γ) for any signal γ, then µ(m′, ẑ′) = µ(m, z) ≤ c+ @T (E),
as required. �

9. Conclusion

We provide the typing semantics, denotational semantics and correctness the-
orems for a new multirate extension of Faust, a functional programming language
dedicated to musical, audio and more generally multimedia applications. We pro-
pose to link the introduction of record and vector datatypes in a synchronous set-
ting to the presence of multiple signal rates. We describe a dedicated framework
based on a new polymorphic, dependent-type static semantics in which both vec-
tor sizes and rates are values, and prove a synchrony consistency theorem relating
values and rates. This proposal is under implementation in the Faust compiler.

Future work may address issues related to mathematical properties that Faust
programs are conjectured to have, such as causality and termination. Extensions
of our formalism to the full-fledged Faust language may also be worth exploring.
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