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Abstract
Multimedia instruction sets allow developments of time and power
efficient applications. As a consequence they are widely used in
embedded systems, e.g. NEON in ARM processors, but also in gen-
eral purpose processors e.g. SSEx in Intel and AMD processors and
AVX for new processors). Unfortunately, it is difficult to write low-
level code for such instruction sets, and no portability is possible.
So developers rely on compilers to perform this optimization step.
But the wide range of hardware targets and the diversity of multi-
media instruction sets make it difficult for the compiler community
to provide time-to-market compilers for all possible combination
of targets. In this paper, we propose a source-to-source approach
that combines an efficient vectorization algorithm with a generic
instruction set. Back-ends in the form of C implementation of vari-
ous intrinsics provide retargetable performances. The two first con-
tributions are the parameterized vectorization algorithm and the
use of source-to-source capabilities for easy debugging and easy
retargeting. As a third contribution, the approach is validated by
experiments from several scientific fields carried out on Intel and
AMD machines, and comparisons with recent version of gcc, llvm
and icc. The average speed-up is 10% over gcc -march=native
-O3, 20% over llvm and 5% over icc -O3 with some case show-
ing 70% speedup over gcc and 20% speedup over icc

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords multimedia instruction set, source-to-source compiler,
retargetable compiler, automatic vectorization

Introduction
Processors with multimedia instruction sets are now widespread,
both for embedded devices (the ARM processors are embedded
in billions of mobile phones and mobile Internet devices), desk-
top stations (Intel and AMD processors provide instructions from
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the old MMX and 3Dnow! through AltiVec and SSE to the new-
comer AVX), game consoles and high-performance environments
(as targeted by CUDA and OpenCL with vector types).

However each founder has its own instruction sets, which differ
from each other in the nature of the SIMD instructions, the width
of supported registers and the variety of data types. Moreover these
instruction sets have a solid reputation of being difficult to use, and
the average developer relies on his compiler to generate efficient
code instead of fine-tuning it. Indeed, it puts an heavy burden on
the compiler, because of the constant evolution of the instruction
sets and the wide variety of targets.

In this paper, we propose an approach allowing efficient SIMD
code generation coupled with a modular, easily retargetable infras-
tructure. All the algorithms detailed in this paper are implemented
in a tool called SAC (SIMD Architecture Compiler). All the im-
plementations and experiments are done within the PIPS [10, 19]
source-to-source compiler infrastructure.

The article is organised as follows: In § 1 we expose current
usage of multimedia instructions and emphasise the need of a re-
targetable compiler. In § 2 we present the instruction set abstraction
used in the remaining of the paper. The overall compiler organiza-
tion and the online iterative vectorization algorithm are both pre-
sented in § 3 whereas the retargetablity feature is detailed in § 4.
Section § 5 presents experimental results on a wide range of scien-
tific applications among linear algebra kernels and signal process-
ing operators. Last section concludes and proposes future works.

1. Motivation & Related Works
There are several approaches1 to take advantage of multimedia
instruction sets as those found in Intel/AMD/ARM processors.
Writing inline assembly remains the best option for those who lurks
for performance, but its prohibitive development and maintenance
costs and the absence of portability layer limit this approach to
critical code segment.

Many portability issues can be side-stepped by using gcc sup-
port for vector types, or intrinsics – C functions that directly maps to
a sequence of one or more assembly instruction. The later remains
a low-level approach and does not change the development costs
while the other binds us to a specific compiler. As a consequence,
most developers of non time-critical code rely on automatic vec-
torization. In that field, icc traditionally outperforms gcc, but only

1 Among them, only those involving the C language, the de facto standard
for writing “close to the metal” code, are considered.
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int8 t, int16 t, int32 t, int64 t, float, double,
complex<float>, complex<double>

Figure 1. Types supported in our meta-instruction set

+, -, *, /, <<, >>, ?:, >, <, min, max
and their saturated variant when relevant

Figure 2. Operators supported in our meta-instruction set

for platforms supported by Intel. On the other hand, gcc supports
a wide variety of targets but often provides poorer performance. In
either case, auto vectorization is the way to go, provided you can
generate efficient code.

However, from a compiler developer point of view:

• instruction sets are in constant evolution;
• debugging generated code (or intermediate code) is difficult;
• integrating new transformations is a long-term task;
• dealing with code written in a legacy instruction set is difficult.

So to the constraints of auto-vectorization and efficiency of
generated code, compiler ought to add an objective of retar-
getabilty if they want to keep up with hardware designer pace.

Several solutions have been proposed to overcome these diffi-
culties: The detailed view of icc internal given in [4] shows that
they achieve performance by intensive use of loop vectorization
technique[3] and that they rely on re-rolling techniques to vectorize
code without loops. For obvious economical reasons, they do not
focus on retargetability issues, when llvm[8, 18] and gcc[13, 21]
do. They both provide auto-vectorizer, in early stage for llvm [8],
more advanced for gcc, with two approaches. One [21] is based on
the combination of loop vectorization techniques and super word
level parallelism [17, 22], the other relies on the strength of the
polyhedral model [24].

Some papers [5, 15] focus on the discovery of instruction-set
specific patterns, e.g. multiply-add or horizontal-add. Although
finding such patterns provide significant improvement for several
kernels, we will focus on pure SIMD instructions for the sake of
generality.

A study of the llvm and gcc developer guides convinced us that
implementing a full back-end to generate efficient assembly from
internal representation is a complex task. On the other hand, using a
source-to-source compiler that would generate intrinsics for those
compilers seems a remarkably profitable approach, for it benefits
from the complex back-end, from the low-level optimisations and
make it possible to focus on high level transformations.

This is indeed the approach taken by many research compilers:
SWARP [20] uses annotated C code to describe SIMD instruction
patterns, a very flexible approach that proved, from its author, to be
“too hard to maintain”. The approach of [14] achieves retargetabil-
ity through detailed description of each instruction at the source-
level. Pre-processing phases are in charge of applying unrolling and
scalar-expansion to their vectorization engine.

2. Meta Instruction Set
Because multimedia instruction sets are in constant evolution, it is
critical not to bind the compiler to a specific instruction set. Instead
we define an instruction set as the union of the functions found
in the different instruction sets. It results in a meta-instruction set
very similar to those found in [6, 12], with traditional memory,
initialization, arithmetic, logical and comparison operations for
integer and floating point data of different size. More accurately, it

void SIMD ADD V4SF ( f l o a t o u t [ 4 ] ,
f l o a t i n 0 [ 4 ] ,
f l o a t i n 1 [ 4 ] ) {

f o r ( s i z e t i =0 ; i <4; i ++)
o u t [ i ]= i n 0 [ i ]+ i n 1 [ i ] ;

}

Figure 3. Sequential implementation of float vector add

# i n c l u d e <xmmin t r in . h>
# d e f i n e SIMD ADD V4SF ( out , in0 , i n 1 ) \

( o u t ) = mm add ps ( ( i n 0 ) , ( i n 1 ) )

Figure 4. SSE implementation of float vector add

# i n c l u d e <a l t i v e c . h>
# d e f i n e SIMD ADD V4SF ( out , in0 , i n 1 ) \

( o u t ) = v e c a d d ( ( i n 0 ) , ( i n 1 ) )

Figure 5. AltiVect implementation of float vector add

a 4 s f p d a t a 0 = {a lpha , a lpha , a lpha , a l p h a } ;
/ / SAC g e n e r a t e d t emporary a r r a y
a 4 s i p d a t a 2 = {1 , 1 , 1 , 1} ;
/ / PIPS g e n e r a t e d v a r i a b l e
v 4 s f vec00 0 , vec10 0 , vec20 0 , vec30 0 , vec50 0 , vec60 0

, vec80 0 , vec90 0 ;
/∗ p r e l u d e s k i p p e d ∗ /
SIMD LOAD V4SF ( vec10 0 , &p d a t a 0 [ 0 ] ) ;
SIMD LOAD V4SI TO V4SF ( vec50 0 , &p d a t a 2 [ 0 ] ) ;
SIMD SUBPS ( vec30 0 , vec10 0 , vec50 0 ) ;
f o r ( LU IND0=LU IB00 ; LU IND0<=LU NUB00−1; LU IND0+=4) {

/ / PIPS : SAC g e n e r a t e d v 4 s f v e c t o r ( s )
SIMD LOAD V4SF ( vec20 0 , &s r c 1 [ LU IND0 ] ) ;
SIMD MULPS( vec00 0 , vec10 0 , vec20 0 ) ;
SIMD LOAD V4SF ( vec80 0 , &s r c 2 [ LU IND0 ] ) ;
SIMD MULPS( vec60 0 , vec30 0 , vec80 0 ) ;
SIMD ADDPS( vec90 0 , vec00 0 , vec60 0 ) ;
SIMD STORE V4SF ( vec90 0 , &r e s u l t [ LU IND0 ] ) ;

}

Figure 6. Alphablending kernel vectorized by SAC

contains all possible combination of types given in 1 and operators
given in 2.

By doing this, we trivially ensure all considered instruction sets
are representable in our model, and we postpone to the back-end
phase the choice of using SIMD intrinsic or sequential code for the
implementation of each instruction of our meta instruction set.

As a running example, we can consider the arithmetic opera-
tion that sums two vectors of four floating-point elements. In our
instruction set, it is denoted SIMD ADD V4SF and has the sequential
implementation given in figure 3.

An SSE implementation would result in the macro given in
figure 4. Its AltiVec variant would be as given in figure 5.

A key component of the meta instruction set is its sequential
implementation. In this implementation, vector types are viewed
as regular arrays of appropriate length and intrinsics are viewed as
function operating of those arrays.

Providing the vectorization step only generates pure C code
containing calls to these sequential implementations, generated
code is still valid C source that can be dumped into a file (thanks to
the source-to-source aspect) and compiled in a regular binary. Such
a dump is shown in figure 6, which shows the output of SAC after
vectorization of an alphablending kernel with the SSE driver.

The binary will prove to be very inefficient, but is semantically
equivalent to the original file. This equivalence is critical to achieve
easy debugging: an error in the vectorization algorithm leads to a
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Figure 7. Overview of SAC retargetable compilation scheme

code producing different results (or segfaults. . . ). Regular debug-
ging tools can be used on this code to understand the reason of the
failure, which would be almost impossible in a standard compila-
tion infrastructure.2

There is another significant benefit of using this sequential im-
plementation: traditional code transformations can be directly re-
used on the code and can optimize it: dead code elimination, in-
variant code motion among others can still be used to optimize the
generated vector code, because it is actually a sequential code. It
however assumes that the considered compiler is capable of pro-
ducing accurate interprocedural array analysis, which is the case
of the PIPS compiler infrastructure used by the authors to produce
results exposed in this paper.

3. Compilation Steps
3.1 Overview
To enforce ease of reuse and retargetability, we proposed to adopt
a source-to-source approach. Figure 7 should give a practical
overview of the basic blocks involved in the building of our com-
piler.

The inputs are raw C99 source codes, and an additional simd.c
C source file that provides to the compilation infrastructure the
sequential version of the meta instruction set needed for its inter-
procedural analysis. Instruction patterns are described in a separate
definition file named pattern.def.

Depending on the target architecture, some patterns would be
activated or not. To follow the example of § 2, SIMD ADD V4SF
would be activated for both SSE and AltiVec but would not for
MMX or 3Dnow!, despite the later would have the equivalent oper-
ation over two floating points elements, SIMD ADD V2SF. The im-
portance of the pattern file is discussed in following section.

The code generation process involves the inclusion of a target-
specific header (e.g. sse.h) and the linkage with a target specific
source (e.g. sse.c) that provides a specific implementation of the
meta instruction set.

An advantage over other approaches is that both the meta-
instruction set and its various implementations are provided as raw
C code, without any annotation or specific formalism. Next section
describes in detail the compilation step.

3.2 Compilation Steps
The aim of the algorithm presented in Algorithm 1 is to generate
efficient code for the meta instruction set introduced in § 2. In or-
der to do so, we combine an enhanced SLP algorithm described
in § 3.3 with traditional compilation phases. Our approach distin-
guishes from other papers by the intensive reuse it makes of ex-

2 Indeed this has proved to be quite useful for debugging SAC itself.

isting transformations: the choice of representing vector register
as standard arrays of appropriate type and size makes generated
code analyzable by the compiler infrastructure: it only calls reg-
ular C function operating on fixed-size array. As a consequence,
optimization phases can be used further to perform various opti-
mizations without requiring extension or rewriting of those trans-
formations. For example, the SLP algorithm always generates a
store statement after a SIMD instruction, and the interprocedural,
region-based dead code elimination phase takes care of eliminating
unneeded statements.

Data: register width← width of vector register
Data: prog← whole program
Result: vectorized program
for function f ∈ prog do

if conversion(f ) ([2]);
three address code generation(f );
reduction parallelization(f ) ([16]);
for innermost loop l ∈ f do

unroll(f ,l,vec size);
end
for statement block b ∈ f do

scalar renaming(f ,b) ([1]);
instruction selection for slp(f ,b,register width)
(§ 3.3);

end
dead code elimination(f );
redundant load store elimination(f ) ([7]);
specialization for target (§ 4);
register allocation & more via compiler call ;

end
Algorithm 1: SAC compilation algorithm

Indeed the key component of the algorithm is the parameterized
SLP algorithm described in next subsection.

3.3 Parameterized SLP Code Generation
In [17], Larsen et al. introduced the concept of superword level par-
allelism, an alternative to loop-based vectorization that combines
dependency analysis and pattern matching to generate multimedia
instructions. Since then, this approach has been extended to work
beyond basic blocks [23] or too cooperate with traditional loop-
based approach [21].

We use a parameterized version of this algorithm described
in algorithm 2, that achieves the same level of performance and
provides good retargetability properties. All the configuration is
driven by two parameters:

1. the width of registers targeted by selected instruction set ;

2. a pattern file that describes the pattern characterizing selected
instruction set.
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It takes a block of statements as input and generates a block of
statements, eventually packed in call to our meta-instruction set.
There is nothing specific to an instruction set in this algorithm,
except the register width and the pattern file.

Data: register width← width of vector register
Data: pattern← set of pattern characterizing the instruction

set
Data: b← list of statements
Result: list of potentially vectorized statements
visited← ∅;
new b← ∅;
live registers← ∅;
while b 6= ∅ do

s← head(b);
if s 6∈ visited then

visited← visited ∪{s};
if match(s,pattern) then

non conflicting← extract no conflict(tail(b),s);
isomorphics statements←
extract isomorphics(non conflicting,s);
if isomorphics statements 6= ∅ then

simd s←
select best(isomorphics statements,
s,register width);

load s← generate load statements(
simd s,live registers);

store s← generate store statements(
simd s,live registers);

update live registers(simd s,live registers);
append load s to new b;
append simd s to new b;
append store s to new b;
for s′ ∈ simd s do

visited← visited ∪{s′};
end

else
append s to new b
update live registers(s,live registers);

end
else

append s to new b
update live registers(s,live registers);

end
end
b← tail(b);

end
Algorithm 2: Parameterized SLP algorithm

Algorithm 2 uses several subroutines that are detailed in follow-
ing subsections.

3.4 Padding Aware Pattern Matching
match(statement s,pattern file p) checks whether state-
ment s matches any pattern in p. The originality of the pattern
matching algorithms is that it can generate padding instructions to
create vector instructions.

Let us consider code fragment from figure 8. It is not vectoriz-
able in SSE because it lacks an instruction. Our pattern matching
algorithm recognizes such situations and generates an extra instruc-
tion that does not alter the control flow but makes vectorization
possible. In the case presented in figure 8, the generated instruction
would be the one given in figure 9.

This make vectorization possible to the expense of a conditional
store. However, it introduces a read and a write to potentially

i n t a [ 8 ] , b [ 3 ] ;
a [ 0 ] = a [ 0 ] + b [ 0 ] ;
a [ 1 ] = a [ 1 ] + b [ 1 ] ;
a [ 2 ] = a [ 2 ] + b [ 2 ] ;

Figure 8. Not vectorizable sequence

i n t a [ 8 ] , b [ 3 ] ;
a [ 0 ] = a [ 0 ] + b [ 0 ] ;
a [ 1 ] = a [ 1 ] + b [ 1 ] ;
a [ 2 ] = a [ 2 ] + b [ 2 ] ;
a [ 3 ] = t r u e ? a [ 3 ] : a [ 3 ] + b [ 3 ] ;

Figure 9. Padded instruction sequence

union {
i n t a r r a y [ 3 ] ;
i n t padd ing [ 4 ] ;

} b ;

Figure 10. Padded array declaration

unallocated memory. In the presented example, a[3] is a valid
location, but b[3] is not. As a consequence, each variable is padded
to ensure no illegal memory access is performed, as shown in the
declaration of b in code 10.

This optimization step enables significant improvements in the
vectorization of convolution kernels, as show in the experiments
§ 5.
extract isomorphics(statement set l,statement s)
builds a set of statement from l that matches the same pattern as s).

3.5 Dependency Graph Analysis
extract no conflict(statement list l,statement s)
builds a set of statement from l that have no R-W,W-R,W-W,
dependence arc with s. It is based on the dependency graph based
itself on the inter-procedural array region analysis [9] implemented
in PIPS. Because we model vector register by regular C arrays,
this array region analysis is critical.

3.6 Greedy Statement Packing
select best(statement set l,statement s,int
register width) chooses register width −1 statements
among l and pack with s. This routine uses a greedy algorithm to
choose the best candidate among elements of l and is described in
algorithm 3.

A matrix of offsets between arguments of statement s and ar-
guments of statements of l is computed and then greedily searched
for consecutive accesses. If no consecutive access is found, the first
statements (according to lexical order) are returned.

3.7 Load Store Generation
generate load statements(statement list l, set
live registers) generates data transfers from the scalar
registers to the vector registers. For each data needed by statements
in l, it checks if they are already present in live registers. If so, it
uses the according vector, otherwise it generates a load from the
memory to a new vector and registers this vector in live registers.
As of now, the underlying algorithm does not generate shuffle
operations, but it is an interesting option.
generate store statements(statement list l, set
live registers) generates data transfers from the vector regis-
ters back to the scalar registers. It builds a list of store statement,

4 2010/9/23



Data: l← statement list
Data: s← initial statement
Data: register width← width of vector registers
Result: packed statement, or unpacked statement
[a0, . . . , ak]← arguments of s;
offsets← ∅;
for statement s′ ∈ l do

[a′0, . . . , a
′
k]← arguments of s′;

append (s′, [offset(a′0, a0), . . . ,offset(a′k, ak)]) to offsets;
end
sort offsets based on the offset key;
packed statements← ∅;
for arg id ∈ [|1, . . . , register width

k
|] do

packing index← 1;
for (s′,offset) ∈ offsets do

if offsetarg id =packing index then
append s′ to packed statements;
packing index← 1+ packing index;

end
end
if length(packed statements) 6= register width

k
then

empty packed statements;
break;

end
end
if packed statements = ∅ then

return [s] + l[0 : register width
k

− 1]
else

return packed statements
end

Algorithm 3: Offset-based statement packing

one for each array pack generated by statements in l. Those
statements may be useless, in which case they will be removed
by the dead code elimination phase. update live registers is
called for each statement of l
update live registers(statement s, set
live registers) updates live registers by removing each
vector that used to reference a variable written by s.

4. Achieving Retargetability
We have already seen in § 2 how we provide a sequential back-
end to our compilation infrastructure. The following subsections
detail how we specialize this backend for a particular instruction
set. Two specialized backends are already available : an SSE im-
plementation, written using Intel’s SSE4 intrinsics ; and a 3DNow!
implementation, using (obsolete) AMD’s 3DNow! intrinsics.

4.1 Supporting a New Instruction Set
As we saw in § 2, adding a new backend is mainly a matter
of translating the pseudo-instruction set generated by SAC into
the intrinsics of the target processor, and making this translation
available to the compiler.

While the core of SAC transformations are implemented in C,
the preferred user interface is PyPS, a Python API to PIPS. The
user creates a “workspace”, a Python object giving accesses to the
“modules” of code, that is, the compilation units and functions of
the user’s C programs. Each PIPS transformation is made available
to the user as a method to be applied to a module.

Utilizing Python’s dynamism, we developed a method for the
optional, customizable, run-time composition of special kinds of
workspaces. In particular, there is a sac Python module, defining a

i m p o r t pyps
i m p o r t s a c

ws = pyps . workspace ( [ ” f i l e 1 . c ” , ” f i l e 2 . c ” ] , p a r e n t s = [
s a c . workspace ] , d r i v e r = ” s s e ” )

ws [ ” m y f u n c t i o n ” ] . s a c ( )
ws . s i m d c o m p i l e ( o u t f i l e = ” program ” )

Figure 11. Sample PyPS usage

sub : = REFERENCE − REFERENCE REFERENCE ;
sub : = REFERENCE − REFERENCE CONSTANT ;
sub : = REFERENCE − CONSTANT REFERENCE ;
sub : = REFERENCE + UNARY MINUS REFERENCE CONSTANT ;
sub : = REFERENCE + CONSTANT UNARY MINUS REFERENCE ;
sub : = REFERENCE + REFERENCE UNARY MINUS REFERENCE ;

Figure 12. Description of subtraction pattern in SAC

sac.workspace class. From the user point of view, it is used like
in figure 11.

In the init method of pyps.workspace, a
sac.workspace object is created. When creating this ob-
ject, some code is injected into the pyps.workspace class, in
particular it adds a .sac() method to each module, and some
code to the compile command. This allows us to add to each
compilation unit a set of definitions, which are chosen depending
on the driver parameter used on the creation of the workspace.

Inside the sacmodule, each backend is defined by a sacTARGET
(sacsse or sac3dnow or...) class, that inherits from sacbase. The
body of the .sac() method added to each module is defined in the
sacbase.sac() function, with sacTARGET.sac() being only a
small wrapper around it, specifying the register width (128 bits for
SSE and 64 bits for 3DNow!, for instance).

This technique is both convenient for the user, and easy to
extend. If another backend is to be added, say for AVX, one would
do the following:

• create a sacavx class inheriting from sacbase ;
• define a sacavx.sac() method that just calls sacbase.sac()

with a register width of 256 ;
• define a sacavx.CFLAGS variable, which would probably be
-mavx -O3 or similar ;

• write a series of #define implementing the SIMD pseudo-
language.

The last part is the longest, whereas the first parts are rather
straightforwards. In addition, the call sac.py script, whose
first purpose was to show an example of the usage of the
sac.workspace module, is also able to compare the output of pro-
grams when compiled with the sequential implementation against
the output when using some other instruction set.

4.2 Supporting New Instructions
As shown in § 3.3, our vectorization algorithm is parameterized by
a pattern file that feeds the pattern engine. The format of this file
use polish notation to describe the pattern of a single instruction. As
a consequence it only supports patterns where the same instruction
appears register width times, thus by-passing non-SIMD opera-
tors such as horizontal add found in SSE3.

Listing 12 shows the pattern describing the SIMD SUB * opera-
tor:
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5. Experiments
5.1 Description of the Experiments
Two series of experiments were conducted. They both used the
same set of source files, which are available in the PIPS repository,
under the Passes/pyps/drivers/sac/bench directory. The first
series use the SSE driver, while the second uses the 3DNow! driver.

daxpy u?r.c, ddot u?r.c and dscal u?r.c are taken from
the Linpack [11] benchmark. matrix *.c are taken from the Core-
mark benchmark of the EEMBC suite. Other benchmarks are text-
book version of well known computations kernels (Finite Impulse
Response filter, average power, alpha-blending, jacobi, convolution
with a 3x3 kernel). Raw benchmarks results are given in table 13.

The vertical scale is the speedup of each execution over
gcc run with compilation flags -O3 -fno-tree-vectorize
-march=native, that is without vectorization step. The time taken
by an execution was measured by wrapping the main function of
each benchmark between two calls to gettimeofday(2) and then
computing the elapsed time. The time returned is the median over
50 runs on an otherwise idle machine.

The experiments with the SSE driver were conducted on an
Intel Core i5 CPU, with a 2.67GHz frequency. The machine was
running a 2.6.32 Linux kernel. In the graphics 14, 15, 16, and 17
we compare the performance of GCC 4.4.4 (series marked with
gcc), ICC 11.1 (marked with icc) and LLVM (through llvm-gcc-
4.2, Based on Apple Inc. build 5658, series marked with llvm)
before and after transforming the code with SAC. The +seq variant
uses a naı̈ve sequential implementation of SIMD operations, while
the +sac variant uses the intrinsics of the platform. In each case,
the code was compiled with -O3. The SSE variant was compiled
with -march=native.

The experiments with the 3DNow! driver were made on an
AMD Opteron Processor 252 with a 2.5GHz clock. The machine
was running a 2.6.26 Linux kernel. The code was compiled with
GCC 4.3.6, using the flags -m3dnow -march=opteron -O3. The
results are presented on figure 18.

5.2 Comments
The SIMD simulator is an invaluable tool during the development
of SAC, for checking the correctness of the intrinsics implementa-
tion. However, it is not of practical use, with some programs run-
ning up to 5 times slower.

To the notable exception of the matrix-matrix multiplication,
SAC generally improves the behavior of gcc by a factor of 5%.
However, some applications (convol3x3.c, jacobi.c) greatly
benefits from it, reaching more than 60% speedup, which shows
the efficiency of our algorithm in complex situation.

ICC, which is well-known for generating very efficient code,
does not benefit from SAC to the same extent. In various situation,
a small speedup is achieved (e.g. average power.c), while in
other icc outperforms SAC by several order of magnitude (e.g.
ddot ur.c.

Vectorization engine of llvm proves to be less efficient than
others, and is the one that benefits the most of SAC vectorization
engine. jacobi.c and convol3x3.c achieve very good speedup.

The production of 3DNow! code came rather late in the devel-
opment cycle of SAC and is more a proof of concept than a signifi-
cant experiment (3DNow! is no longer in production), but it shows
the retargability of SAC: 3DNow! backend is only several hundred
of C code describing the implementation of a subset of the meta-
instrucion set.

Either way, the source-to-source approach proved to be bene-
ficial: existing vectorizer are leveraged by the SAC compiler, but
speedup greatly depends upon the back-end compiler, which asserts

the idea that SAC is to be used as a generic vectorized, leaving to
the real compiler the low-level optimizations.

Conclusion & Future Works
As many developers know, making a code portable is not easy.
Making performance portable is all the more difficult, because ef-
ficient code relies on the usage of specific hardware. It is up to
the compiler to fill the gap, and to support ever-changing architec-
tures they are forced to be as retargetable as possible. In this pa-
per, we described the SAC compiler based on the PIPS source-to-
source compiler framework that achieves this objective for multi-
media instruction set while still generating efficient code. Thanks to
a meta-instruction set and parameterized SLP algorithm, this com-
piler achieves performance within the range of gcc, llvm and icc
while remaining fully retargetable. A source-to-source approach
and a dedicated SLP algorithm made this possible, and we believe
that more performance / specialization can be achieved through the
use of an exploratory algorithm, capable of selecting the transfor-
mation better-suited to a specific architecture at runtime. Generat-
ing shuffle instructions is also a challenging issue, because such
instructions vary a lot across instruction sets. An interesting addi-
tion to the SAC compiler would be the ability to parse existing
code written in a particular instruction set, to decompile it and to
recompile it in another instruction set, possibly of different register
width. We have made a step forward in that direction by imple-
menting mmx header, pmmintrin.h with sequential alternative, so
that including our header instead of the system header results in
generation of generic code. However, this also results in complex
code filled with union and structure copies, which is not analyz-
able by PIPS as of now. We plan to use our portable vectorizer to
generate vector type code for CUDA and OpenCL to get better per-
formance on GPU. In this case, the instruction set is directly the C
code, without almost no intrinsics, just relying on the CUDA and
OpenCL vector types.
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Figure 13. Raw benchmarks of gcc, icc, llvm and SAC behavior. Timings are given in µs.
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Figure 14. Speedup before and after SAC using GCC. Positive means SAC is faster.
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Figure 15. Speedup before and after SAC, using ICC. Positive means SAC is faster.
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Figure 16. Speedup before and after SAC, using LLVM. Positive means SAC is faster.
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Figure 17. Speed-down before and after SAC, using the SIMD emulator
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Figure 18. Comparison of SAC performance using the 3DNow! driver
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