Inter-Block Scoreboard Scheduling
in a JIT Compiler for VLIW Processors
Technical Report A/392/CRI

Benoit Dupont de Dinechin
benoit.dupont-de-dinechin@st.com

STMicroelectronics STS/CEC
12, rue Jules Horowitz - BP 217. F-38019 Grenoble

Abstract. We present a postpass instruction scheduling technique suit-
able for Just-In-Time (JIT) compilers targeted to VLIW processors.
Its key features are: reduced compilation time and memory require-
ments; satisfaction of scheduling constraints along all program paths;
and the ability to preserve existing prepass schedules, including software
pipelines. This is achieved by combining two ideas: instruction scheduling
similar to the dynamic scheduler of an out-of-order superscalar proces-
sor; the satisfaction of inter-block scheduling constraints by propagating
them across the control-flow graph until fixed-point. We implemented
this technique in a Common Language Infrastructure JIT compiler for
the ST200 VLIW processors and the ARM processors.

1 Introduction

Just-In-Time (JIT) compilation of programs distributed as Java or .NET Com-
mon Language Infrastructure (CLI) byte-codes is becoming increasingly relevant
for consumer electronics applications. A typical case is a game installed and
played by the end-user on a Java-enabled mobile phone. In this case, the JIT
compilation produces native code for the host processor of the system-on-chip.

However, systems-on-chip for consumer electronics also contain powerful me-
dia processors that could execute software installed by the end-user. Media pro-
cessing software is usually developed in C or C++ and exposes instruction-level
parallelism. Such media processing software can be compiled to CLI byte-codes
thanks to the Microsoft Visual Studio .NET compilers or the gcec/st/cli com-
piler branch contributed by STMicroelectronics [4]. This motivates Just-In-Time
compilation for embedded processors like the Texas Instruments C6000 VLIW-
DSP family and the STMicroelectronics ST200 VLIW-media family®.

In the setting of JIT compilation of Java programs, instruction scheduling
is already expensive. For instance, the IBM Testarossa JIT team reports that
combined prepass and postpass instruction scheduling costs up to 30% of the

! The ST200 VLIW architecture is based on the Lx technology [7] jointly developed
by Hewlett-Packard Laboratories and STMicroelectronics.

compilation time [14] for the IBM zSeries 990 and the POWER4 processors. To
lower these costs, the IBM Testarossa JIT compiler relies on profiling to identify
the program regions where instruction scheduling is enabled. In addition, the
register allocator tracks its changes to the prepass instruction schedules in order
to decide where postpass instruction scheduling might be useful.

In the case of JIT compilation of media processing applications for VLIW
processors, more ambitious instruction scheduling techniques are required. First,
software pipelining may be applied in spite of higher compilation costs, as these
applications spend most of their time in inner loops where instruction-level par-
allelism is available. However, software pipelines implement cyclic schedules that
may be destroyed when the code is postpass scheduled using an acyclic sched-
uler. Second, JIT instruction scheduling techniques should accommodate VLIW
processors without interlocking hardware [9,2], such as the TI C6000 VLIW-
DSP family or the STMicroelectronics ST210 / Lx [7]. This means that JIT
compilation must ensure that no execution path presents scheduling hazards.

To address these issues specific to JIT compilation on VLIW processors, we
propose a new postpass instruction scheduling whose main features are:

— Efficiency (code quality) and speed (compilation time). This is possible
thanks to Scoreboard Scheduling, that is, instruction scheduling by emulating
the hardware scheduler of an out-of-order superscalar processor.

— Satisfaction of resource and dependence constraints along all program paths,
as required by processors without interlocking hardware. We formulate and
solve this Inter-Block Scheduling problem by propagating constraints until
reaching a fixed-point, in a way reminiscent of forward data-flow analysis.

In addition, we prove our technique preserves the instruction schedules created
by prepass scheduling and by software pipelining, provided register allocation
and basic block alignment only introduced redundant scheduling constraints.

The presentation is as follows. In Section 2, we review local instruction
scheduling heuristics and we propose Scoreboard Scheduling. We then describe
an optimized implementation of this technique. In Section 3, we discuss inter-
region instruction scheduling and we introduce Inter-Block Scoreboard Schedul-
ing. This technique relies on iterative constraint propagation and we characterize
its fixed-points. In Section 4, we provide an experimental evaluation of our con-
tributions, which are implemented in the STMicroelectronics CLI-JIT compiler
that targets the ST200 VLIW and the ARM processors.

2 Local Instruction Scheduling

2.1 Acyclic Instruction Scheduling

Acyclic instruction scheduling is the problem of ordering the execution of a set of
operations on a target processor microarchitecture, so as to minimize the latest
completion time. Executions of operations are partially ordered to ensure correct
results. Precisely, effects on registers must be ordered in the following cases: Read

(a) dependence graph (c) active schedule

- é@%@@

SN

(b) semi-active schedule (d) non—delay schedule

Fig. 1. Sample schedules for a two-resource scheduling problem (horizontal time).

After Write (RAW), Write After Read (WAR), and Write After Write (WAW).
Other dependences arise from the partial ordering of memory accesses and from
control-flow effects. We assume that the resource requirements of each operation
are represented by a reservation table [12], where rows correspond to scheduled
resources and columns to time steps relative to the operation start date.
Classic instruction scheduling heuristics fall in two main categories [3]:

Cycle Scheduling Scan time slots in non-decreasing order. For each time slot,
order the dependence-ready operations in non-increasing priority and try to
schedule each operation in turn, subject to resource availability. Dependence-
ready means that execution of the operation predecessors has completed
early enough to satisfy the dependences. This is Graham list scheduling.

Operation Scheduling Consider each operation in non-increasing priority or-
der. Schedule each operation at the earliest time slot where it is dependence-
ready and its required resources are available. In order to prevent deadlock,
the priority list order must be a topological sort of the dependence graph.

Cycle Scheduling is a time-tested instruction scheduling heuristic that pro-
duces high quality code on simple instruction pipelines, given a suitable prior-
ity of operations [9]. One such priority is the “critical path” length from any
operation to the dependence graph sink node. A refinement is the “backward
scheduling” priority that ensures optimal schedules on homogeneous pipelines
[8] and on typed pipelines [6] for special classes of dependence graphs.

For the proofs of §2.2, we assume monotonic reservation tables, that is, reser-
vation tables whose entries in any row are monotonically non-increasing. Single-
column reservation tables, which are virtually always found on modern VLIW
processors, are obviously monotonic. Monotonicity enables leverage of classic
results from Resource Constrained Project Scheduling Problems (RCPSP) [13]:

Semi-Active Schedule asin Figure 1 b. No operation can be completed earlier
without changing some execution sequence. Equivalently, in a semi-active
schedule any operation has at least one dependence or resource constraint
that is tight, preventing the operation from being locally left shifted.

Active Schedule as in Figure 1 c. No operation can be completed earlier with-
out delaying another operation. The schedule of Figure 1 b is not active, be-
cause operation 5 can be globally left-shifted to time slot 1, without delaying
other operations. Operation Scheduling generates active schedules.

Non-Delay Schedule as in Figure 1 d. No execution resources are left idle if
there is an operation that could start executing. The schedule of Figure 1 ¢
is not non-delay, because operation 2 could start executing at time slot 0.
Cycle Scheduling generates non-delay schedules.

The non-delay schedules are a subset of the active schedules, which are a subset
of the semi-active schedules [13]. Active schedules and non-delay schedules are
the same in case of operations that require resources for a single time unit.

2.2 Scoreboard Scheduling Principles

The main drawback of the classic scheduling heuristics is their computational
cost. In the case of Cycle Scheduling, the time complexity contributions are:

1. constructing the dependence graph is O(n?) with n the number of operations,
but can be lowered to O(n) with conservative memory dependences [15];

2. computing the operation priorities is O(n + e) with e the number of depen-
dences for the critical path, and is high as O(n?logn + ne) in [8, 6];

3. issuing the operations in priority order is O(n?) according to [9], as each
time step has a complexity proportional to m (where m is the number of
dependence-ready operations), and m can be O(n).

The complexity of operation issuing results from: sorting the dependence-ready
operations in priority order; and matching the resource availabilities of the cur-
rent cycle with the resource requirements of the dependence-ready operations.
The latter motivates the finite-state automata approach of Proebsting & Fraser
[11], later generalized to Operation Scheduling by Bala & Rubin [3].

To reduce instruction scheduling costs, we rely on the following principles:

— Verbrugge [15] replaces the dependence graph by an Array of Dependency
Lists (ALD), with one list per dependence record (see §2.3). We show how
Operating Scheduling can avoid the explicit construction of such lists.

— In the setting of JIT postpass scheduling, either basic blocks are prepass
scheduled because their performance impact is significant, or their opera-
tions are in original program order. In either case, the order operations are
presented to the postpass scheduler encodes a priority that is suitable for
Operation Scheduling, since it is a topological ordering of the dependences.
So (re-)computing the operation priorities is not necessary.

— We limit the number of resource availability checks by restricting the number
of time slots considered for issuing the current operation.

Precisely, we define Scoreboard Scheduling to be a scheduling algorithm that
operates like Operation Scheduling, with the following additional restrictions:

issue=0 1db $r23 = 9[$r16] issue=0 add $ri8 = $ri8, -12
start=0 | +0 +1 +2 +3 +4 +5 +6 +7 start=0 | +0 +1 +2 +3 +4 +5 +6 +7
| |
ISSUE |1 ISSUE | 2
MEM | 1 MEM | 1
CTL | CTL |
| |
Control | a Control | a
$ri16 | a $ri6 | a
| $r18 | aw aw w w
$r23 | awaw w w w W $r23 | awaw w w w w
Memory | a a Memory | a a

Fig. 2. Scoreboard Scheduling within the time window (window_size = 4).

issue=4 shl $r24 = $r24, 24 issue=5 add $ri15 = $ri15, $r24
start=0 | +0 +1 +2 +3 +4 +5 +6 +7 start=1 | +0 +1 +2 +3 +4 +5 +6 +7
| |
ISSUE | 3 2 1 3 1 ISSUE | 21 3 1 1
MEM | 11 1 1 MEM | 1 1 1
CTL | CTL |
| |
Control |la a a a a Control | a a a a a
| $rib | aw aw aw aw aw aw W W
$ri6 | aw aw aw aw av W W $ri6 | aw aw aw aw W W
$ri8 | aw aw w w $ri8 | aw w w
$r23 | aw aw aw aw aw W W $r23 | aw aw aw aw w W
$r24 | aw aw aw aw aw aw W W $r24 | aw aw aw aw aw W W
Memory | a a Memory | a

Fig. 3. Scoreboard Scheduling and moving the time window (window_size = 4).

— any operation is scheduled within a time window of constant window_size,
— the window_start cannot decrease and is lazily increased while scheduling.

That is, given an operation to schedule, the earliest date considered is win-
dow_start. Moreover, if the earliest feasible schedule date issue_date of operation
is greater than window_start+ window_size, then the Scoreboard Scheduling win-
dow_start value is adjusted to issue_date — window_size.

Theorem 1 Scoreboard Scheduling an active schedule yields the same schedule.

Proof. By contradiction. Scheduling proceeds in non-decreasing time, as the pri-
ority list is a schedule. If the current operation can be scheduled earlier than it
was, this is a global left shift so the priority list is not an active schedule.

Corollary 1. Schedules produced by Operation Scheduling or Cycle Scheduling
are invariant under Scoreboard Scheduling and Operation Scheduling.

2.3 Scoreboard Scheduling Implementation

A dependence record is the atomic unit of state that needs to be considered for
accurate register dependence tracking. Usually these are whole registers, except
in cases of register aliasing. If so, registers are partitioned into sub-registers,
some of which are shared between registers, and there is one dependence record
per sub-register. Three technical records named Volatile, Memory, Control are
also included in order to track the corresponding dependences.

Let read_stagel][], write_stage[][] be processor-specific arrays indexed by oper-
ation and by dependence record that tabulate the operand access pipeline stages.
Let RAW]], WAR([], WAW]] be latency tuning parameters indexed by depen-
dence record. For any dependence record r and operations 7 and j, we generalize
the formula of [16] and specify any dependence latency,—.; on r as follows:

RAW Dependence |latency, ,; > write_stage[i][r] — read_stagel[j][r] + RAW[r] (a)
latency,_,; > RAW|r] (b)
WAW Dependence|latency,_,; > write_stage[i][r] — write_stage[j][r] + WAW[r] (c)
latency,_,; > WAW|r]| (d)
WAR Dependence |latency,_,; > read_stageli][r] — write_stage[j][r] + WAR[r] (e)
latency,_,; > WAR|r] (f)

Assuming that write_stage[i][r] > read_stage[j][r] Vi,j,r, that is, operand
write is no earlier than operand read in the instruction pipeline for any given r,
the dependence inequalities (b) and (e) are redundant. This enables dependence
latencies to be tracked by maintaining only two entries per dependence record
r: the latest access date and the latest write date. We call access_actions and
write_actions the arrays with those entries indexed by dependence record.

The state of scheduled resources is tracked by a resource_table, which serves
as the scheduler reservation table. This table has one row per resource and
window_size + columns_mazx columns, where columns_mazx is the maximum num-
ber of columns across the reservation tables of all operations. The first column
of the resource_table corresponds to the window_start. This is just enough state
for checking resource conflicts in [window_start, window_start + window_size].

Scoreboard Scheduling is performed by picking each operation 4 according to
the priority order and by calling add_schedule(i, try_schedule(i)), defined by:

try_schedule Given an operation i, return the earliest dependence- and resource-

feasible issue_date such that issue_date > window_start. For each dependence
record r, collect the following constraints on issue_date:
Effect Constraints
Read[r] |issue_date > write_actions|[r] — read_stageli][r] + RAW r]
Write[r||issue_date > write_actions|r| — write_stage[i|[r] + WAW [r]
issue_date > access_actions|r]
The resulting issue_date is then incremented while there exists scheduled
resource conflicts with the current contents of the resource_table.
add_schedule Schedule an operation ¢ at a dependence- and resource-feasible
1ssue_date previously returned by try_schedule. For each dependence record
r, update the action arrays as follows:
Effect Updates
Read[r] |access_actions[r] «— max(access_actions|r], issue_date + WAR]r])
Write[r||access_actions|r] < max(access_actions|r], issue_date + WAW [r])
write_actions|r] «— issue_date + write_stage[i][r]
In case issue_date > window_start + window_size, the window_start is set to
issue_date — window_size and the resource_table is shifted accordingly. The
operation reservation table is then added into the resource_table.

In Figure 2, we illustrate Scoreboard Scheduling of two ST200 VLIW opera-
tions, starting from an empty scoreboard. There are three scheduled resources:
ISSUE, 4 units; MEM, one unit; CTL, one unit. The window_start is zero and the
two operations are scheduled at issue_date zero. We display access_actions|r]
and write_actions[r| as strings of a and w from window_start to actions[r]. In
Figure 3, several other operations have been scheduled since Figure 2, the latest
being shl $r24 at issue_date 4. Then operation add $ri15 is scheduled at is-
sue_date 5, due to the RAW dependence on $r24. Because window_size is 4, the
window_start is set to 1 and the resource_table rows ISSUE, MEM, CTL are shifted.

Theorem 2 Scoreboard Scheduling correctly enforces the dependence latencies.

Proof. Calling add_schedule(i,issue_date;) followed by try_schedule(j,issue_date;+
latency;—.;) implies that latency,;—; satisfies the inequalities (a), (¢), (d), (f).

3 Global Instruction Scheduling

3.1 Postpass Inter-Region Scheduling

We define the inter-region scheduling problem as scheduling the operations of
each scheduling region such that the resource and dependence constraints inher-
ited from the scheduling regions (transitive) predecessors, possibly including self,
are satisfied. When the scheduling regions are reduced to basic blocks, we call
this problem the inter-block scheduling problem. Only inter-region scheduling is
allowed to move operations between basic blocks (of the same region).

The basic technique for solving the inter-region scheduling problem is to
schedule each region in isolation, then correct the resource and latency constraint
violations that may occur along control-flow transfers from one scheduling region
to the other by inserting NOP operations. Such NOP padding may occur after
region entries, before region exits, or both, and this technique is applied after
postpass scheduling on state-of-the-art compilers such as the Open64.

Meld Scheduling is a prepass inter-region scheduling technique proposed by
Abraham, Kathail, Deitrich [2] that minimizes the amount of NOP padding
required after scheduling. This technique is demonstrated using superblocks,
which are scheduled from the most frequently executed to the least frequently
executed, however it applies to any program partition into acyclic regions.

Consider a dependence whose source operation is inside a scheduling region
and whose target operation is outside the scheduling region. Its latency dangle is
the minimum number of time units required between the exit from the scheduling
region and the execution of the target operation to satisfy the dependence. For
a dependence whose source operation is outside the scheduling region and whose
target operation is inside, its latency dangle is defined in a symmetric way [2].

Meld Scheduling only considers dependence latency dangles, however re-
source dangles can be similarly defined. Latency dangle constraints originate
from predecessor regions or from successor regions, depending on the order the
regions are scheduled. Difficulties arise with cycles in the control-flow graph,

and also with latency dangles that pass through scheduling regions. These are
addressed with conservative assumptions on the dangles.

Meld Scheduling is a prepass technique, so register allocation or basic block
alignment may introduce extra code or non-redundant WAR and RAW register
dependences. Also with JIT compilation, prepass scheduling is likely to be omit-
ted on cold code regions. On processors without interlocking hardware, compilers
must ensure that no execution path presents hazards. In the Open64 compiler,
hazards are detected and corrected by a dedicated “instruction bundler”.

When focusing on postpass scheduling, the latency and resource dangles of
Meld Scheduling are implied by the scoreboard scheduler states at region bound-
aries. Moreover, we assume that the performance benefits of global code motion
are not significant during the postpass scheduling of prepass scheduled regions,
so we focus on inter-block scheduling. Last, we would like to avoid duplicate
work between an “instruction bundler” and postpass scheduling.

Based on these observations, we propose the Inter-Block Scoreboard Schedul-
ing technique to iteratively propagate the dependence and resource constraints
of local scheduling across the control-flow graph until fixed-point. As we shall
prove, it is possible to ensure this technique converges quickly and preserves
prepass schedules, including software pipelines, that are still valid.

3.2 Inter-Block Scoreboard Scheduling

We propagate the scoreboard scheduler states at the start and the end of each
basic block for all program basic blocks by using a worklist algorithm, like in
forward data-flow analysis [10]. This state comprises window_start, the action
array entries and the resource_table. Each basic block extracted from the worklist
is processed by Scoreboard Scheduling its operations in non-decreasing order of
their previous issue_dates (in program order the first time). This updates the
operation issue_dates and the state at the end of the basic block.

Following this basic block update, the start scoreboard scheduler states of its
successor basic blocks are combined through a meet function (described below)
with the end scoreboard scheduler state just obtained. If any start scoreboard
scheduler state is changed by the meet function, this means new inter-block
scheduling constraints need to be propagated so the corresponding basic block
is put on the worklist. Initially, all basic blocks are in the worklist and the
constraint propagation is iterated until the worklist is empty.

In order to achieve quick convergence of this constraint propagation, we en-
force a non-decrease rule: the operation issue_dates do not decrease when
rescheduling a basic block. That is, when scheduling an operation, its release
date is the issue_date computed the last time the basic block was scheduled.
This is implemented in ¢ry_schedule(i) by initializing the search for a feasible
issue_date; to the maximum of the previous issue_date; and the window_start.

The meet function propagates the scheduling constraints between two basic
blocks connected in the control-flow graph. Each control-flow edge is annotated
with a delay that accounts for the time elapsed along that edge. Delay is zero
for fall-through edges and is the minimum branch latency for other edges. Then:

— Advance the scoreboard scheduler state at the end of the origin basic block
by elapsing time so window_start reaches the issue_date of the last operation
plus one (zero if the basic block is empty), plus the delay of the connecting
control-flow edge (zero if fall-through edge, else the taken branch latency).

— Translate the time of this scoreboard scheduler state so that window_start
becomes zero. With our implementation, this amounts to subtracting win-
dow_start from the action array entries and moving the resource_table.

— Merge the two scoreboard scheduler states by taking the maximum of the
entries of the resource_table and of the action arrays.

Theorem 3 Inter-Block Scoreboard Scheduling converges in bounded time.

Proof. The latest issue_date of a basic block never exceeds the number of opera-
tions plus one, times the maximum dependence latency or the maximum span of
a reservation table (whichever is larger). The issue_dates are also non-decreasing
by the non-decrease rule, so they reach a fixed-point in bounded time. The fixed-
point of the scoreboard scheduler states follows.

3.3 Characterization of Fixed-Points

Theorem 4 Any locally scheduled program that satisfies the inter-block schedul-
ing constraints is a fixed-point of Inter-Block Scoreboard Scheduling.

Proof. By hypothesis, all operations have valid issue_dates with respect to basic
block instruction scheduling. Also, the inter-block scheduling constraints are
satisfied. By the non-decrease rule, each operation previous issue_date is the
first date tried by Scoreboard Scheduling, and this succeeds.

A first consequence is that any prepass region schedule which satisfies the
inter-block scheduling constraints at its boundary basic blocks will be unchanged
by Inter-Block Scoreboard Scheduling, provided no non-redundant instruction
scheduling constraints are inserted in the region by later compilation steps. In-
terestingly, this holds for any prepass region scheduling algorithm: superblock
scheduling; trace scheduling; wavefront scheduling; and software pipelining.

A second consequence is that Inter-Block Scoreboard Scheduling of a pro-
gram with enough NOP padding to satisfy the inter-block scheduling constraints
will converge with only one Scoreboard Scheduling pass on each basic block. In
practice, such explicit NOP padding should be reserved for situations where
a high-frequency execution path may suffer from the effects of latency and re-
source dangles at a control-flow merge with a low-frequency execution path, such
as entry to an inner loop header from a loop pre-header.

4 Experimental Results

4.1 Comparing Scoreboard Scheduling to Cycle Scheduling

In the setting of the STMicroelectronics CLI-JIT compiler, we implemented
Scoreboard Scheduling as described in Section 2.3 and also a Cycle Scheduling

Origin Size|IPC|RCost|RPerf. RQuery - -

mergesort|| 12|0.92| 2.35 | 1.00 0.60 Scoreboard ™ CycleSched
maxindex 12/2.00| 2.52 1.00 0.67 6000000

fft32x32s 20|4.00| 2.57 1.00 0.50

autcor 21|1.50| 3.34 1.00 1.08

d6arith 27/0.87| 2.78 1.00 0.60 5000000 °
sfcfilter 2912.90| 3.00 1.00 0.62
strwc 32|3.56| 3.17 1.00 0.70 ’
bitonic 34|3.78| 3.55 1.00 1.00 4000000

floydall 52|1.41| 3.62 1.00 0.67

pframe 59(1.59| 3.82 1.00 0.63 3000000

polysyn 79]2.55| 5.95 1.19 1.29

huffdec2 81/0.80| 4.23 1.00 0.56

ft32x32s || 833.61| 5.21 | 1.09 1.00 2000000

dbuffer 108|3.18| 5.67 1.03 1.00

polysyn 137|3.51| 7.29 1.03 1.50 rd

transfo 230(3.59| 9.00 1.16 1.04 1000000 .,0’

qplsfb 23112.96| 8.91 1.13 0.11 o }

polysyn 256(1.63| 8.79 1.00 0.57 29 P ——
polysyn || 207|3.23| 9.95 | 1.04 | 0.76 o meafiie —wen

radial33 || 554|3.26| 18.78 | 1.21 1.95 0 1002000 %00 400500 600

Fig. 4. Benchmark basic blocks and instruction scheduling results.

algorithm that closely follows the description of Abraham [1], including reference
counting for detecting operations whose predecessors have all been scheduled.
We optimized this Cycle Scheduling implementation for speed. In particular,
we replaced the dependence graph by a variant of the Array of Dependence Lists
(ADL) of Verbrugge [15] to ensure a O(n) time complexity of the dependence
graph construction. This implies conservative memory dependences, however we
assume such a restriction is acceptable for postpass scheduling. We also merged
the ReadyList and CCReadyList of [1] into a single radix-4 priority heap lexi-
cographically ordered by lower available date and higher critical path priority.

We selected a series of basic blocks from STMicroelectronics media processing
application codes and performance kernels compiled at the highest optimization
level by the Open64-based production compiler for the ST200 VLIW family [5].
The proposed CLI-JIT postpass scheduler was connected to this compiler.

These benchmarks are listed in the left side of Figure 4. Columns Size and
IPC respectively give the number of instructions and of instructions per cycle
after Cycle Scheduling. Column RCost is the ratio of compilation time between
the cycle scheduler and the scoreboard scheduler at window_size = 15. Column
RPerf is the relative performance of the two schedulers, as measured by inverse
of schedule length. Column RQuery is the ratio of compilation time for resource
checking between the cycle scheduler and the scoreboard scheduler. In the right
side of Figure 4, we plot the compilation time as function of basic block size.
Unlike Cycle Scheduling, Scoreboard Scheduling clearly operates in linear-time.

To understand how compilation time is spent, we display in Figure 5 the
stacked contributions of the different scheduling phases normalized by the total
instruction scheduling time, so their sum is one. We also single out the cumu-
lative time spent in resource checking, yielding the bars above one. For Cycle
Scheduling (left side), the cost of computing the dependences ADL becomes
relatively smaller, as it is linear with basic block size. The Priority computing

B ApL .Priority DIssuing B Resource

i

maxindex autcor sfcfilter bitonic pframe huffdec2 dbuffer transfo polysyn radial33

o
o

o
o

I
~

o
o

0
mergesortfft32x32s déarith strwc floydall polysyn fft32x32s polysyn qplsf5 polysyn

L Try B prdd O Resource

1
0.8
0.6

0

o

o
IS

o
N

maxindex autcor sfcfiter bitonic pframe huffdec2 dbuffer transfo polysyn radial33
mergesortfft32x32s déarith strwc floydall polysyn fft32x32s polysyn qplsf5 polysyn

Fig. 5. Time breakdown for Cycle Scheduling and Scoreboard Scheduling.

phase is of comparable time complexity yet smaller than the operation Issu-
ing phase. For Scoreboard Scheduling (right side), the Try schedule phase is
consistently slightly more expensive than the Add schedule phase.

It also appears from Figure 5 that using finite state automata as proposed
by Bala & Rubin [3] for speeding up resource checking is not always justified,
in particular for processors whose reservation tables are single-cycle. For more
complex processors, it would be straightforward to replace the resource_table of
a Scoreboard Scheduling implementation by such finite state automata.

4.2 Experiments with the STMicroelectronics CLI-JIT

STMicroelectronics is developing a JIT compiler for the CLI program represen-
tation [4], whose targets are the STMicroelectronics ST200 VLIW family and
the ARM processors models 926E and 1176. Media processing applications are
developed in C or C++ for the sake of high performances, so this CLI-JIT com-
piler does not need to support managed data or other virtual machine features
that are required for the execution of C# programs. The STMicroelectronics
CLI-JIT compiler generates native code by running the following phases:

EExpression Trees B Instruction Selection OSSA Construction O SSA Destruction
W Register Allocation O Postpass Scheduling W Instruction Encoding OCreate&Patch Code

109% g S o T
90%
80%
70%
0%
50%

40%

30%

20%

10%

0%

]
&£

s‘@&by«@&&@égsw@c&@,gaﬁs&*«o\b@\s.@a@@&@@ﬂ@ﬁa@@&
o & o B R P T A AT P il . e
St TIPS ES TS GE S P fi PRI EEET T
-

Fig. 6. STMicroelectronics CLI-JIT compilation time breakdown.

Expression Trees The CLI expressions of the evaluation stack are typed and
converted to a tree form.

Instruction Selection Machine-level instructions are generated and the call-
ing conventions are implemented.

SSA Construction, SSA Destruction Coalesce register copies, satisfy the
ISA and calling conventions register constraints.

Register Allocation Linear-scan register allocation of [17].

Postpass Scheduling Inter-Block Scoreboard Scheduling as discussed.

Instruction Encoding Encode instructions, match bundle templates, encode
instruction groups into bundles.

Create & Patch Code Implant the native code in memory, including tram-
polines and relay jumps.

We applied the STMicroelectronics CLI-JIT compiler to a mix of audio, cryp-
tographic, video, signal processing, and media-bench programs, whose names
appear in Figure 6. These benchmarks were compiled from C to CLI executables
using the gcc/st/cli compiler [4] and the Mono ilasm tool. These experiments
show that Postpass Scheduling consumes on geometric average 10% of JIT com-
pilation time, closer to the 7% average of Instruction Encoding than to the 18%
average of the linear-scan Register Allocation. Instruction Encoding is more ex-
pensive on the ST200 VLIW processors than on scalar processors because it
entails an additional bundle template matching step, based on the parallel in-
structions group that result from scheduling and the current PC alignment.

5 Conclusions

We propose a postpass instruction scheduling technique motivated by Just-In-
Time (JIT) compilation for VLIW processors. This technique combines two
ideas: Scoreboard Scheduling, a restriction of classic Operation Scheduling that
considers only the time slots inside a window that moves forward in time; and
Inter-Block Scheduling, an iterative propagation of the scheduling constraints
across the control-flow graph, subject to the non-decrease of the schedule dates.
This Inter-Block Scoreboard Scheduling technique offers three benefits:

— reducing the instruction scheduling compilation time, compared to classic
Cycle Scheduling and Operation Scheduling;

— ensuring that all program paths do not present scheduling hazards, as re-
quired by processors without interlocking hardware;

— preserving prepass region schedules that are still valid when postpass schedul-
ing runs, in particular software pipelines without spill code.

Experiments with the STMicroelectronics ST200 VLIW production compiler and
the STMicroelectronics CLI-JIT compiler confirm the interest of our approach.

Our results further indicate that compiler instruction schedules produced by
Cycle Scheduling and Operation Scheduling are essentially unchanged by the
hardware operation scheduler of out-of-order superscalar processors. Indeed ac-
tive schedules are invariant under Scoreboard Scheduling. Finally, the proposed
non-decrease rule provides a simple way of protecting cyclic schedules such as
software pipelines from the effects of rescheduling with an acyclic scheduler.

6 Acknowledgments

Special thanks to Alain Darte for fruitful discussions that improved this paper.
Thanks to Giuseppe Desoli, Stefan Freudenberger, Mon-Ping Wang and Marco
Garatti, my esteemed colleagues as STMicroelectronics, for the sharing of their
extensive knowledge of VLIW compilation techniques.

References

1. S. G. Abraham. Efficient Backtracking Instruction Schedulers. Technical Report
HPL- 2000-56, Hewlett-Packard Laboratories, May 2000.

2. S. G. Abraham, V. Kathail, and B. L. Deitrich. Meld Scheduling: Relaxing Schedul-
ing Constraints across Region Boundaries. In MICRO 29: Proc. of the 29th annual
ACM/IEEE int. symp. on Microarchitecture, pages 308-321, 1996.

3. V. Bala and N. Rubin. Efficient Instruction Scheduling Using Finite State Au-
tomata. In MICRO 28: Proc. of the 28th annual int. symp. on Microarchitecture,
pages 46-56, 1995.

4. Marco Cornero, Roberto Costa, Ricardo Fernandez Pascual, Andrea Ornstein, and
Erven Rohou. An Experimental Environment Validating the Suitability of CLI as
an Effective Deployment Format for Embedded Systems. In 2008 International
Conference on High Performance Embedded Architectures and Compilers, 2008.

10.

11.

12.

13.

14.

15.

16.

17.

B. Dupont de Dinechin. From Machine Scheduling to VLIW Instruction Schedul-
ing. ST Journal of Research, 1(2), 2004.

B. Dupont de Dinechin. Scheduling Monotone Interval Orders on Typed Task
Systems. In 26th Workshop of the UK Planning And Scheduling Special Interest
Group (PlanSIG), Prague, Czech Republic, 2007.

P. Faraboschi, G Brown, J. A. Fisher, G. Desoli, and F. Homewood. Lx: a Technol-
ogy Platform for Customizable VLIW Embedded Processing. In ISCA’00: Proc. of
the 27th annual Int. Symposium on Computer Architecture, pages 203—-213, 2000.

Allen Leung, Krishna V. Palem, and Amir Pnueli. Scheduling Time-Constrained
Instructions on Pipelined Processors. ACM Trans. Program. Lang. Syst., 23(1):73—
103, 2001.

Steven S. Muchnick and Phillip B. Gibbons. Best of PLDI 1979 — 1999: Efficient
Instruction Scheduling for a Pipelined Architecture. SIGPLAN Notices, 39(4):167—
174, 2004.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Todd A. Proebsting and Christopher W. Fraser. Detecting Pipeline Structural
Hazards Quickly. In POPL’9/: Proceedings of the 21st symposium on Principles
of Programming Languages, pages 280-286, New York, NY, USA, 1994. ACM.

B. Ramakrishna Rau. Iterative Modulo Scheduling. International Journal of Par-
allel Processing, 24(1):3-64, Feb 1996.

A. Sprecher, R. Kolisch, and A. Drexl. Semi-Active, Active, and Non-Delay Sched-
ules for the Resource-Constrained Project Scheduling Problem. Furopean Journal
of Operational Research, 80:94-102, 1995.

V. Tang, J. Siu, A. Vasilevskiy, and M. Mitran. A Framework for Reducing Instruc-
tion Scheduling Overhead in Dynamic Compilers. In CASCON’06: Proc. of the
2006 Conf. of the Center for Advanced Studies on Collaborative Research, page 5,
2006.

C. Verbrugge. Fast Local List Scheduling. Technical Report SABLE-TR-2002-5,
School of Computer Science, McGill University, March 2002.

Oliver Wahlen, Manuel Hohenauer, Gunnar Braun, Rainer Leupers, Gerd Ascheid,
Heinrich Meyr, and Xiaoning Nie. Extraction of Efficient Instruction Schedulers
from Cycle-True Processor Models. In Proceedings of the 7th International Work-
shop on Software and Compilers for Embedded Systems (SCOPES 2003), volume
2826 of Lecture Notes in Computer Science, pages 167—181. Springer, 2003.

C. Wimmer and H. Mossenbock. Optimized Interval Splitting in a Linear Scan
Register Allocator. In VEE’05: Proc. of the 1st ACM/USENIX int. conf. on Virtual
FEzxecution Environments, pages 132—-141, 2005.

