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Abstract

Database systems hold mission critical information in all organi-
zations. Data are often replicated for being processed by different
applications as well as for disaster recovery. In order to help handle
these replications, it is useful to compare remote sets of data to de-
tect unwanted changes due to hardware, system, software, application,
communication or human errors. . . This paper presents an algorithm
based on operations and functions available in all relational database
systems to reconciliate remote tables by identifying inserted, updated
or deleted tuples with a small amount of communication. A tree of
checksums which covers the table contents is computed on each side
and merged level by level to identify the differing keys. The algorithm
is somehow an adaptation of Metzner [9] to our particular context. A
prototype implementation [4] is available as a free software. Experi-
ments show our approach to be effective even for tables available on a
fast local network.

1 Introduction

Relational database systems must hold reliably mission critical informa-
tion in all organizations. These data are often stored in multiple instances
through synchronous or asynchronous replication tools or with bulk data
transfers dedicated to various transactional and decisional applications. These
data replications can help enhance load sharing, handle system failures, ap-
plication, software or hardware migrations, as well as applicative transfers
from one site to another.

As trust does not preclude control, it is often desired to compare the data
between remote systems and identify inserted, deleted or updated tuples.
This is known as the set reconciliation problem. Few differences are expected
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between both data sets. Key issues include big data volumes, site remoteness
and low bandwidth. Transferring the whole data for comparison is not a
realistic option.

This paper presents a portable algorithm to compare relational database
tables which may reside on remote and heterogeneous DBMS such as open
source PostgreSQL and MySQL or proprietary Oracle and DB2. The al-
gorithm finds the key of inserted, updated or deleted tuples with respect
to a parametric subset of rows and columns. It relies on simple SQL con-
structs and functions available in any relational database system. Sum-
maries are extracted on each server and transfered to the client system
where the reconciliation is performed. A block parameter allows to optimize
the latency/bandwidth tradeoff. This algorithm is somehow adapted from
Metzner [9] with a parametric group size and a special handling of tuple
keys.

The paper is organized as follows: after this introduction, Section 2
details the related work. Next, Section 3 presents the comparison algorithm
and the SQL queries performed to build the necessary checksum structures
and compute the differences. The algorithm is then analyzed in Section 4 and
discussed in Section 5. Section 6 describes our prototype implementation [4]
developed in perl, a fully portable scripting language. Experiments are
reported in Section 7. Finally, Section 8 concludes our presentation.

2 Related Work

Suel and Nemon overview paper [13] analyzes many comparison algorithms
for delta compression and remote synchronization. A first class of problem
addresses locally available data sets, and targets identifying deltas. A second
class deal with data stored on remote locations, and aims at identifying
missing or differing parts without actually transferring the data. Another
key issue is whether the data are naturally ordered, such as a string or a
file composed of pages, or considered as a set of distinct unrelated elements,
such as the files in a file system or the tuples of a relation.

String to string combinatorial research problems are described in 1972 [3].
Solutions are found for string correction [18], string searching [7, 2], and
delta text or binary file generation [12, 10, 16] such as performed by the
diff command. These various approaches do not apply to our problem as
they deal with locally available data sequences.

The remote comparison problem has been addressed with various tech-
niques. Metzner [9] presents a checksum binary-tree algorithm which iden-
tifies differing pages of a file. Our approach is somehow an adaptation to
the relation set structure with a special management of the keys to detect
tuple updates as opposed to inserts and deletes, and a block parameter to
adjust the tree degree.
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The practical rsync algorithm [15, 14] is well known to system admin-
istrators. It is asymmetrical in nature. Blocks of data already available
on one side are identified and complementary missing data are sent to the
other side. Block shifts are identified at the byte level thanks to a sliding
checksum computation. With respect to our problem, such approach could
result in easy identification of inserts, but very poor network performances
for updates and deletes.

Elegant coding-theory based solutions [1, 6, 11] reduce the number of
communication rounds and the amount of transfers for comparing remote
data sets. The key idea is that as the data are already available with very
few differences, only the error correcting part of a virtual transmission is
sent and allows to reconstruct the differences. However, such techniques
need significant mathematical computations on both sides which are not
available with the standard SQL functions of relational database system.

Maxia [8] presents several asymmetric algorithms to compare remote re-
lations using checksums. One level of summary table is used, leading to an
overall communication complexity in O(k(b + n/b)) where k, n, b are the
number of differences, the table size and a block size. The algorithm for
inserts and updates does not detect deletes and does not perform properly
in some limit cases, whereas the algorithm for deletes does not work if other
operations where performed. In contrast, our solution provides a single sym-
metric algorithm for detecting all differences with a better communication
complexity.

Software products are also available for purchase such as DBDiff [5].
Although this tool compares table contents, the actual algorithm used and
its bandwidth requirements are unclear. Such package also focus on table
structure comparisons, so as to derive SQL ALTER commands necessary to
shift from one relational schema to another.

3 Remote Comparison Algorithm

Let us now present the hierarchical algorithm for comparing two remote
database tables named T with K the primary key, V the attributes to be
compared, and W a condition to select a subset of the rows to be analyzed.

Let n be the table size (number of rows in T ), l the tuple length (size of
attributes), k the number of differences to be found, h a checksum function
(possibly a cryptographic hash function) of size c bits, b a power of two
block size used as a folding factor. Let d = d ln(n)

ln(b) e be the tree depth, and
mi = bd−i − 1 the grouping mask for level i, plus md+1 = 0.

The algorithm is fully symmetrical. It computes on both sides a hier-
archical tree of summaries shown in Fig. 1. They are then scanned from
the root downwards to identify the differing tuple keys by investigating the
differences concurrently. The reconciliation is achieved by merging the sum-
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Figure 1: Full tree of summary tables

maries at each level. It does not decide what to do with the differences, but
simply locates the offending keys and reports them.

First, an initial summary table T0 storing both tuple keys and signatures
is built as shown in Fig. 2. Second, aggregations in Fig. 3 computes the
summary tree structure for all the tuples. The last table only holds one
summary which checksums the whole table. Third, remote selects in Fig. 4
on the summary tables allows to reconciliate the tuples and thus to identify
inserts, updates and deletes by a merge algorithm which deals with key and
value checksums in Fig 5. It first compares the one row of table Td. If
they are different, it proceeds down the tree to check for the source of the
differences up to the lower checksum table where the actual tuple keys are
available.

4 Analysis

The number of requests of the client-server protocol depends whether there
are differences: an initial request gets the table size which is necessary to
compute the tree depth, and then from 1 up to d + 1 queries are performed
for the actual reconciliation. Thus there are O(ln(n)/ ln(b)) requests.

The amount of data communicated at each stage depends on the se-
lected block size and the number of differences to be found. For small
k, O(kcbdln(n)/ ln(b)e) data are communicated: each difference is investi-
gated on the depth of the tree, and each found block to be merged contains
cb bits. As k grows, a steady state is reached when all blocks at level 0 are
scanned as they all contain at least one difference: the communication is
then O(cnb/(b− 1)).

There is a latency/bandwidth tradeoff implied by the choice of the block
folding factor: the higher b the higher the amount of data to be transfered,
but the lower the number of requests as the depth is reduced.

The amount of computation and I/O performed by the database depends
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CREATE TEMP TABLE T0 AS
SELECT

K AS key,
h(K) AS id,
h(K, V ) AS val

FROM T WHERE W;

Figure 2: Initial summary ta-
ble

CREATE TEMP TABLE Ti AS
SELECT
id&mi AS id,
XOR(val) AS val

FROM Ti−1

GROUP BY id&mi;

Figure 3: Summary tables

// get checksums at level i
list getIds(c, i, what)

withkey = (i==0)? ”, key”:
””

return sql2list(c, ”
SELECT id, val $withkey
FROM Ti

WHERE id&mi+1 IN
($what)

ORDER BY id ASC”)

// show a block of matching keys
showKeys(c, msg, l)

for v,i in l
for key in sql2list(c, ”
SELECT key FROM T0

WHERE id&mi = $v”)
print ”$msg $k”

Figure 4: Summary queries

// reconciliate on connections c1 c2
merge(c1, c2)

list curr = (0), next, ldel, lins;
level=d;
while (level>= 0 and curr)

// get checksums at level
list lid1 = GetIds(c1, level, curr),
list lid2 = GetIds(c2, level, curr);
// merge both sorted lists
while (i1 or i2 or lid1 or lid2)

i1,v1,k1 = shift(lid1) if no i1;
i2,v2,k2 = shift(lid2) if no i2;
if (i1 and i2 and i1==i2)

// matching key checksum
if (v1!=v2)

// differing value checksum
if (level==0) print ”UPDATE $k1”
else append i1 to next

elsif (no i2 or i1<i2)
// single checksum in lid1
if (level==0) print ”DELETE $k1”
else append (i1,level) to ldel
undef i1

elsif (no i1 or i1>i2)
// single checksum in lid2
if (level==0) print ”INSERT $k2”
else append (i2,level) to lins
undef i2

level--
curr = next

// whole block differences
showKeys(c2, ”INSERT”,lins)
showKeys(c1, ”DELETE”,ldel)

Figure 5: Reconciliation merge algorithm
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on the optimizations implemented by the query processor and on the data
size. For building the initial summary table, all data O(nl) must be read.
The first aggregation can be performed with a merge technique which re-
quires a sort in O(n ln(n)), or an hash technique which is done on the fly
in O(n), and the subsequent ones are reduced by power of b leading to a
b/(b− 1) factor. The final requests for the merge phase just require to scan
some data, which may depends on the presence of relevant indexes to be
created possibly in n ln(n) operations. Thus the overall computation cost
on each side is O(nl + n ln(n)b/(b− 1)).

5 Discussion

A key hypothesis is that few differences are expected: otherwise the search
process scans most of the table through many requests, although an ordered
scan of the initial table would allow to identify the missing or differing items
in a single pass. If the hypothesis is not met, the implementation may allow
the user to stop the computation when the number of differences encountered
is above a given threshold.

One checksum computation is performed on the key and another on
the key and value attributes. The first hash aims at randomizing the key
distribution so that aggregations group tuples evenly, and so that the com-
putations do not depend of the key type and composition. It is also needed
to differentiate updates from inserts and deletes. The second hash of the
key and value part identifies the items. The key in the second checksum is
necessary and is not redundant with the previous hash: otherwise a simple
exchange of values between two tuples would not be detected if they are
aggregated in the same group.

As is usual with the choice of the checksum functions, its size (c bits)
and quality should be good enough to avoid collisions. The consequence of
collisions in the key part is that two tuples are not differentiated, hence a
difference detected on one would also be reported about the other as a false
positive. A collision of the key and value hash for the same key hash would
result in an actual difference not to be reported, thus leading to a more
annoying false negative. This later case is rare as it is conditional to the
collision occurring for the very same key hash, that is either with the same
key or with a collision of the key hash part: indeed, the second hash is only
used for matching key hashes in the merge procedure. Cryptographic hash
functions with c >= 128 make collisions quite improbable.

The tree of aggregations computes a common checksum by combining
tuple chunks. The operation used should treat individual checksum bits
equally. Exclusive-or (XOR) is the usual operator of choice if available.
If not, the SUM aggregation can be considered, provided it applies to the
checksum result type. The group criterion should also be compatible with
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the checksum result and allow to define tuple chunks. In order to be able
to compute directly the group of a tuple at any level, its computation must
only depend on the level and not on the groups computed at the preceding
levels. This property is achieved by a binary mask or a modulo operations
on the power of an integer.

The algorithm is fully symmetrical. Inserts and deletes are only parted
on the convention that the second table serves as the reference in the com-
parison, but the structure of the algorithm is the same on both part. The
algorithm handles missing intermediate keys with two special lists, lins and
ldel. This case arises if a whole chunk of tuples is removed or added.

As noted by Maxia [8], it is possible to maintain the checksum directly
in the initial table or in another by mean of trigger procedures, so that they
would not need to be computed over and over. It could also be integrated
in the database as a new kind of hash index dedicated to remote table
comparison.

6 Implementation

A prototype implementation which targets PostgreSQL [17] is available [4].
The tool is implemented as a stand-alone perl [19] script which connects to
the databases through the standard DBI interface. Several functionalities
are needed in order to implement the scheme: the ability to replace null
values, a checksum function, a grouping criteria and a relevant aggregate
function.

First, as NULL values propagate through SQL functions, they must be
dealt with in order to keep meaningful checksums. PostgreSQL provides the
COALESCE function which can be used to substitute NULL values. Second,
PostgreSQL includes the MD5 cryptographic hash function on text or byte-
array data, which although not cryptographic secure any more [20] is quite
good enough as a checksum. Third, a criterion must be chosen to group
the tuples in the tree building phase. It must be compatible with the data
type holding the key checksum. For integer types, modulo operations can
be used to handle any folding factor. For binary types, a mask comparison
provides a simple solution with power of two block sizes. Finally, a checksum
combining aggregate function must be provided. Standard SQL provides
COUNT, SUM, AVG and STDDEV aggregates which do not optimally suit
our needs. However, adding an aggregate XOR based on the corresponding
binary operator is simple, as shown in Fig. 6.

There is a type issue in the above simple approach based on standard
function available in current PostgreSQL: the MD5 function result is an hex-
adecimal text. However, no exclusive-or is available on such a format, and
there is no standard way to convert this format to a compatible format. A
possible solution is to decode the hexadecimal string into a byte array, and
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CREATE AGGREGATE XOR(
BASETYPE = BIT,
SFUNC = bitxor,
STYPE = BIT

);

Figure 6: Add XOR aggregate

LOAD ’$libdir/casts’;
CREATE OR REPLACE
FUNCTION bytea2varbit(BYTEA)
RETURNS VARBIT
LANGUAGE C
AS ’$libdir/casts’, ’bytea2varbit’;

Figure 7: Add a dynamically linked
function

to rely on loadable user defined function in Fig. 7 to convert this type to
the bit array type for which the XOR operator is implemented.

The table comparison can be restricted so as to perform partial checks.
The implementation specifies the attributes to be considered with an option,
and the rows can be selected with a parametric WHERE close.

As far as portability is concerned, our implementation targets post-
greSQL, but can be easily tuned for other databases through parametric
templates. The generated SQL queries are pretty straightforward. The
main portability issue is rather the availability of the support functions and
operators. Although the checksum MD5 function is widely available, the
XOR aggregate is not, and some database systems may not be extensible.
In such cases, the SUM aggregation can be used as an alternative.

7 Experiments

Let us report experimental results obtained with our tool. Randomly gener-
ated tables from 10K to 500K rows with 400-byte long records are compared
in a bandwidth bound environment. Varying block sizes and number of dif-
ferences are investigated.

The following measures are to be taken with caution: they are sensi-
tive to many parameters such as the hardware including hard disk, cpu and
memory, database configuration and optimization, as well as network la-
tency, bandwidth, mtu and congestion status. . . Overall elapsed times were
used. It encompasses both computation and network, the preeminence of
which varies depending on the actual conditions.

Fig. 8 shows data collected with connections established on a local area
network, without any bandwidth restriction. The horizontal axis is the log2

group size used for building the checksum tree. The vertical axis in the
normalized time to perform the reconciliation in ms per tuple. Different
table sizes are investigated to recover 3 differences. All figures are very
similar whatever the table and group size, but for the smallest table: the
algorithm performs close to linearly in this context, where the dominating
factor is the database computations.
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In Fig. 9, an average less than 100KB/s network link is used to recon-
ciliate 100K tuple tables with different block parameters. The number of
differing tuples is made to vary from 3 to 100, and the comparison time is
displayed in seconds. Average block from 1024 = 210 to 8192 = 213 performs
best. Small block values are loaded by network latency and congestion.

A low bandwidth (modem class) network under partial congestion is used
in Figures 10 and 11. In the former, 3 differences are investigated for 5 table
sizes and varying block size. The network bandwidth and latency dominates
the measures: for average block sizes, the measures are quite independent
of the table size. In the later figure, the block size is fixed to 10 and the
number of differences is scaled up. The linear dependency of the algorithm
in network bound context clearly shows for large number of differences, and
for higher figures the saturation effect is encountered when all checksum
blocks are fetched.

These figures can be compared to the direct approach which consist of
downloading the data from one site to the other, restoring them into a
database and then compare them with an external join. For the 100K table
size and low bandwidth, the download requires one hour. For the average
bandwidth solution, the needed time is 10 minutes, and the LAN time is
about 10 seconds. Our algorithm implementation performs better in all our
tests that this brute force approach, even with the high bandwidth local
area network. Based on our experiments, the overall best block size for our
algorithm in widely differing network conditions is in the 1024-4096 range.

8 Conclusion

This paper describes an adaptation of Metzner [9] algorithm dedicated to
remote relational database table comparisons with a parametric block size.
It allows to identify the key of inserted, deleted or updated tuples. This
algorithm can be implemented on top of reasonable instances of SQL: most
of the checksum work is performed through database requests, and the client
tool basically performs a reconciliation merge of partial checksums fetched
level by level.

All the experiments of our remote comparison algorithm show better
performances than the brute force download solution, whatever the chosen
parameters. Although this is not a general rule, this shows nevertheless that
our implementation provides an elegant and portable solution to remote
comparison of database tables even on a high bandwidth network. Remote
comparison really mean not directly available in the same database.

Future work includes improving the implementation so as to deal with
heterogeneous database systems without additional parameterization.
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