
Induction Variable Analysis with Delayed

Abstractions

Sebastian Pop 1, Albert Cohen 2, and Georges-André Silber 1

1 CRI, Mines Paris, Fontainebleau, France
2 ALCHEMY group, INRIA Futurs, Orsay, France

Abstract. This paper presents the design of an induction variable an-
alyzer suitable for the analysis of typed, low-level, three address repre-
sentations in SSA form. At the heart of our analyzer is a new algorithm
recognizing scalar evolutions. We define a representation called trees of
recurrences that is able to capture different levels of abstractions: from
the finer level that is a subset of the SSA representation restricted to
arithmetic operations on scalar variables, to the coarser levels such as
the evolution envelopes that abstract sets of possible evolutions in loops.
Unlike previous work, our algorithm tracks induction variables without
prior classification of a few evolution patterns: different levels of abstrac-
tion can be obtained on demand. The low complexity of the algorithm fits
the constraints of a production compiler as illustrated by the evaluation
of our implementation on standard benchmark programs.

1 Introduction and Motivation

Supercomputing research has produced a wealth of techniques to optimize a pro-
gram and tune code generation for a target architecture, both for uniprocessor
and multiprocessor performance [35, 2]. But the context is different when dealing
with common retargetable compilers for general-purpose and/or embedded ar-
chitectures: the automatic exploitation of parallelism (fine-grain or thread-level)
and the tuning for dynamic hardware components become far more challeng-
ing. Modern compilers implement some of the sophisticated optimizations in-
troduced for supercomputing applications [2], provide performance models and
transformations to improve fine-grain parallelism and exploit the memory hi-
erarchy. Most of these optimizations are loop-oriented and assume a high-level
code representation with rich control and data structures: do loops with regular
control, constant bounds and strides, typed arrays with linear subscripts. Good
optimizations require manual efforts in the syntactic presentation of loops and
array subscripts (avoiding, e.g., while loops, pointers, exceptions, or goto state-
ments). Programs written for embedded systems often make use of such low-level
constructs, and this programming style is not suited to traditional source-to-
source loop nest optimizers. Because any rewrite of the existing code involves an
important investment, we see the need of a compiler that could optimize low-
level constructs. Several works demonstrated the interest of enriched low-level
representations [15, 23]: they build on the normalization of three address code,



adding data types, Static Single-Assignment form (SSA) [6, 19] to ease data-
flow analysis and scalar optimizations. Starting from version 4.0, GCC uses such
a representation: GIMPLE [21, 17], a three-address code derived from SIMPLE

[12]. In a three-address representation, subscript expressions, loop bounds and
strides are spread across several instructions and basic blocks. The most popular
techniques to retrieve scalar evolutions [34, 8, 27] are not well suited to work on
loosely structured loops because they rely on classification schemes into a set
of predefined forms based on pattern-matching rules. Such rules are sometimes
sufficient at the source level, but too restrictive to cover the wide variability
of inductive schemes on a low-level representation. To address the challenges of
induction variable recognition on a low-level representation, we designed a gen-
eral and flexible algorithm to build closed form expressions for scalar evolutions.
This algorithm can retrieve array subscripts, loop bounds and strides lost in the
lowering to three-address code, as well as other properties that do not appear
in the source code. We demonstrate that induction-variable recognition and de-
pendence analysis can be effectively implemented at such a low level. We also
show that our method is more flexible and robust than comparable solutions on
high-level code [8, 32, 31], since our method captures affine and polynomial closed
forms without restrictions on the complexity of the flow of control, the recursive
scalar definitions, and the intricateness of φ nodes. Finally, speed, robustness and
language-independence are natural benefits of a low-level SSA representation.

Intermediate representations. We recall some SSA terminology, see [6, 19] for
details: the SSA graph is the graph of def-use chains; φ nodes occur at merge
points and restore the flow of values from the renamed variables; φ nodes are
split into the loop-φ and condition-φ nodes. In this paper, we use a typed three-
address code in SSA form. Control-flow primitives are a conditional expression
if, a goto expression, and a loop annotation discovered from the control-flow
graph: loop (ℓk) stands for loop number k, and ℓk denotes its associated implicit
counter. The number of iterations is computed from the evolutions of scalars
in the loop exit conditions, providing informations lost in the translation to a
low-level, or not exposed at source level, as in while or goto loops.

Introductory examples. To illustrate the main issues and concepts, we consider
the examples in Figure 1. A closed-form for f in the first example is a second-
degree polynomial. In the second example, d has a multivariate evolution: it
depends on several loop counters. To compute the evolution of c, x and d in
the second example, one must know the trip count of the inner loop, here 10
iterations. Yet, to statically evaluate the trip count of ℓ2 one must already un-
derstand the evolutions of c and d. In the third example, c is a typical case
of wrap-around variable [34]. In the fourth example a and b have linear closed
forms. Unlike our algorithm, previous works could not compute this closed form
due to the intricateness of the SSA graph. The fifth example illustrates a data
dependence problem: when language standards define modulo arithmetics for a
type, the compiler has to respect effects of overflows, and otherwise, as in the
sixth example, the compiler can deduce constraints from undefined behavior.



a = 3;
b = 1;
loop (ℓ1)

c = φ(a, f);
d = φ(b, g);

if (d>=123) goto end;
e = d + 7;
f = e + c;

g = d + 5;
end:

First example: polynomial func-
tions. At each step of the loop,
an integer value following the
sequence 1, 6, 11, . . . , 126 is as-
signed to d, that is the affine
function 5ℓ1 + 1; a value in the
sequence 3, 11, 24, . . . , 1703 is as-
signed to f, that is a polynomial

of degree 2: 5
2

ℓ1
2 + 11

2
ℓ1 + 3.

a = 3;

loop (ℓ1)
c = φ(a, x);

loop (ℓ2)
d = φ(c, e);
e = d + 1;

t = d - c;
if (t>=9) goto end2;

end2:
x = e + 3;

if (x>=123) goto end1;
end1:

Second example: multivariate
functions. The successive values
of c are 3, 17, 31, . . . , 115,
that is the affine univariate
function 14ℓ1 + 3. The successive
values of x in the loop are
17, 31, . . . , 129 that is 14ℓ1 + 17.
The evolution of variable d,
3, 4, 5, . . . , 13, 17, 18, 19, . . . , 129
depends on the iteration num-
ber of both loops: that is the
multivariate affine function
14ℓ1 + ℓ2 + 3.

loop (ℓ1)

a = φ(1, b);
if (a>=100) goto end1;
b = a + 4;

loop (ℓ2)
c = φ(a, e);

e = φ(b, f);
if (e>=100) goto end2;

f = e + 6;
end2:

end1:

Third example: wrap-around. The sequence
of values taken by a is 1, 5, 9, . . . , 101
that can be written in a condensed form as
4ℓ1 + 1. The values taken by variable e are
5, 11, 17, . . . , 95, 101, 9, 15, 21, . . . , 95, 101
and generated by the multivariate
function 6ℓ2 + 4ℓ1 + 5. These two
variables are used to define the variable
c, that will contain the successive values
1, 5, 11, . . . , 89, 95, 5, 9, 15, . . . , 89, 95:
the first value of c in the loop ℓ2 is the
value coming from a, while the subsequent
values are those of variable e.

loop (ℓ1)
a = φ(0, d);

b = φ(0, c);
if (a>=100) goto end;
c = a + 1;

d = b + 1;
end:

Fourth example : periodic func-
tions. Both a and b have affine
evolutions: 0, 1, 2, . . . , 100, be-
cause they both have the same
initial value. However, if their ini-
tial value is different, their evo-
lution can only be described by a
periodic affine function.

loop (ℓ1)

(unsigned char) a = φ(0, c);
(int) b = φ(0, d);

(unsigned char) c = a + 1
(int) d = b + 1
if (d >= 1000) goto end;

T[b] = U[a];
end:

Fifth example: effects of types on the evo-
lution of scalar variables. The C program-
ming language defines modulo arithmetics
for unsigned typed variables. In this exam-
ple, the successive values of variable a are
periodic: 0, 1, 2, . . . , 255, 0, 1, . . ., or in a
condensed notation ℓ1 mod 256.

loop (ℓ1)
(char) a = φ(0, c);

(int) b = φ(0, d);
(char) c = a + 1

(int) d = b + 1
if (d > N) goto end;

end:

Sixth example: inferring prop-
erties from undefined behavior.
Signed types overflow are not de-
fined in C. The behavior is only
defined for the values of a in
0, 1, 2, . . . , 126, consequently d is
only defined for 1, 2, 3, . . . , 127,
and the loop is defined only for
the first 127 iterations.

Fig. 1. Examples

Overview of the paper. In the following, we expose a set of techniques to extract
and to represent evolutions of scalar variables in the presence of complex control
flow and intricate inductive definitions. We focus on designing low-complexity
algorithms that do not sacrifice on the effectiveness of retrieving precise scalar
evolutions, using a typed, low-level, SSA-form representation of the program.
Section 2 introduces the algebraic structure that we use to capture a wide spec-
trum of scalar evolution functions. Section 3 presents the analysis algorithm to
extract closed form expressions for scalar evolutions. Section 4 compares our
method to other existing approaches. Finally, section 5 concludes and sketches
future work. For space constraints, we have shortened this presentation. A longer
version of the paper is available as a technical report [26].

2 Trees of Recurrences

In this section, we introduce the notion of Tree of Recurrences (TREC), a closed-
form that captures the evolution of induction variables as a function of iteration



indices and allows an efficient computation of values at given iteration points.
This formalism extends the expressive power of Multivariate Chains of Recur-
rences (MCR) [3, 14, 36, 32] by symbolic references. MCR are obtained by an
abstraction operation that instantiate all the varying symbols: some evolutions
are mapped to a “don’t know” symbol ⊤. Arithmetic operations on MCR are
defined as rewriting rules [32]. Let F (ℓ1, ℓ2, . . . , ℓm), or F (ℓ), represent the evo-
lution of a variable inside a loop of depth m as a function of ℓ1, ℓ2, . . . , ℓm. F

can be written as a closed form Θ, called TREC, that can be statically processed
by further analyzes and efficiently evaluated at compile-time. The syntax of a
TREC is derived from MCR and inductively defined as: Θ = {Θa, +, Θb}k or
Θ = c, where Θa and Θb are trees of recurrences and c is a constant or a vari-
able name, and subscript k indexes the dimension. As a form of syntactic sugar,
{Θa, +, {Θb, +, Θc}k}k = {Θa, +, Θb, +, Θc}k.

Evaluation of TREC. The value Θ(ℓ1, ℓ2, . . . , ℓm) of a TREC Θ is defined as
follows: if Θ is a constant c then Θ(ℓ) = c, else Θ is {Θa, +, Θb}k and

Θ(ℓ) = Θa(ℓ) +

ℓk−1
X

l=0

Θb(ℓ1, . . . , ℓk−1, l, ℓk+1, . . . , ℓm) .

The evaluation of {Θa, +, Θb}k for a given ℓ matches the inductive updates
across ℓk iterations of loop k: Θa is the initial value, and Θb the increment in
loop k. This is an exponential algorithm to evaluate a TREC, but [3] gives a
linear time and space algorithm based on Newton interpolation series. Given a
univariate MCR with c0, c1, . . . , cn, constant parameters (either scalar constants,
or symbolic names defined outside loop k):

{c0, +, c1, +, c2, +, . . . , +, cn}k(ℓ) =

n
X

p=0

cp

 

ℓk

p

!

. (1)

This result comes from the following observation: a sum of multiples of binomial
coefficients — called Newton series — can represent any polynomial. The closed
form for f in the first example of Figure 1 is the second order polynomial F (ℓ1) =
5

2
ℓ1

2 + 11

2
ℓ1 + 3 = 3

(

ℓ1
0

)

+ 8
(

ℓ1
1

)

+ 5
(

ℓ1
2

)

, and is written {3, +, 8, +, 5}1. The
coefficients of a TREC derive from a finite differentiation table: for example, the
coefficients for the TREC associated with 5

2
ℓ1

2 + 11

2
ℓ1 +3 can be computed either

by differencing the successive values [11]:

ℓ1 0 1 2 3 4

c0 3 11 24 42 65
c1 8 13 18 23
c2 5 5 5
c3 0 0

or, by directly extracting the coefficients from the code [32]. We present our algo-
rithm for extracting TREC from a SSA representation in Section 3. We illustrate
the fast evaluation of a TREC from the second introductory example Figure 1,
where the evolution of d is the affine equation F (ℓ1, ℓ2) = 14ℓ1 + ℓ2 +3. A TREC
for d is Θ(ℓ1, ℓ2) = {{3, +, 14}1, +, 1}2, that can be evaluated for ℓ1 = 10 and
ℓ2 = 15 as follows:

Θ(10, 15) = {{3, +, 14}1, +, 1}2(10, 15) = 3 + 14 ·

 

10

1

!

+

 

15

1

!

= 158 .



Instantiation of TREC and abstract envelopes. In order be able to use the effi-
cient evaluation scheme presented above, symbolic coefficients of a TREC have to
be analyzed: the role of the instantiation pass is to limit the expressive power of
TREC to MCR. Difficult TREC constructs such as exponential self referring evo-
lutions (as the Fibonacci sequence that defines the simplest case of the class of
mixers: fib → {0, +, 1, +, f ib}k) are either translated to some appropriate rep-
resentation, or discarded. Optimizers such as symbolic propagation could handle
such difficult constructs, however they lead to problems that are difficult to solve
(e.g. determining the number of iterations of a loop whose exit edge is guarded
by a Fibonacci sequence). Because a large class of optimizers and analyzers are
expecting simpler cases, TREC information is filtered using an instantiation pass.
Several abstract views can be defined by different instantiation passes, such as
mapping every non polynomial scalar evolution to ⊤, or even more practically,
mapping non affine functions to ⊤. In appropriate cases, it is natural to map
uncertain values to an abstract value: we have experimented instantiations of
TREC with intervals, in which case we obtain a set of possible evolutions that
we call an envelope. Allowing the coefficients of TREC to contain abstract scalar
values is a more natural extension than the use of maximum and minimum func-
tions over MCR as proposed by van Engelen in [31] because it is then possible
to define other kinds of envelopes using classic scalar abstract domains, such as
polyhedra, octagons [18], or congruences [10].

Peeled trees of recurrences. A frequent occurring pattern consists in variables
that are initialized to a value during the first iteration of a loop, and then is
replaced by the values of an induction variable for the rest of iterations. We
have chosen to represent these variables by explicitly listing the first value that
they contain, and then the evolution function that they follow. The peeled TREC
are described by the syntax (a, b)k whose semantics is given by:

(a, b)k(x) =

(

a if x = 0,

b (x - 1) for x ≥ 1,

where a is a TREC with no evolution in loop k, b is a TREC that can have
an evolution in loop k, and x is indexing the iterations in loop k. Most closed
forms for wrap-around variables [34] are peeled TREC. Indeed, back to the third
introductory example (see Figure 1), the closed form for c can be represented
by a peeled multivariate affine TREC: ({1, +, 4}1, {{5, +, 4}1, +, 6}2)2. A peeled
TREC describes the first values of a closed form chain of recurrence. In some cases
it is interesting to replace it by a simpler MCR, and vice versa, to peel some iter-
ations out of a MCR. For example, the peeled TREC (0, {1, +, 1}1)1 describes the
same function as {0, +, 1}1. This last form is a unique representative of a class of
TREC that can be generated by peeling one or more elements from the beginning.
Simplifying a peeled TREC amounts to the unification of its first element with
the function represented in the right-hand side of the peeled TREC. A simple uni-
fication algorithm tries to add a new column to the differentiation table without



changing the last element in that column. Since this first column contains the
coefficients of the TREC, the transformation is possible if it does not modify the
last coefficient of the column, as illustrated in Figure 2. This technique allows

ℓ1 0 1 2 3 4

c0 3 11 24 42 65
c1 8 13 18 23
c2 5 5 5
c3 0 0

ℓ1 0 1 2 3 4 5

c0 0 3 11 24 42 65
c1 3 8 13 18 23
c2 5 5 5 5
c3 0 0 0

Fig. 2. Adding a new column to the differentiation table of the chain of recur-
rence {3, +, 8, +, 5}1 leads to the chain of recurrence {0, +, 3, +, 5}1.

to unify 29 wrap around loop-φ in the SPEC CPU2000, 337 on the GCC code
itself, and 5 on the JavaGrande. Finally, we formalize the notion of peeled TREC

equivalence class: given integers v, a1, . . . , an, a TREC c = {a1, +, . . . , +, an}1,
a peeled TREC p = (v, c)1, and a TREC r = {b1, +, . . . , +, bn−1, +, an}1, with
the integer coefficients b1, . . . , bn−1 computed as follows: bn−1 = an−1 − an,
bn−2 = an−2 − bn−1, . . ., b1 = a1 − b2, we say that r is equivalent to p if and
only if b1 = v.

Typed and periodic trees of recurrences. Induction variable analysis in the con-
text of typed operations is not new: all the compilers that have loop optimizers
based on typed intermediate representations have solved this problem. However
there is little literature that describes the problems and solutions [33]: these de-
tails are often considered too low level, and language dependent. As illustrated
in the fifth introductory example, in Figure 1, the analysis of data dependences
has to correctly handle the effects of overflowing on variables that are indexing
the data. One of the solutions for preserving the semantics of wrapping types
on TREC operations is to type the TREC and to map the effects of types from
the SSA representation to the TREC representation. For example, the conver-
sion from unsigned char to unsigned int of TREC {(uchar)100, +, (uchar)240}1

is {(uint)100, +, (uint)0xfffffff0}1, such that the original sequence remains
unchanged (100, 84, 68, . . .). The first step of a TREC conversion proves that
the sequence does not wrap. In the previous example, if the number of it-
erations in loop 1 is greater than 6, the converted TREC should also con-
tain a wrap modulo 256, as illustrated by the first values of the sequence:
100, 84, 68, 52, 36, 20, 4, 244, 228, . . .. When it is impossible to prove that an evo-
lution cannot wrap, it is safe to assume that it wraps, and keep the cast:
(uint)({(uchar)100, +, (uchar)240}1). Another solution is to use a periodic TREC,
that lists all the values in a period: in the previous example we would have to
store 15 values. Using periodic TREC for sequences wrapping over narrow types
can seem practical, but this method is not practical for arbitrary sequences over
wider types. Periodic sequences may also be generated by flip-flop operations,
that are special cases of self referenced peeled TREC. Variables in a flip-flop
exchange their initial values over the iterations, for example:

flip→ (3, 5, flip)k(x) = [3, 5]k(x) =

(

3 if x = 0 mod 2,

5 if x = 1 mod 2.



Exponential trees of recurrences. The exponential MCR [3] used by [32] and then
extended to handle sums or products of polynomial and exponential evolutions
[31] are useless in compiler technology for typed integer sequences, as integer
typed arithmetic has limited domains of definition. Any overflowing operation
either has defined modulo semantics, or is not defined by the language standard.
The longer exponential integer sequence that can exist for an integer type of size
2n is n− 1: left shifting the first bit n− 2 times. Storing exponential evolutions
as peeled TREC seems efficient, because in general n ≤ 64. We acknowledge
that exponential MCR can have applications in compiler technology for floating
point evolutions, but we have intentionally excluded floating point evolutions for
simplifying this presentation. The next section will present our efficient algorithm
that translates a part of the SSA dealing with scalar variables to TREC.

3 Analysis of Scalar Evolutions

We will now present an algorithm to compute closed-form expressions for in-
ductive variables. Our algorithm translates a subset of the SSA to the TREC

representation, interprets a part of the expressions and enriches the available
information with properties that it computes, as the number of iterations, or the
value of a variable at the end of a loop. It extends the applicability of classic
optimizations, and allows the extraction of precise high level informations. We
have designed our analyzer such that it does not assume a particular control-flow
structure and makes no restriction on the recursive intricate variable definitions.
It however fails to analyze irreducible control flow graphs [1], for which an un-
computable evolution ⊤ is returned. Our analysis does not use the syntactic
information, making no distinction between names defined in the code or intro-
duced by the compiler. The algorithm is also able to delay a part of the analysis
until more information is known by leaving symbolic names in the target rep-
resentation. The last constraint for inclusion in a production compiler is that
the analyzer should be linear in time and space: even if the structure of our
algorithm is complex, composed of a double recursion as sketched in Figure3,
it presents similarities with the algorithm for linear unification by Paterson and

Analyze Evolution BuildUpdateExprInstantiateEvolutionComputeLoopPhiEvolutions

Fig. 3. Bird’s eye view of the analyzer

Wegman [24], where the double recursion is hidden behind a single recursion
with a stack.



3.1 Algorithm

Figures 4 and 5 present our algorithm to compute the scalar evolutions of all vari-
ables defined by loop-φ nodes: ComputeLoopPhiEvolutions is a driver that
illustrates the use of the analyzer and instantiation. In general, AnalyzeEvo-

lution is called for a given loop number and a variable name. The evolution
functions are stored in a database that is visible only to AnalyzeEvolution,
and that is accessed using Evolution[n], for an SSA name n. The initial value
for a not yet analyzed name is ⊥. The cornerstone of the algorithm is the

Algorithm: ComputeLoopPhiEvolutions

Input: SSA representation of the procedure
Output: a TREC for every variable defined by loop-φ nodes

For each loop l in a depth-first traversal of the loop nest
For each loop-φ node n in loop l

InstantiateEvolution(AnalyzeEvolution(l, n), l)

Algorithm: AnalyzeEvolution(l, n)
Input: l the current loop, n the definition of an SSA name
Output: TREC for the variable defined by n within l

v ← variable defined by n

ln ← loop of n

If Evolution[n] 6= ⊥ Then res ← Evolution[n]
Else If n matches ”v = constant” Then res ← constant

Else If n matches ”v = a” Then res ← AnalyzeEvolution(l, a)
Else If n matches ”v = a ⊙ b” (with ⊙ ∈ {+,−, ∗}) Then

res ← AnalyzeEvolution(l, a) ⊙ AnalyzeEvolution(l, b)
Else If n matches ”v = loop-φ(a, b)” Then

(notice a is defined outside loop ln and b is defined in ln)
Search in depth-first order a path from b to v:
(exist, update) ← BuildUpdateExpr(n, definition of b)
If not exist (if such a path does not exist) Then res ← (a, b)l: a peeled TREC

Else If update is ⊤ Then res ← ⊤
Else res ← {a, +, update}l: a TREC

Else If n matches ”v = condition-φ(a, b)” Then
eva ← InstantiateEvolution(AnalyzeEvolution(l, a), ln)
evb ← InstantiateEvolution(AnalyzeEvolution(l, b), ln)
If eva = evb Then res ← eva Else res ← ⊤

Else res ← ⊤
Evolution[n] ← res

Return Eval(res, l)

Fig. 4. ComputeLoopPhiEvolutions and AnalyzeEvolution.

search and reconstruction of the symbolic update expression on a path of the



Algorithm: BuildUpdateExpr(h, n)
Input: h the halting loop-φ, n the definition of an SSA name
Output: (exist, update), exist is true if h has been reached,
update is the reconstructed expression for the overall effect in the loop of h

If (n is h) Then Return (true, 0)
Else If n is a statement in an outer loop Then Return (false, ⊥),
Else If n matches ”v = a” Then Return BuildUpdateExpr(h, definition of a)
Else If n matches ”v = a + b” Then

(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (true, update + b),
(exist, update) ← BuildUpdateExpr(h, b)
If exist Then Return (true, update + a)

Else If n matches ”v = loop-φ(a, b)” Then ln ←loop of n

(notice a is defined outside ln and b is defined in ln)
If a is defined outside the loop of h Then Return (false, ⊥)
s ← Apply(ln, AnalyzeEvolution(ln, n), NumberOfIterations(ln))
If s matches ”a + t” Then (exist, update) ← BuildUpdateExpr(h, a)

If exist Then Return (exist, update + t)
Else If n matches ”v = condition-φ(a, b)” Then

(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (true, ⊤)
(exist, update) ← BuildUpdateExpr(h, b)
If exist Then Return (true, ⊤)

Else Return (false, ⊥)

Algorithm: InstantiateEvolution(trec, l)
Input: trec a symbolic TREC, l the instantiation loop
Output: an instantiation of trec

If trec is a constant c Then Return c

Else If trec is a variable v Then
If v has not been instantiated

Mark v as instantiated and Return AnalyzeEvolution(l, v)
Else v is in a mixer structure, Return ⊤

Else If trec is of the form {e1, +, e2}x Then
Return {InstantiateEvolution(e1, l), +, InstantiateEvolution(e2, l)}x

Else If trec is of the form (e1, e2)x Then
Return Unify((InstantiateEvolution(e1, l), InstantiateEvolution(e2, l))x)

Else Return ⊤

Fig. 5. BuildUpdateExpr and InstantiateEvolution algorithms.

SSA graph: BuildUpdateExpr. This corresponds to a depth-first search algo-
rithm in the SSA graph with a pattern matching rule at each step, halting either
with a success on the starting loop-φ node, or with a fail on any other loop-φ
node of the same loop. Based on these results, AnalyzeEvolution constructs
either a TREC or a peeled TREC. InstantiateEvolution substitutes symbolic
parameters in a TREC. It computes their statically known value, i.e., a constant,



a periodic function, or an approximation with intervals, possibly triggering other
computations of TREC in the process. The call to InstantiateEvolution is
postponed until the end of the depth-first search, avoiding early approximations
in the computation of update expressions. Combined with the introduction of
symbolic parameters in the TREC, postponing the instantiation alleviates the
need for a specific ordering of the computation steps. The correctness and com-
plexity of this algorithm are established by structural induction [25].

3.2 Application of the Analyzer to an Example

We illustrate the analysis of scalar evolutions algorithm on the first introductory
example in Figure 1, with the analysis of c = φ(a, f). The SSA edge exiting
the loop, Figure 6.(1), is left symbolic. The analyzer starts a depth-first search,

a = 3;
b = 1;
loop (ℓ1)

c = φ(a, f);
d = φ(b, g);

if (d>=123)
goto end;

e = d + 7;

f = e + c;
g = d + 5;

end:

(1) Initial condition edge

a = 3;
b = 1;
loop (ℓ1)

c = φ(a, f);
d = φ(b, g);

if (d>=123)
goto end;

e = d + 7;

f = e + c;
g = d + 5;

end:

(2) Searching for “c”

a = 3;
b = 1;
loop (ℓ1)

c = φ(a, f);
d = φ(b, g);

if (d>=123)
goto end;

e = d + 7;

f = e + c;
g = d + 5;

end:

(3) Found the halting phi

a = 3;
b = 1;
loop (ℓ1)

c = φ(a, f);
d = φ(b, g);

if (d>=123)
goto end;

e = d + 7;

f = e + c;
g = d + 5;

end:

(4) On the “return path”

Fig. 6. Application to the first example

illustrated in Figure 6.(2): the edge c→f is followed to the definition f = e

+ c, then following the first edge f→e, reaches the assignment e = d + 7, and
finally e→d leads to a loop-φ node of the same loop. Since this is not the starting
loop-φ, the search continues on the other unexplored operands: back on e = d

+ 7, operand 7 is a scalar, then back on f = e + c, the edge f→c is followed
to the starting loop-φ node, as illustrated in Figure 6.(3). Following the path
of iterative updates in execution order, as illustrated in Figure 6.(4), gives the
update expression: e. Finally, the analyzer records the TREC c = {a, +, e}1. An
instantiation of {a, +, e}1 yields: a = 3, e = {8, +, 5}1, and {3, +, 8, +, 5}1.

3.3 Applications

Empirical study. To show the robustness and language-independence of our im-
plementation, and to evaluate the accuracy of our algorithm, we determine a
compact representation of all variables defined by loop-φ nodes in the SPEC

CPU2000 [30] and JavaGrande [13] benchmarks. Figure 7 summarizes our experi-
ments: affine univariate variables are very frequent because well structured loops
are most of the time using simple constructs, affine multivariate less common, as



Benchmark U. M. C. ⊤ Loops Trip A.

CINT2000 12986 20 13526 52656 10593 1809 82
CFP2000 13139 52 12051 12797 6720 4137 68

JavaGrande 334 0 455 866 481 84 0

Fig. 7. Induction variables and loop trip count. Break-down of evolutions into:
“U.” affine univariate, “M.” affine multivariate, “C.” other compound expres-
sions containing determined components, and “⊤” undetermined evolutions.
Last columns describe: “Loops” the number of natural loops, “Trip” the number
of single-exit loops whose trip count is successfully analyzed, “A.” the number
of loops for which an upper bound approximation of the trip count is available.

they are used for indexing multi dimensional arrays. Difficult constructs such as
polynomials of degree greater than one occur very rarely: we have detected only
three occurrences in SPEC CPU2000, and none in JavaGrande. The last three
columns in Figure 7 show the precision of the detector of the number of itera-
tions: only the single-exit loops are exactly analyzed, excluding a big number of
loops that contain irregular control flow (probably containing exception exits)
as in the case of java programs. An approximation of the loop count can enable
aggressive loop transformations as in the 171.swim SPEC CPU2000 benchmark,
where the data accesses are used to determine a safe loop bound, allowing safe
refinements of the data dependence relations.

Optimization passes. Based on our induction variable analysis, several scalar
and high level loop optimizations have been contributed: Zdeněk Dvořák from
SuSE has contributed strength reduction, induction variable canonicalization
and elimination, and loop invariant code motion [1]. Dorit Naishlos from IBM

Haifa has contributed a “simdization” pass [7, 20] that rewrites loops to use
SIMD instructions such as Altivec, SSE, etc. Daniel Berlin from IBM Research
and Sebastian Pop have contributed a linear loop transformation framework [5]
that enables the loop interchange transformation: on the 171.swim benchmark a
critical loop is interchanged, giving 1320 points compared to 796 points without
interchange: a 65% benefit. Finally, Diego Novillo from RedHat has contributed
a value range propagation pass [22]. The dependence-based transformations use
uniform dependence vectors [4], but our method for identifying conflicting ac-
cesses between TREC can be applicable to the computation of more general
dependence abstractions, tests for periodic, polynomial, exponential or envelope
TREC. We implemented an extended Banerjee test [4], and we will integrate the
Omega test [28] in the next GCC version 4.2. In order to show the effective-
ness of the Banerjee data dependence analyzer as used in an optimizer, we have
measured the compilation time of the vectorization pass: for SPEC CPU2000

benchmarks, the vectorization pass does not exceed 1 second, nor 5 percent of
the compilation time per file. The experiments were performed on a Pentium4
2.40 GHz with 512 Kb of cache, 2 GB of RAM, on a Linux kernel 2.6.8. Figure
8 illustrates the scalability and accuracy of the analysis: we computed all de-



Benchmark # tests d i u ZIV SIV MIV

CINT2000 303235 73180 105264 124791 168942 5301 5134
CFP2000 655055 47903 98682 508470 105429 17900 60543

JavaGrande v2.0 87139 13357 67366 6416 76254 2641 916

Fig. 8. Classification of data dependence tests in SPEC CPU2000 and Java-

Grande. Columns “d”, “i” and “u” represent the number of tests classified as
dependent, independent, and undetermined. Last columns split the dependence
tests into “ZIV”, “SIV”, “MIV”: zero, single and multiple induction variable.

pendences between pairs of references — both accessing the same array — in
every function. We have to stress that this evaluation is quite artificial because
an optimizer would focus the data dependence analysis only on a few loop nests.
The number of MIV dependence tests witness the stress on the analyzer: these
tests involve arrays accessed in different loops, that could be separated by an
important number of statements. Even with these extreme test conditions, our
data dependence analyzer catches an important number of dependence relations,
and the worst case is 15 seconds and 70 percent of the compilation time.

4 Comparison with Closely Related Works

Induction variable detection has been studied extensively in the past because of
its central role in loop optimizations. Our target closed form expressions is an
extension of the chains of recurrences [3, 32, 31]. The starting representation is
close to the one used in the Open64 compiler [8, 16], but our algorithm avoids
the syntactic case distinction made in [16] that has severe consequences in terms
of generality (when analyzing intricate SSA graphs) and maintainability: as syn-
tactic information is altered by several transformation passes, pattern matching
at a low level may lead to an explosion of the number of cases to be recognized;
e.g., if a simple recurrence is split across two variables, its evolution would be
classified as wrap around if not handled correctly in a special case; in practice,
[16] does not consider these cases. Path-sensitive approaches have been proposed
[31, 29] to increase precision in the context of conditional variable updates. These
techniques may lead to an exponential number of paths, and although interest-
ing, seem not yet suitable for a production compiler, where even quadratic space
complexity is unacceptable on benchmarks like GNU Go[9].

Our work is based on the previous research results presented in [32]. We have
experimented with similar algorithms and dealt with several restrictions and dif-
ficulties that remained unsolved in later papers: for example, loop sequences are
not correctly handled, unless inserting at the end of each loop an assignment for
each variable modified in the loop and then used after the loop. Because they
are using a representation that is not in SSA form, they have to deal with all
the difficulties of building an “SSA-like” form. With some minor changes, their
algorithm can be seen as a translation from an unstructured list of instructions



to a weak SSA form restricted to operations on scalars. This weak SSA form
could be of interest for representations that cannot be translated to classic SSA

form, as the RTL representation of GCC. Another interesting result for their al-
gorithm would be a proof that constructing a weak SSA representation is faster
than building the classic SSA representation, however they have not presented
experimental results on real codes or standard benchmarks for showing the effec-
tiveness of their approach. In contrast, our algorithm is analyzing a classic SSA

representation, and instead of worrying about enriching the expressiveness of the
intermediate representation, we are concerned about the opposite question: how
to limit the expressiveness of the SSA representation in order to provide the op-
timizers a level of abstraction that they can process. It might well be argued that
a new representation is not necessary for concepts that can be expressed in the
SSA representation: this point is well taken. We acknowledge that we could have
presented the current algorithm as a transformer from SSA to an abstract SSA,
containing abstract elements. However, we deliberately have chosen to present
the analyzer producing trees of recurrences for highlighting the sources of our
inspiration and for presenting the extensions that we proposed to the chains of
recurrences. Finally, we wanted the algorithm presented in this paper to reflect
the underlying implementation in GCC.

5 Conclusion and Perspectives

We introduced trees of recurrences, a formalism based on multivariate chains of
recurrences [3, 14], with symbolic and algebraic extensions, such as the peeled
chains of recurrences. These extensions increase the expressiveness of standard
chains of recurrences and alleviate the need to resort to intractable exponential
expressions to handle wrap-around and mixer induction variables. We extended
this representation with the evolution envelopes that handle abstract elements
as approximations of runtime values. We also presented a novel algorithm for
the analysis of scalar evolutions. This algorithm is capable of traversing an ar-
bitrary program in Static Single-Assignment (SSA) form, without prior classifi-
cation of the induction variables. The algorithm is proven by induction on the
structure of the SSA graph. Unlike prior works, our method does not attempt
to retrieve more complex closed form expressions, but focuses on generality:
starting from a low-level three-address code representation that has been seri-
ously scrambled by complex phases of data- and control-flow optimizations, the
goal is to recognize simple and tractable induction variables whose algebraic
properties allow precise static analysis, including accurate dependence testing.
We have implemented and integrated our algorithm in a production compiler,
the GNU Compiler Collection (4.0), showing the scalability and robustness of
an implementation that is the basis for several optimizations being developed,
including vectorization, loop transformations and modulo-scheduling. We pre-
sented experimental results on the SPEC CPU2000 and JavaGrande benchmarks,
with an application to dependence analysis. Our results show no degradations in
compilation time. Independently of the algorithmic and formal contributions to



induction variable recognition, this work is part of an effort to bring competitive
loop transformations to the free production compiler GCC.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
and Kaufman, 2002.

3. O. Bachmann, P. S. Wang, and E. V. Zima. Chains of recurrences a method to
expedite the evaluation of closed-form functions. In Proceedings of the international
symposium on Symbolic and algebraic computation. ACM Press, 1994.

4. U. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, Boston, 1992.

5. D. Berlin, D. Edelsohn, and S. Pop. High-level loop optimizations for GCC. In
Proceedings of the 2004 GCC Developers Summit, 2004. http://www.gccsummit.

org/2004.
6. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

computing static single assignment form and the control dependence graph. ACM
Trans. on Programming Languages and Systems, 13(4):451–490, Oct. 1991.

7. A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures
with alignment constraints. In PLDI ’04: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation, pages 82–
93. ACM Press, 2004.

8. M. P. Gerlek, E. Stoltz, and M. J. Wolfe. Beyond induction variables: detect-
ing and classifying sequences using a demand-driven ssa form. ACM Trans. on
Programming Languages and Systems, 17(1):85–122, Jan. 1995.

9. Gnu go. http://www.gnu.org/software/gnugo/gnugo.html.
10. P. Granger. Static analysis of linear congruence equalities among variables of a

program. In TAPSOFT ’91: Proceedings of the international joint conference on
theory and practice of software development on Colloquium on trees in algebra
and programming (CAAP ’91): vol 1, pages 169–192, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

11. M. Haghighat and C. Polychronopoulos. Symbolic analysis for parallelizing com-
pilers. ACM Trans. on Programming Languages and Systems, 18(4), July 1996.

12. L. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and B. Sridharan. De-
signing the McCAT compiler based on a family of structured intermediate repre-
sentations. In Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing, number 757 in LNCS. Springer-Verlag, 1993.

13. Java grande forum. http://www.javagrande.org.
14. V. Kislenkov, V. Mitrofanov, and E. Zima. Multidimensional chains of recurrences.

In Proceedings of the 1998 international symposium on symbolic and algebraic com-
putation, pages 199–206. ACM Press, 1998.

15. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In ACM Symp. on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar. 2004.

16. S.-M. Liu, R. Lo, and F. Chow. Loop induction variable canonicalization in paral-
lelizing compilers. In Proceedings of the 1996 Conference on Parallel Architectures
and Compilation Techniques (PACT ’96), page 228. IEEE Computer Society, 1996.



17. J. Merill. GENERIC and GIMPLE: a new tree representation for entire func-
tions. In Proceedings of the 2003 GCC Developers Summit, 2003. http://www.

gccsummit.org/2003.
18. A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages

310–319. IEEE CS Press, October 2001.
19. S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann,

1997.
20. D. Naishlos. Autovectorization in GCC. In Proceedings of the 2004 GCC Developers

Summit, pages 105–118, 2004. http://www.gccsummit.org/2004.
21. D. Novillo. Tree SSA - a new optimization infrastructure for GCC. In Proceedings

of the 2003 GCC Developers Summit, 2003. http://www.gccsummit.org/2003.
22. D. Novillo. A propagation engine for gcc. In Proceedings of the 2005 GCC Devel-

opers Summit, 2005. http://www.gccsummit.org/2005.
23. K. O’Brien, K. M. O’Brien, M. Hopkins, A. Shepherd, and R. Unrau. Xil and

yil: the intermediate languages of tobey. In Papers from the 1995 ACM SIGPLAN
workshop on Intermediate representations, pages 71–82, New York, NY, USA, 1995.
ACM Press.

24. M. S. Paterson and M. N. Wegman. Linear unification. In STOC ’76: Proceedings
of the eighth annual ACM symposium on Theory of computing, pages 181–186,
New York, NY, USA, 1976. ACM Press.

25. S. Pop, P. Clauss, A. Cohen, V. Loechner, and G.-A. Silber. Fast recognition of
scalar evolutions on three-address ssa code. Technical Report A/354/CRI, Centre
de Recherche en Informatique (CRI), École des mines de Paris, 2004. http://www.
cri.ensmp.fr/classement/doc/A-354.ps.

26. S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with delayed
abstractions. Technical Report A/367/CRI, Centre de Recherche en Informatique
(CRI), École des mines de Paris, 2005. http://www.cri.ensmp.fr/classement/

doc/A-367.ps.
27. B. Pottenger and R. Eigenmann. Parallelization in the presence of generalized

induction and reduction variables. In ACM Int. Conf. on Supercomputing (ICS’95).
28. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-

cations of the ACM, 35(8):27–47, Aug. 1992.
29. S. Rus, D. Zhang, and L. Rauchwerger. The value evolution graph and its use

in memory reference analysis. In Proceedings of the 2004 Conference on Parallel
Architectures and Compilation Techniques. IEEE Computer Society, 2004.

30. Standard performance evaluation corporation. http://www.spec.org.
31. R. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. Gallivan. A unified framework

for nonlinear dependence testing and symbolic analysis. In Proceedings of the ACM
International Conference on Supercomputing (ICS), pages 106–115, 2004.

32. R. A. van Engelen. Efficient symbolic analysis for optimizing compilers. In Proceed-
ings of the International Conference on Compiler Construction (ETAPS CC’01),
pages 118–132, 2001.

33. H. Warren. Hacker’s Delight. Addison-Wesley, 2003.
34. M. J. Wolfe. Beyond induction variables. In ACM Symp. on Programming Lan-

guage Design and Implementation (PLDI’92), pages 162–174, San Francisco, Cal-
ifornia, June 1992.

35. M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

36. E. V. Zima. On computational properties of chains of recurrences. In Proceedings
of the 2001 international symposium on symbolic and algebraic computation, pages
345–352. ACM Press, 2001.


