
1

Exponential Memory-Bound Functions

for Proof of Work Protocols

Technical Report A/370/CRI

Fabien Coelho

CRI, École des mines de Paris,

35, rue Saint-Honoré, 77305 Fontainebleau, France.

fabien.coelho@ensmp.fr

Abstract

In year 2005, Internet users are twice more likely to receive unsolicited electronic messages,

known as spams, than regular emails.Proof of workprotocols are designed to limit such phenomena

and other denial-of-service attacks by requiring some kind of virtual stamping. These schemes require

computing an easy to verify but hard to find solution to some problem. As cpu-intensive computations

are badly hit over time by Moore’s law, memory-bound computations have been suggested as an

alternative to deal with heterogeneous hardware. We introduce new memory-bound functions suitable

to these protocols, in which the client-side work to compute the response is exponential with respect

to the server-side work needed to set the challenge or check it, instead of polynomial. One-side non-

interactive solution-verification variants are also presented. Our experimental results and technical

arguments show that any such memory-bound function is inherently parallel, thus bound by memory

bandwidth and not by memory latency, as previously claimed by others.

I. I NTRODUCTION

In recent years, the Internet electronic mail user has been plagued with massively sent unsolicited

messages,a.k.a.spams [1]. This communication channel has proven interesting to marketers thanks

to its combined worldwide-spread use in upscale households and to the very low sender-side cost

of messages: two thirds of all emails are spams [2] in 2005. Many approaches [3] have been

investigated to tackle this phenomenon. They aim at preventing, deterring, detecting or responding

to it appropriately. Automatic contents and behavior filtering [4] is in place in most organizations to

reduce the burden of handling these messages for users and systems.

September 23, 2005 DRAFT

2

We focus here on a particular cryptographic technique by Dwork and Naor [5] which suggest to

put a tighter economic bound to spamming by making emails more expensive to send, thanks to some

kind of stamps. These stamps are not actual money, but rely on a proof of computation work on top

of the popular saying thattime is money[6]. Hashcash [7] is such a scheme. It builds a stamp for a

service, such as sending a mail to an address today, by producing a bit-string. The hashed value of

this bit-string added to the service description must start with a number of leading zeros, depending

on the expected work.

Economical measures to contain denial-of-service attacks have been persued for other purposes

than deterring spams: proof of work allows to introduce delays [8]; it is a tool to audit the reported

metering of web-sites [9]; puzzle resolutions [10] or auctions [11] are used to limit the incoming

flow of service requests; in [12], a protocol for preserving digital data relies on such schemes to

resist malign peers; a formalization of proof of work schemes is presented by [13]; finally, actual

financial analysis are suggested [14] as useful to evaluate the impact of these techniques on a particular

problem.

Proof of work scheme variants may include interactive challenge-response protocols, or one-side

solution search followed by a verification. A key issue is to compare the amount of work required of

the client to compute the stamp in the response or solution part with respect to the work expected of the

server to set the challenge or verify the provided solution. Another issue is that although interactive

challenge-response protocols can lead to a known-bound search effort, as the server chooses an

existing target in the search space, one-side solutions are usually bound in the probabilistic sense.

For instance in hashcash-like methods a user will statistically spend more than 4 times the average

time for computing one solution everye4 ≈ 55 mails: one’s laptop may suddenly hangs for one

minute every day when sending an email.

Processor computational performance varies more widely than cache to memory access perfor-

mance [15], [16] from high-end servers to low-end PDAs (personal digital assistant) and over time,

following Moore’s law [17]. Thus, Abadiet al. [18] suggests to implement a scheme based on

memory-bound functions, the performance of which are bound by main memory access speed instead

of cpu and cache accesses. This approach is further investigated by Dworket al. [19].

This paper presents new contributions about memory-bound proof of work functions. It is organized

as follows: Section II presents and analyzes related work by Abadiet al. and Dworket al. Section III

describes our new challenge-response Hokkaido protocol for memory-bound proof of work schemes.

For a challenge cost ofO(l) the response cost isO(2l) memory accesses, thus inducing an exponential

work for the client compared to the server. This exponential memory-bound behavior is obtained

by using a mangled path in a binary tree on a tabulated function. Section IV details one-side

September 23, 2005 DRAFT

3

variants for the same purpose. It also emphasizes new choices for setting the various message-

dependent parameters when used in an anti-spam context. Section V contributes experimental results

and discusses technical issues. It shows that these algorithms are necessarily bound by memory

bandwidth, but not memory latency, as previously claimed. Code optimization issues related to the

implementation of these functions are addressed. Finally, Section VI concludes this paper.

II. RELATED WORK

Abadi et al. [18] describe a challenge-response protocol in which the server about to receive

an email requires the client wanting to send it to performO(l2) memory accesses, although the

verification costsO(l) computations, wherel is a length parameter. The challenge setting phase

computes a sequencexi,0≤i≤l starting from a chosenx0:

xi+1 = f(xi)⊗ i

wheref is a random-like function on a domain and⊗ the exclusive-or operator. The response is to

look for x0, by computing the reverse path starting backwards fromxl:

xi−1 ∈ f−1(xi ⊗ (i− 1))

and checking the path tox0 against a provided checksum. Note thatf−1 is not a simple function:

there may be several pre-images at each stage leading to multiple paths. . . indeed, the response to

challenge work cost ratio is achieved by forcing the client to explore this tree of reverse paths using

the tabulated inverse of the function, while the verification uses simpler forward computations. If the

function domain is large enough,e.g.222 elements, the tabulated inverse does not fit into the cache,

and many costly main memory accesses are performed.

The proposed technique is original, but has several drawbacks. First, the solution cost isonly

quadratic, thus sizable amount of verification cost is required by the server if the client is to provide

a proof of significant work. A large valuel = 213 = 8192 is suggested. Second, this quadratic

behavior actually depends on the chosen function tobe randomand on the forward path to beknown

to exists: for a permutation, the response work is the same as the verification work because only one

reverse path exists; for a random function without known forward path, only one reverse path exists

on average, hence there is no quadratic effect. Third, the actual multiplier hidden by theO() notation

is 1
2(e−1) ≈ 0.3 for purely random functions. This is small: there are few reverse paths because

the average number of pre-image by a function on a domain is just one. Fourth, the data structures

needed for handling the inverse of random functions on an arbitrary domain are not really nice:

either fast lookups can be used but memory is wasted, or a packed representation is used at a higher

September 23, 2005 DRAFT

4

computation cost. . . as the aim is to maximize memory random accesses compared to computations,

this is annoying.

Dwork et al. [19] propose a non-interactive one-side scheme inspired by the RC4 cipher. The

verification cost isO(l) for an exploration work ofO(E.l) memory accesses. Although a simple

constant work ratio seems less interesting than the previous proposal,E can be chosen as a nearly-

arbitrary largeeffort parameter.

The scheme performs solution-seeking trials based on an integer parameterk till a solution satis-

fying some property is reached. For trial numberk, an initial states0 is computed from the result of

a cryptographic-strong hash functionh applied on the message or servicem andk:

s0 = init(h(m, k))

Then the state is updatedl times with a function that performs one lookup into a large constant

random integer tablet:

si+1 = update(si, t(r(si)))

The final statesl is a success if some1E -probable property holds forh(sl). Verifying a solution

requires to perform the full trial computation again for the provided parameterk.

The authors suggestl = 211 = 2048: such a large value is needed to amortize the initialization

phase and the cryptographic-strong hash computations that occur at each trial. It is claimed that this

value allows the function to be memory-latency bound, but we show that it is not. An effort parameter

E = 215 = 32768 is proposed to achieve a significant work for the solution seeking process, so that

about226 table accesses occur.

The next three sections present our contributions. We first introduce new challenge-response memory-

bound functions similar to Abadiet al., but with much better exponential client-to-server work ratio.

Then we describe one-side solution-verification variants with faster checking costs compared to Dwork

et al. proposal. Finally, experiments and analyses illustrate our achievements on practical examples.

III. T HE HOKKAIDO PROTOCOL

Our Hokkaido1 protocol is first introduced, then various choices of parameters and their implications

are discussed.

A. Challenge-response protocol

Let D be a finite integer domain. Its sizen = |D| is typically a power of two. Letf be a function

from D to D. The next subsection discusses what this function might be. Letl be the path length.

1A nice place in Japan to think about memory-bound functions.

September 23, 2005 DRAFT

5

The server choosesl non-zero elements inD ni,1≤i≤l, l booleansbi and a starting pointx0 also in

D. It computesl iterations onf :

xi+1 = f(xi)⊗ (if bi thenni else0)

Elementsni must not be zero so thatxi+1 always differ depending onbi. Then the challenge is

composed off , l, ni,1≤i≤l, the end pointxl and a checksumc of the path fromx0. The response is

the starting pointx0 and the binary pathbi which leads toxl and matches the path checksum.

This looks much like the Abadiet al. function, as the server performs a straight forward computation

to set its challenge and the client is required to find a reverse path in a tree for the response. However,

the reverse tree is built so that its size is intrinsically exponential, unlike the previously needed

randomness assumption on Functionf for a quadratic only result. The key idea is that thanks to the

random-path mangling of values at each stage, every elements has two different images throughf ,

and thus will have on average two pre-images throughf−1 when going backwards.

A possible algorithm to compute the response inO(n.2l) is to try all forward paths from all starting

points. A more interesting algorithm is to perform a backward search fromxl using f−1. Due to

the possible scrambling byni at each stage, each point has2 predecessors on average, hence the

complexity is at least inO(2l). For a constant function, the complexity isO((2n)l). As argued by

Abadi et al., if a large tabulated representation off−1 is necessary, then many slow memory accesses

occur, hence the computation is memory bound.

B. Discussion

Let us now discuss various choices of parameters in the above algorithm. Possible choices for

Function f and DomainD are outlined. Implementation issues are addressed, with respect to the

data structures needed forf−1. Checksum variants are discussed, esp. compared to their cost in the

search.

f as a random-like function:Functionf might be a computed random-like function as suggested

by Abadi et al., the issue being to devise a very fast function to compute forward without any

computable inverse apart from memory-hungry tabulated values. If bits are not stewed a lot in the

forward computation, it might be feared that some computation may be found to shortcut the inverse.

If bits are really mangled as in cryptographic-strong hash functions, then the cost of the forward

computations to build the inverse table might not be negligible at all. Some trade-off must be made.

When tabulating the inverse of an arbitrary function on a domain, care must be taken to deal

with collisions. An astute data structure for the inverse of any function in a domain of sizen can

be built inO(n) using at mostdlog2(n)e(2n + 1) + 1 bits of storage with fastO(1) enumeration

costs, assuming that values of sizedlog2(n)e in DomainD can be handled directly inO(1). First, a

September 23, 2005 DRAFT

6

boolean tells whether the function is a permutation. If so, a first bit-aligned array of sizedlog2(n)en
simply holds the tabulated inverse permutation. If not, at least one collision occurs inf , so at least

one value in the inverse has several pre-image. One such pre-image is used as a special value in the

first bit-aligned array to tag elements without pre-image. For those elements with one pre-image, a

second similar bit-aligned array gives other indexed pre-images through an array-encoded linked list.

Thus the factor2 is needed to tabulate if each element has an inverse, and then when an inverse is

found, whether others are available.

f as a permutation:If f is a permutation, then it cannot be a fast computed permutation, as its

inverse would certainly be easy to compute. So let us assume thatf is a tabulatedpermutation.

A possible algorithm to build such a permutation is to initializef ’s table to the identity, and then

to exchange every element in turn with another pseudo-randomly chosen one, generatingn pseudo-

random table accesses on the way of the building process. The memory needed to store compactly

permutationf with indexed accesses is aboutdlog2(n)en bits, half the amount required for an arbitrary

function.

Now, if f is already a tabulated permutation, it is useless to compute its tabulated inverse, also a

permutation: a simpler forward variant of our Hokkaido protocol can be devised wherex0 is given

instead ofxl in the challenge, and the response must find the end point and the path leading to it

which matches the checksum. An advantage of this approach is that it is much less likely that some

hidden computable shortcut in a pseudo-randomly built tabulated permutation exists. Some drawbacks

are that the server must compute the table in order to set and verify a challenge: the table may be

constant on the server so that it can be reused from one challenge to the other and thus its computation

amortized. On the other end, the building process from some provided seed may be part of the proof

of work of the response, as it also involves random memory accesses. For the forward computation

part of setting a challenge, it must be noted that the expected length will be quite small due to the

exponential work of response, hence the cost of cache misses is expected to be very small on the

server side once the table is available in memory.

Implementation issues:The aim of memory bound functions is to be memory bound. This is not

as trivial as it seems when one addresses implementation issues. Indeed, the time to run a search

is shared both by computations and accesses to memory needed for the computations. Although

memory accesses are slow, they are not tremendously slow. Thus as few computation as possible

must be required if the computation time is to be really small in front of memory accesses. The

processor can easily linger in other tasks on the critical path in a badly crafted implementation.

A particular issue in the Hokkaido solution search is that an attempt involves very few computations

(typically we might havel = 26), thus the checksum to validate a trial cannot involve real hash

September 23, 2005 DRAFT

7

TABLE I

COMPACT BIT-ALIGNED STORAGE SIZES FOR DOMAIN SIZES

Log of domain sizelog2(|D|) 20 21 22 23 24

Arbitrary inverse (MB) 5.0 10.5 22.0 46.0 96.0

Permutation (MB) 2.5 5.3 11.0 23.0 48.0

function computations every few cache misses! A fast simplistic integer checksum, which can be

computed on the fly in a recursive implementation with very few operations, is attractive,e.g. c =
⊗l

i=0 rot(xi, i). A second level strong checksum could be added, but it was not necessary with our

chosen parameters during our experiments.

Tabulated data structures:Following related work, the size of the data structures needed for the

tabulated function, whetherf−1 or f for the forward variant, must be much larger than the expected

cache size on high-end hardware but small enough to fit in the main memory of low-end machines.

A minimal value of16 MB is considered appropriate as of 2003’s technology.

The storage is trickier an issue than it would seem: the compact bit-aligned approach has a

significant computational cost to deal with address translations and value alignments. A non-compact

storage requires less computation, but at the price of unused memory. If we restrict ourselves to

power of two sizes for the domainn = 2N and compact storages, the actual usable sizes are shown

in Table I. If no power of two sizes are chosen, then restriction operations for index memory access

will result in integer modulo operations, not welcome on microprocessors. Basically, the storage

scheme involves memory to computation tradeoffs: the smaller the available memory, the harder the

computations. Low-end machines may have to pay twice. . .

An overall reasonable value for the domain size isN = 22 and was used for our experiments.

The length parameter can be chosen pretty independently of the domain size, provided that enough

accesses are performed in the table, which leads to the constraint thatl > N . Otherwise, why bother

building such a large table? Also, the table building should be somehow a small part of the response

computation.

IV. ONE-SIDE HOKKAIDO

This section describes one-side variants of the Hokkaido protocol and discusses various choices of

parameters.

September 23, 2005 DRAFT

8

A. Solution-verification protocols

The first variant is simply an adaptation of the forward challenge-response Hokkaido version

described above. It aims at computing a stamp for a message which will be very fast to verify.

It goes as follows:

Let f be a tabulated permutation in DomainD. Let x0, ni and mi for 1 ≤ i ≤ l elements inD

somehow derived from the message or service. Elementsni and mi must be different so that the

xi+1 value will always differ depending onbi. Then the client must find a binary pathbi of length l

so that with:

xi+1 = f(xi)⊗ (if bi thenni elsemi)

some low probable property holds on the checksum of sequencexi,0≤i≤l.

In this variant, two mangle arraysni andmi are used. Otherwise, with a single mangle array, the

client could seek a solution without memory accesses by varying the messages to find anx0 that

would satisfy the property with an easy precomputed weak fixed0 binary path inf .

The same issues as previously discussed are raised by this variant: the checksum computation must

be very cheap and there is a memory-computation tradeoff for the data structures. The next variant

uses a simple integer table forf as in Dworket al.

Let t be a tabulated function from DomainD to computer integers. Letx0, ni andmi for 1 ≤ i ≤ l

be computer integers derived from the message or the service. Letr be a restriction function from

any integer toD, for instance a modulo or a mask. Then the client must find a binary pathbi so that:

xi+1 = xi ⊗ t(r(xi))⊗ (if bi thenni elsemi)

and some low-probable property holds forxl. Elementsni andmi must not be neutrals or identical

for r(x ⊗ ni) so thatxi+1 always differ depending onbi. A possible very cheap checksum for the

sequence in this integer table variant is to chose the end pointxl as the checksum, if it is large

enough, depending on the chosen parameters.

B. Discussion

This section discusses some choice of parameter values for setting the search effort, and how to

build an interesting tabulated function.

The size of the search space is driven by parameterl, but the effort spent in the search is only

based on the chosen probability of the property, typically thatw particular bits of the checksum are

all equal to0. For an expected2w effort, a parameterl = w+10 can be chosen so that the probability

not to find a solution is as low ase−210
= e−1024.

September 23, 2005 DRAFT

9

In the integer table variant, the property must not interact withr: if the restriction function takes

right bits then the property must consider those on the left. Otherwise the computation of part of the

values would not be needed.

An Internet electronic mail is composed of several parts: (1) the SMTP [20](Simple Mail Transfer

Protocol) envelope which specifies the recipients of the message; (2) the mail headers, some fields

of which are fixed by the sender user agent such asSubject , From, To, Date and others by MTAs

(Mail Transfer Agent)such asReceived fields; (3) the actual message contents, whether a bill or

a love letter. Note that the recipient may legitimately not appear in the headers whenbackground

carbon copiesare used.

A key idea is that a stamp should be paid for every recipient, so the solution seeking process above

should be performed for every recipient email addresses. It should also vary for all message contents

and user specified headers: for instance, the same stamp should not be reusable to send the same

contents with different subject lines.

From the server point of view, a key point is that the tabulated function should not be recomputed

over and over. On the other hand it may be wished that the function differs from server to server. A

solution to this problem is to make a pseudo-randomly built tabulated function to depends on a per

mail domain seed. Namely, if the target recipient ishobbes@comics , then the seed should depend

on thecomics domain name only.

The seed may be computed from a cryptographic hash of the mail domain name. However, this

would fix the function as well as its domain size permantently. That would not allow different

policies to be implemented on different servers. It would place a excessive burden on servers which

have to handle a great number of domains. The next idea is to make yet another use the name

server [21] infrastructure to publish this information for a given domain, as it is already used for

mail exchangers (MX) or black lists [22]. For instance,estamp.comics could point to some

pseudocnamethat would provide the expected effort, pseudo-random generator seed, function variant

and other parameters needed to compute a stamp. The answer could look like:seed-0x4a2f107.

size-22.effort-26.estamp .

As for x0, ni andmi integers, they can be derived from a pseudo-random sequence seeded by the

hash of the message contents and client headers, or of the service description.

V. PERFORMANCES

Memory-bound schemes such as those presented here or in related work are necessarily bound

by memory bandwidth. Indeed, every approach involves a seeking process performed on a large

search space with few computations and many memory accesses to make it memory-bound. As few

September 23, 2005 DRAFT

10

TABLE II

TESTED MACHINES

Identifier A B C

cpu type P2 P4 M P4 HT

cpu freq. (MHz) 310 1200 3000

cache size (KB) 512 2048 1024

mem. lat. (ns) 285.0 180.0 125.0

mem. bw. (Mline/s) 6.5 14 43

rel cpu freq. 1.0 3.9 9.7

rel mem. lat. 1.0 1.6 2.3

rel mem. bw. 1.0 2.2 6.6

computations are needed, the processor is available for exploring other paths or trials when a cache

miss occurs, generating the next cache miss before the results of the first one is returned. This creates

an opportunity to perform computations during cache misses, hence overlapping computations and

memory accesses. Thus the random access bandwidth ultimately limits the seeking process if a parallel

implementation is carefully designed.

We present experimental results on various computer architectures with a one-side Hokkaido variant

and themboundfunction of Dworket al. [19]. We have written fast parametric implementations for the

algorithms with great emphasis on optimizations: parameters are compile-time constants, plus compiler

preload and branch predictions hints are provided when available. Non-compact data structures are

used.

Table II shows some machines used in our experiments. Their capabilities vary greatly. The memory

latency was measures by some code. The bandwidth is a theoretical figure. It focuses on cache lines

per seconds as we are interested in random access performances. The relative figures in the three

lower rows synthesize the hardware improvements which is large on the frequency, small on memory

latency and average on memory bandwidth.

Table III shows performance figures of our implementation of the Dworket al.’s mboundfunction.

The figures are normalized in ns by dividing the total time of the search by the number of table

accesses. The slowdown figures measure how the performance is affected by main memory accesses

compared to in-cache behavior. The relative figures allows to compare the different machines. For a

small table, all data are in cache and the relative performance of the machine is closely correlated with

the raw cpu frequency. For large tables, two results are presented. The first one is an optimized naı̈ve

implementation which is intrinsically bound by the memory latency. It reproduces the experimental

September 23, 2005 DRAFT

11

TABLE III

NORMALIZED MBOUND PERFORMANCE AND COMPARISONS

Description A B C

N = 10 in cache (ns) 89.7 21.2 11.0

N = 22 näıve (ns) 314.2 173.1 137.0

N = 22 fastest (ns) 242.5 121.5 51.0

näıve slowdown 3.5 8.2 12.5

fast slowdown 2.7 5.7 4.6

rel in cache 1.0 4.2 8.2

rel näıve 1.0 1.8 2.3

rel fastest 1.0 2.0 4.8

TABLE IV

NORMALIZED ONE-SIDE HOKKAIDO PERFORMANCE AND COMPARISONS

Description A B C

N = 10 in cache (ns) 159.8 36.1 15.0

N = 22 näıve (ns) 387.8 135.0 136.6

N = 22 best (ns) 354.0 135.0 83.3

näıve slowdown 2.4 3.7 9.1

best slowdown 2.2 3.7 5.6

rel. in cache 1.0 4.4 10.7

rel. näıve 1.0 2.9 2.8

rel. best 1.0 2.6 4.2

results obtained by Dworket al. The second one is the best performance achieved by overlapping

computation and memory accesses in a parallel implementation, so as to hide the memory latency.

The search loop is unrolled and jammed, and hyper-threading features are used when available. The

slowdown wrt the in-cache version is significantly reduced, and the overall performances outperform

the memory latency.

Table IV outlines the performance of our one-side Hokkaido integer table variant. The results are

similar to those obtained withmbound. As expected, the in-cache performances are correlated to

raw cpu, the näıve implementation is close to memory latency and the best performance is tight to

memory bandwidth. Not as much effort on the optimization could be done for this implementation,

as unroll-and-jam transformations are not performed easily on a recursive search function.

Finally Table V compares the different memory-bound schemes for a response or solution work of

226 table accesses targeting a proof a 10 seconds work. The comparison is rough and must be taken

September 23, 2005 DRAFT

12

TABLE V

COMPARISON FOR226 = 64M TABLE MEMORY ACCESSES

Scheme Challenge/Verification Work ratio

cost type normalized

Abadi et al. 15000 comp. 22K ≈ 214.5

Dwork et al. 2048 mem. 32K = 215

Forward Hokkaido 26 mem. 2.6M ≈ 221.3

Hokkaido 26 comp. 13M ≈ 223.6

with caution, as different types of protocols are compared and it is not based on actual experiments,

but on the expected number of memory accesses for a given set of parameter values. For normalizing

the solution-to-verification or response-to-challenge work ratio, a table access is considered5 times

worth a computation. Abadiet al.and Dworket al.show quite close client-to-server work ratio results

for the work involved because the later scheme, although consumming less operations, involves more

expensive table memory accesses in the verification cost. The figures for our Hokkaido variants show

much higher work ratio, thanks to its exponential behavior.

VI. CONCLUSION

Following Dwork and Naor [5] idea to use proof of work functions to limit the rate of denial-of-

service attacks, and Abadiet al. [18] idea to rely on memory-bound functions in such schemes so as

to reduce the influence of Moore’s law when computation-bound functions are chosen, we presented

new proof of work memory-bound functions together with experimental results.

Our functions include both interactive challenge-response and one-side solution-verification vari-

ants. As related work, they rely on large tabulated or tabulated inverse of functions, possibly per-

mutations, to require slow out-of-cache pseudo-random memory accesses. The amount of work for

computing a response is exponential with respect to the work needed to set the challenge. The results

obtained by our different variants outperform previously obtained polynomial client-to-server work

ratio. This exponential behavior is achieved by pseudo-randomly mangling a path through a tabulated

function. Code optimizations involving data structures and parallelism transformations have also been

discussed. Experiments and analyses show that such memory-bound schemes are bound by memory

random access bandwidth and not, as previously thought, memory latency.

In order to make proof of work memory-bound schemes a workable solution to the particular spam

problem, a range of issues must be addressed and solved.

First, there is a technical issue, as these schemes are bound by memory bandwidth, which depends

September 23, 2005 DRAFT

13

on machine price and and design date. As a result, such schemes do not fulfill their promises as high-

end hardware often offer significantly better memory bandwidth performance than low-end machines.

Second, on the practical front, the implementation of such a scheme requires a standard to be

agreed on and deployed on both client and server sides. There are many clients, and how to deal

with the unavoidable transition period is unclear.

Third, on the economical side, more expensive mails are paid by everybody, whether spammers or

not. List servers would be penalized by such a scheme if the stamps are paid per recipient. If they

are paid per mail independently of the recipient, this would make an easy loophole for spammers to

send the same garbage to many people.

ACKNOWLEDGMENT

Thanks to Pierre Jouvelot, François Irigoin, Sebastian Pop and Corinne Ancourt for their help in

improving the contents, the structure, the data and the wording in this paper.

September 23, 2005 DRAFT

14

REFERENCES

[1] Monty Python, “Spam skit,” Flying Circus episode 25 (season 2), broadcast on BBC One, december 15 1970.

[2] MessageLabs, “Spam intercepts,” http://www.messagelabs.com/, 2005.

[3] P. Judge, “Taxonomy of anti-spam systems,” http://asrg.sp.am/, Mar. 2003, draft, version 3.

[4] J.-M. Martins da Cruz, “Mail filtering on medium/huge mail servers with j-chkmail,” inTERENA Networking

Conference 2005, Poznán, Poland, June 2005.

[5] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” inAdvances in Cryptology—CRYPTO ’92.

Springer, 1992, pp. 139–147.

[6] B. Franklin, “Advice to a young tradesman,” 1748.

[7] A. Back, “Hashcash package first announced,” http://www.hashcash.org/papers/announce.txt, Mar. 1997.

[8] R. Rivest and A. Shamir, “Payword and micromint – two simple micropayment schemes,”CryptoBytes, vol. 2, no. 1,

1996.

[9] M. K. Franklin and D. Malkhi, “Auditable metering with lightweight security,” inFinancial Cryptography 97, 1997,

updated version May 4, 1998.

[10] A. Juels and J. Brainard, “Client puzzles: A cryptographic defense against connection depletion attacks,” inNDSS 99,

1999.

[11] X. Wang and M. Reiter, “Defending against denial-of-service attacks with puzzle auctions,” inIEEE Symposium on

Security and Privacy 03, May 2003.

[12] D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, and M. Baker, “Economic measures to resist attacks on a

peer-to-peer network,” inWorkshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003. [Online].

Available: citeseer.ist.psu.edu/rosenthal03economic.html

[13] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” inComms and Multimedia Security 99,

1999.

[14] B. Laurie and R. Clayton, “”proof-of-work” proves not to work,” inWEAS 04, May 2004.

[15] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the obvious,”SIGARCH Comput. Archit.

News, vol. 23, no. 1, pp. 20–24, 1995.

[16] J. L. Hennessy and D. A. Patterson,Computer Architecture, a Quantitative Approach, 3rd ed. Morgan Kaufmann

Publishers, 2003.

[17] G. E. Moore, “Cramming more components onto integrated circuits,”Electronics, vol. 38, no. 8, Apr. 1965.

[18] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard, memory-bound functions,”ACM Trans.

Inter. Tech., vol. 5, no. 2, pp. 299–327, 2005, a previous version appeared in NDSS’2003. [Online]. Available:

citeseer.ist.psu.edu/554568.html

[19] C. Dwork, A. Goldberg, , and M. Naor, “On memory-bound functions for fighting spam,” inAdvances in Cryptology

— CRYPTO 2003, ser. Lecture Notes in Computer Science, vol. 2729. Springer, 2003, pp. 426–444. [Online].

Available: citeseer.ist.psu.edu/dwork02memorybound.html

[20] IETF, “RFC 2821, simple mail transfer protocol (SMTP),” http://www.ietf.org/rfc/rfc2821.txt, Apr. 2001.

[21] ——, “RFC 1035, domain names - implementation and specification,” http://www.ietf.org/rfc/rfc1035.txt, Nov. 1987.

[22] P. Vixie, “DNSBL – DNS-based blackhole list,” part of MAPS, Mail Abuse Prevention System, 1997.

Typeset with LATEX, document revision 234

September 23, 2005 DRAFT

